CN115195230B - 一种宽频吸波、高导热的柔性电磁损耗材料及制备方法 - Google Patents

一种宽频吸波、高导热的柔性电磁损耗材料及制备方法 Download PDF

Info

Publication number
CN115195230B
CN115195230B CN202210818443.6A CN202210818443A CN115195230B CN 115195230 B CN115195230 B CN 115195230B CN 202210818443 A CN202210818443 A CN 202210818443A CN 115195230 B CN115195230 B CN 115195230B
Authority
CN
China
Prior art keywords
boron nitride
parts
mixing
absorbing
carbonyl iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210818443.6A
Other languages
English (en)
Other versions
CN115195230A (zh
Inventor
兰天
李南
董立超
刘鹏飞
赵慈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN202210818443.6A priority Critical patent/CN115195230B/zh
Publication of CN115195230A publication Critical patent/CN115195230A/zh
Application granted granted Critical
Publication of CN115195230B publication Critical patent/CN115195230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/048Natural or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种宽频吸波、高导热的柔性电磁损耗材料及制备方法,涉及复合材料领域,通过三种粒径的球状羰基铁粉制成复合粉,入纳米氮化硼填料得到导热吸波复合粉体,再加入至甲基苯基硅橡胶中进行初次混炼,再加入气相白炭黑、抗静电剂、双二五硫化剂进行二次混炼,再通过反复薄通处理制成片状胶料,与氮化硼织物、碳纤维织物压延复合得到两种预浸料,最后将片状胶料和两种预浸料按照一定顺序铺覆,热压硫化成型得到宽频吸波、高导热的柔性电磁损耗材料。

Description

一种宽频吸波、高导热的柔性电磁损耗材料及制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种宽频吸波、高导热的柔性电磁损耗材料及制备方法。
背景技术
随着电子设备朝着小型化、高性能化的密集发展,系统内部的集成度也越来越高,而设备运行中会产生大量废热,这些热量若无法有效散除,会造成电子设备性能失效、使用寿命大大缩短,需要借助导热功能材料来将设备内废热传递并散除出去。另一方面,在电子设备有限空间中大量电子元器件在工作时还会向外发射电磁辐射,会对周围设备造成电磁干扰,还需要考虑在电子元器件周围设计贴覆吸波材料改善设备的电磁兼容性。但在设备狭小空间内采用两种或多种材料来实现导热、吸波效果已十分困难。因此,开发一种具有导热吸波双功能材料已经成为解决电子设备高效散热和电磁兼容问题的有效手段。
目前,导热吸波柔性复合材料主要是在橡胶基体中添加各类吸波剂和传统导热填料,来获得兼具导热、吸波功能的材料。但由于橡胶基体分子量高,本征粘度大,导致功能填料的加入总量存在上限,单独一种填料(吸波剂、导热粉)添加量的提升就会造成另一种功能填料添加量的降低,使得导热吸波材料的导热性能与吸波性能存在此消彼长的矛盾,难以实现材料双重性能的同步提升。而且,一味提高功能填料在橡胶基体的含量,还会导致整体粘度增大、成型困难、成本提高等诸多问题,影响最终产品在电子设备中实际应用效果。
羰基铁粉是传统的铁基吸波剂之一,其中以球形结构的粉末为主,具有屏蔽效率高、生产方法简单、结构易控制、成本低等优点,是电子设备内微波谐振控制所广泛采用的吸波填料。但若要实现理想的吸波效果,柔性材料中羰基铁粉的填充量要达到很高才可以满足要求,而该类铁粉本身导热性能并不高,这就造成基体中能够复配的导热粉体含量就会很低,整体热导率难以进一步提升。而且,理想吸波效果要保证羰基铁粉填料在基体中的分散均匀,无搭接团聚现象;但实现高导热效果,要建立有填料相互搭接的导热网络通路,这一难点在高填充量复合填料的体系下难以实现。另一方面,不同粒径尺寸的羰基铁粉会在不同频率下表现出一定的衰减特性,现有资料报道还没有针对不同粒径范围进行复合控制以实现宽带下对电磁波的强损耗。
发明内容
本发明目的是将不同粒径尺寸的羰基铁粉与不同形貌结构的纳米氮化硼进行复合混炼,同时在基体材料中分别氮化硼织物与碳纤维织物,通过三组元材料体系构筑一种高效的吸波导热网络结构,提供一种具有宽带强衰减、高导热的硅橡胶基电磁损耗复合材料。
本发明的目的是通过下述技术方案来实现的:
一种宽频吸波、高导热的柔性电磁损耗材料的制备方法,包括以下步骤:
1)将D70粒径为5.5-6.5μm的A型球状羰基铁粉、D70粒径为在2.8-3.3μm的B型球状羰基铁粉、D70粒径为1.5-1.8μm的C型球状羰基铁粉进行预混合,得到球形羰基铁复合粉;
2)在所述球形羰基铁复合粉中加入纳米氮化硼填料、KH570偶联剂,混合均匀,得到导热吸波复合粉体;
3)将所述导热吸波复合粉体加入至甲基苯基硅橡胶中,进行初次混炼,得到吸波导热电磁浆料;
4)在所述吸波导热电磁浆料中加入气相白炭黑、抗静电剂、双二五硫化剂,进行二次混炼,待混合均匀后得到柔性电磁浆料;
5)将所述柔性电磁浆料进行反复薄通处理,再压制成片状胶料;
6)将所述片状胶料分别与氮化硼织物、碳纤维织物压延复合,分别形成未硫化的氮化硼纤维预浸料和碳纤维预浸料;
7)将所述片状胶料、氮化硼纤维预浸料和碳纤维预浸料按照一定顺序铺覆于模具中,经过热压硫化成型,得到宽频吸波、高导热的柔性电磁损耗材料。
进一步地,步骤1)中按质量份数称取91-117份的A型球状羰基铁粉、104-117份的B型球状羰基铁粉、26-65份的C型球状羰基铁粉;预混合条件为:在搅拌转速15-23rpm下混合0.5-2h。
进一步地,步骤2)中按质量份数称取0.4-10份的纳米氮化硼填料、4-10份的KH570偶联剂;混合条件为:常温下混合14-16h。
进一步地,步骤2)中纳米氮化硼填料选用粒径为20-100nm的纳米级六方氮化硼,或者厚度为5nm,粒径为50-200nm的超薄氮化硼纳米片。
进一步地,步骤3)中按质量份数称取40-45份的甲基苯基硅橡胶;初次混炼条件为:捏合混炼20-40min。
进一步地,步骤3)中初次混炼采用三段混炼:一段5-8rpm持续5-10min,二段12-15rpm持续10-20min,三段8-10rpm持续5-10min。
进一步地,步骤4)中按质量份数称取1.2-1.5份气相白炭黑、2.4-3份抗静电剂、0.4-0.5份双二五硫化剂;二次混炼条件为:捏合混炼20-40min。
进一步地,步骤4)中二次混炼条件采用二段混炼:一段加入气相白炭黑与抗静电剂,5-10rpm持续15-30min;二段加入双二五硫化剂,15-18rpm持续5-10min。
进一步地,步骤5)所述柔性电磁浆料分段反复薄通处理20-30次;所述片状胶料厚度为0.3mm。
进一步地,步骤5)所述薄通处理分三段:一段为辊距1-1.5mm薄通5-8次,二段辊距0.5-0.8mm薄通10-15次,三段辊距0.2-0.3mm薄通5-10次。
进一步地,步骤6)中,将按照步骤1)至5)制备得到的片状胶料与40~45质量份的氮化硼织物进行压延复合,以及将按照步骤1)至5)制备得到的片状胶料与40~45质量份的碳纤维织物进行压延复合,该两个压延复合是相互独立的过程,所用的片状胶料是分别制备的,不共用片状胶料;所述压延复合是在5-8rpm下进行。
进一步地,步骤6)所述氮化硼织物单丝直径3-10μm,碳纤维织物为T300平纹织物,二者厚度均为0.2mm。
进一步地步骤7)中所述一定顺序是指:首先将所述片状胶料先铺覆在模具底部,其次将所述碳纤维预浸料进行铺覆,再次铺覆所述片状胶料,最后铺覆所述氮化硼纤维预浸料;按照前述顺序重复铺覆至目标厚度,优选重复铺覆10次。
进一步地,步骤7)中热压硫化成型的条件为:在120-170℃、8-10MPa下硫化成型;热压硫化成型后进行后处理,条件为170℃下30min。
进一步地,步骤7)所述热压硫化成型的条件优选为:在120℃、10MPa下热压15min。
本发明以甲基苯基硅橡胶为柔性基体,采用不同粒径尺寸的球状羰基铁复合粉体作为吸波剂,通过V型混料器将羰基铁粉与各类氮化硼纳米填料进行预混合,运用密炼机将复合粉体与硅橡胶基体捏合混炼,制备了高粘度柔性电磁导热浆料;通过压延覆膜法分别将氮化硼织物、碳纤维织物与电磁导热浆料进行压延出片,最后在平板硫化机下依次铺层并加热压制,制备了吸波/导热柔性电磁损耗材料,其具有宽带强衰减特性、热导率高、结构匹配性好,柔性易贴覆等特点,能够满足多类电子设备及器件对高性能吸波导热材料的应用要求。
本发明的创新点如下:
1)在主体吸波剂配方上,采用了三种粒径尺寸范围的球形羰基铁粉,改变不同含量比例来调谐柔性电磁损耗材料在宽带范围的吸波损耗性能,同时,运用V型粉体预混方式有效减少了铁粉之间的团聚现象;
2)在导热填料配方上,采用了纳米级六方氮化硼或超薄氮化硼纳米片与羰基铁粉复配结合,在保证不影响电磁参数变化(介电常数与磁导率稳定无紊乱)的同时,可与吸波剂进行搭接隔离,形成导热微结构网络;
3)在柔性电磁损耗材料结构上,采用了氮化硼纤维织物、碳纤维织物、柔性电磁浆料相互叠层复合的形式,从二维、三维结构上均构筑了吸波/导热网络双功能结构。
本发明制备的宽频吸波、高导热的柔性电磁损耗材料具有如下有益效果:
(1)电磁特性与衰减性能与材料中吸波剂粒径尺寸高度相关,不同波长电磁波在进入磁性吸波材料中会由于涡流损耗,畴壁共振等机制所损耗掉,不同吸波剂会随着其尺寸,磁结构的变化在不同频率下表现出磁性频谱特征。本发明针对羰基铁粉粒径尺寸对不同频率范围电磁波的电磁特性和衰减特性,通过调配三组分羰基铁粉的比例关系,形成了包含纳米级、亚微米级、微米级的吸波剂体系,可实现柔性材料在宽频范围下高磁导率、高衰减的特性,达到提高10%~25%的效果;
(2)本发明针对羰基铁粉热导率低、粉体团聚易电磁紊乱的问题,在三元铁粉/硅橡胶复合浆料的基础上,引入介电匹配度好的纳米级六方氮化硼、超薄氮化硼纳米片与吸波剂体系相结合,导热结构是需要填料之间相互接触,促使浆料内部形成导热通路,使热流快速传递,纳米氮化硼与氮化硼纳米片会与铁粉形成一种搭接形式而形成一种整体式的传热网络,在保证电磁参数稳定的基础上,还可改善柔性电磁损耗材料的导热性能;
(3)本发明针对导热吸波材料在全向通路传热性能存在差异的问题,在材料三维结构中依次添加氮化硼纤维织物、碳纤维织物,使得柔性电磁损耗材料在多维结构上导热通路完整,还具有介电性能稳定、吸波损耗双机制的特点,从而实现材料高导热、强衰减的特性。
附图说明
图1是本发明的一种宽频吸波、高导热的柔性电磁损耗材料的制备流程图。
具体实施方式
为使本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图作详细说明如下。
以下实施例中所用的硅橡胶为甲基苯基硅橡胶,其复介电常数为2.8-0.01j,复磁导率为1.1-0.01j;所用的A型球状羰基铁粉、B型球状羰基铁粉、C型球状羰基铁粉的D70粒径为5.5-6.5μm、2.8-3.3μm、1.5-1.8μm;所用的纳米级六方氮化硼粒径为20-100nm,超薄氮化硼纳米片厚度为5nm,粒径为50-200nm。
实施例1
称取117g A型球状羰基铁粉、117g B型球状羰基铁粉、65g C型球状羰基铁粉在转速20rpm下混合1.5h,然后在料筒中加入10g纳米级六方氮化硼纳米填料和10g KH570偶联剂,继续混合14h,得吸波导热复合粉体;
称取40g甲基苯基硅橡胶与复合粉体在一段8rpm持续5min,二段15rpm持续20min,三段10rpm持续10min下捏合混炼,随后再加入1.5g气相白炭黑、2.4g抗静电剂、0.4g双二五硫化剂,进行一段10rpm持续30min,二段18rpm持续10min捏合混炼;进一步,将胶料在一段辊距1.5mm薄通5次,二段辊距0.8mm薄通15次,三段辊距0.3mm薄通10次;按照上述过程分别制备两份片状浆料,分别与0.2mm厚的40g氮化硼纤维和40g碳纤维织物进行压延复合,得未硫化预浸料;
在模具中,按照一层胶料、一层碳纤维预浸料、一层胶料、一层氮化硼纤维预浸料的组合顺序,依次铺覆各10层(即按照前述顺序总共铺覆20层胶料,10层碳纤维预浸料和10层氮化硼纤维预浸料),然后在120℃、10MPa下热压15min,再在170℃烘箱中高温处理30min,得到宽频吸波、高导热的柔性电磁损耗材料。
实施例2
称取110g A型球状羰基铁粉、110g B型球状羰基铁粉、55g C型球状羰基铁粉在转速23rpm下混合0.5h,然后在料筒中加入5.4g超薄氮化硼纳米片和4.5g KH570偶联剂,继续混合15.5h,得吸波导热复合粉体;
称取43g甲基苯基硅橡胶与复合粉体在一段7rpm持续10min,二段12rpm持续15min,三段8rpm持续8min下捏合混炼,随后再加入1.2g气相白炭黑、3g抗静电剂、0.4g双二五硫化剂,进行一段8rpm持续25min,二段15rpm持续8min捏合混炼;进一步,将胶料在一段辊距1mm薄通8次,二段辊距0.5mm薄通12次,三段辊距0.2mm薄通5次;按照上述过程分别制备两份片状浆料,分别与0.2mm厚的43g氮化硼纤维和45g碳纤维织物进行压延复合,得未硫化预浸料;
在模具中,按照一层胶料、一层碳纤维预浸料、一层胶料、一层氮化硼纤维预浸料的组合顺序,依次铺覆各10层,然后在150℃、9MPa下热压15min,再在170℃烘箱中高温处理30min,得到宽频吸波、高导热的柔性电磁损耗材料。
实施例3
称取91g A型球状羰基铁粉、104g B型球状羰基铁粉、26g C型球状羰基铁粉在转速15rpm下混合2h,然后在料筒中加入0.4g纳米级六方氮化硼纳米填料和4g KH570偶联剂,继续混合16h,得吸波导热复合粉体;
称取45g甲基苯基硅橡胶与复合粉体在一段5rpm持续8min,二段14rpm持续10min,三段9rpm持续5min下捏合混炼,随后再加入1.3g气相白炭黑、2.8g抗静电剂、0.5g双二五硫化剂,进行一段5rpm持续15min,二段16rpm持续5min捏合混炼;进一步,将胶料在一段辊距1.3mm薄通5次,二段辊距0.7mm薄通10次,三段辊距0.3mm薄通6次;按照上述过程分别制备两份片状浆料,分别与0.2mm厚的45g氮化硼纤维和43g碳纤维织物进行压延复合,得未硫化预浸料;
在模具中,按照一层胶料、一层碳纤维预浸料、一层胶料、一层氮化硼纤维预浸料的组合顺序,依次铺覆各10层,然后在170℃、8MPa下热压15min,再在170℃烘箱中高温处理30min,得到宽频吸波、高导热的柔性电磁损耗材料。
对比例
称取220g A型羰基铁粉、40g甲基苯基硅橡胶一起加入至密炼机中,捏合搅拌2h,形成灰色电磁浆料;再称取1.2g气相白炭黑、2.4g抗静电剂、0.4g双二五硫化剂,一起加入电磁浆料中搅拌40min,形成未硫化柔性电磁浆料;将浆料在0.5mm辊距的开炼机上反复薄通20次,随后调节辊距至1.0mm压延出片。将片状胶料放入平板模具中,在120℃、10MPa下热压15min,再在170℃烘箱中高温处理30min。
实施例1-3和对比例中电磁参数、衰减系数以及导热性的测试结果列于表1中。
表1柔性电磁损耗复合材料电磁性能及导热性能测试结果
Figure GDA0004154178800000061
由上表中的测试数据可知,随着胶料中多组分羰基铁的引入,实施例1~3中材料的介电损耗与磁损耗均有所提高,衰减性能也提高明显;胶料中引入纳米级氮化硼填料、碳纤维织物、氮化硼织物等补强材料,不但提高了电磁特性,还可有效改善材料导热性能,导热系数显著提升;而且与六方氮化硼填料相比,氮化硼纳米片可提高材料热传递效率,导热系数更高,但会带来电磁衰减性能的下降。其中综合性能比较下,采用实施例1在保证导热性能的基础上,还具备更好的电磁衰减性能,这是由于实施例1采用了最佳参数组合所实现的效果。而对比例由于没有采取上述技术手段,导致其衰减系数小,导热率低,与实施例1~3的技术效果相差很大。
虽然本发明已以实施例公开如上,然其并非用以限定本发明,本领域的普通技术人员对本发明的技术方案进行的适当修改或者等同替换,均应涵盖于本发明的保护范围内,本发明的保护范围以权利要求所限定者为准。

Claims (10)

1.一种宽频吸波、高导热的柔性电磁损耗材料的制备方法,其特征在于,包括以下步骤:
1)将D70粒径为5.5-6.5μm的A型球状羰基铁粉、D70粒径为在2.8-3.3μm的B型球状羰基铁粉、D70粒径为1.5-1.8μm的C型球状羰基铁粉进行预混合,得到球形羰基铁复合粉;
2)在所述球形羰基铁复合粉中加入纳米氮化硼填料、KH570偶联剂,混合均匀,得到导热吸波复合粉体;
3)将所述导热吸波复合粉体加入至甲基苯基硅橡胶中,进行初次混炼,得到吸波导热电磁浆料;
4)在所述吸波导热电磁浆料中加入气相白炭黑、抗静电剂、双二五硫化剂,进行二次混炼,待混合均匀后得到柔性电磁浆料;
5)将所述柔性电磁浆料进行反复薄通处理,再压制成片状胶料;
6)将所述片状胶料分别与氮化硼织物、碳纤维织物压延复合,分别形成未硫化的氮化硼纤维预浸料和碳纤维预浸料;
7)将所述片状胶料、氮化硼纤维预浸料和碳纤维预浸料按照一定顺序铺覆于模具中,经过热压硫化成型,得到宽频吸波、高导热的柔性电磁损耗材料。
2.如权利要求1所述的方法,其特征在于,步骤1)中按质量份数称取91-117份的A型球状羰基铁粉、104-117份的B型球状羰基铁粉、26-65份的C型球状羰基铁粉;预混合条件为:在搅拌转速15-23rpm下混合0.5-2h。
3.如权利要求1所述的方法,其特征在于,步骤2)中按质量份数称取0.4-10份的纳米氮化硼填料、4-10份的KH570偶联剂,纳米氮化硼填料选用粒径为20-100nm的纳米级六方氮化硼,或者厚度为5nm,粒径为50-200nm的超薄氮化硼纳米片;混合条件为:常温下混合14-16h。
4.如权利要求1所述的方法,其特征在于,步骤3)中按质量份数称取40-45份的甲基苯基硅橡胶;初次混炼采用三段混炼:一段5-8rpm持续5-10min,二段12-15rpm持续10-20min,三段8-10rpm持续5-10min。
5.如权利要求1所述的方法,其特征在于,步骤4)中按质量份数称取1.2-1.5份气相白炭黑、2.4-3份抗静电剂、0.4-0.5份双二五硫化剂;二次混炼条件采用二段混炼:一段加入气相白炭黑与抗静电剂,5-10rpm持续15-30min;二段加入双二五硫化剂,15-18rpm持续5-10min。
6.如权利要求1所述的方法,其特征在于,步骤5)所述柔性电磁浆料分段反复薄通处理20-30次;所述片状胶料厚度为0.3mm;所述薄通处理分三段:一段为辊距1-1.5mm薄通5-8次,二段辊距0.5-0.8mm薄通10-15次,三段辊距0.2-0.3mm薄通5-10次。
7.如权利要求1所述的方法,其特征在于,步骤6)中,将按照步骤1)至5)制备得到的片状胶料与40~45质量份的氮化硼织物进行压延复合,以及将按照步骤1)至5)制备得到的片状胶料与40~45质量份的碳纤维织物进行压延复合;所述压延复合是在5-8rpm下进行。
8.如权利要求1所述的方法,其特征在于,步骤6)所述氮化硼织物单丝直径3-10μm,碳纤维织物为T300平纹织物,二者厚度均为0.2mm。
9.如权利要求1所述的方法,其特征在于步骤7)中所述一定顺序是指:首先将所述片状胶料先铺覆在模具底部,其次将所述碳纤维预浸料进行铺覆,再次铺覆所述片状胶料,最后铺覆所述氮化硼纤维预浸料;按照前述顺序重复铺覆至目标厚度,重复铺覆10次。
10.如权利要求1所述的方法,其特征在于,步骤7)中热压硫化成型的条件为:在120-170℃、8-10MPa下硫化成型;热压硫化成型后进行后处理,条件为170℃下30min。
CN202210818443.6A 2022-07-12 2022-07-12 一种宽频吸波、高导热的柔性电磁损耗材料及制备方法 Active CN115195230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210818443.6A CN115195230B (zh) 2022-07-12 2022-07-12 一种宽频吸波、高导热的柔性电磁损耗材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210818443.6A CN115195230B (zh) 2022-07-12 2022-07-12 一种宽频吸波、高导热的柔性电磁损耗材料及制备方法

Publications (2)

Publication Number Publication Date
CN115195230A CN115195230A (zh) 2022-10-18
CN115195230B true CN115195230B (zh) 2023-05-05

Family

ID=83580917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210818443.6A Active CN115195230B (zh) 2022-07-12 2022-07-12 一种宽频吸波、高导热的柔性电磁损耗材料及制备方法

Country Status (1)

Country Link
CN (1) CN115195230B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243161A2 (en) * 1986-04-22 1987-10-28 The Yokohama Rubber Co., Ltd. Microwave-absorptive composite
JP2008208316A (ja) * 2007-02-28 2008-09-11 Teijin Ltd 炭素繊維複合材料
KR101003840B1 (ko) * 2010-03-29 2010-12-23 두성산업 주식회사 향상된 수직 열전도도, 수평 열전도도, 전자파 차폐능 및 전자파 흡수능을 가진 복합 기능 열확산 시트
CN102464888A (zh) * 2010-11-17 2012-05-23 信越化学工业株式会社 热压接用硅橡胶片材
CN109957247A (zh) * 2017-12-25 2019-07-02 洛阳尖端技术研究院 一种吸波贴片及其制备方法和应用
CN110768025A (zh) * 2019-11-18 2020-02-07 安徽璜峪电磁技术有限公司 一种复合碳粉宽频带复合式吸波材料制备方法
CN112409653A (zh) * 2019-08-23 2021-02-26 洛阳尖端技术研究院 一种吸波剂、其制备方法及应用
CN114193850A (zh) * 2021-11-22 2022-03-18 航天科工武汉磁电有限责任公司 一种轻质柔性耐弯折目标特征控制复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3423529A4 (en) * 2016-02-29 2019-11-06 GSDI Specialty Dispersions, Inc. HEAT-RESISTANT SILICONE ELASTOMERS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243161A2 (en) * 1986-04-22 1987-10-28 The Yokohama Rubber Co., Ltd. Microwave-absorptive composite
JP2008208316A (ja) * 2007-02-28 2008-09-11 Teijin Ltd 炭素繊維複合材料
KR101003840B1 (ko) * 2010-03-29 2010-12-23 두성산업 주식회사 향상된 수직 열전도도, 수평 열전도도, 전자파 차폐능 및 전자파 흡수능을 가진 복합 기능 열확산 시트
CN102464888A (zh) * 2010-11-17 2012-05-23 信越化学工业株式会社 热压接用硅橡胶片材
CN109957247A (zh) * 2017-12-25 2019-07-02 洛阳尖端技术研究院 一种吸波贴片及其制备方法和应用
CN112409653A (zh) * 2019-08-23 2021-02-26 洛阳尖端技术研究院 一种吸波剂、其制备方法及应用
CN110768025A (zh) * 2019-11-18 2020-02-07 安徽璜峪电磁技术有限公司 一种复合碳粉宽频带复合式吸波材料制备方法
CN114193850A (zh) * 2021-11-22 2022-03-18 航天科工武汉磁电有限责任公司 一种轻质柔性耐弯折目标特征控制复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
不同形貌羰基铁的复合对电磁特性及吸波性能的影响;卢明明;刘甲;宫元勋;赵宏杰;曹茂盛;;表面技术(第02期);95-99 *
氮化硼/碳纤维复合织物的性能研究;鱼园;界璐;;合成纤维(04);41-42,52 *

Also Published As

Publication number Publication date
CN115195230A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN112812660B (zh) 一种具有高热导率和高吸波性能的涂料及其制备方法
CN111391440A (zh) 具有频率选择性电磁屏蔽的绝缘导热聚合物复合材料及其制备方法
Zubair et al. Effect of barium hexaferrites and thermally reduced graphene oxide on EMI shielding properties in polymer composites
CN110712400B (zh) 三维碳/四氧化三铁科赫分形层用于制备层状碳纤维电磁屏蔽复合材料的方法
Jana et al. Electromagnetic interference shielding by carbon fibre-filled polychloroprene rubber composites
Kaushal et al. Effect of filler loading on the shielding of electromagnetic interference of reduced graphene oxide reinforced polypropylene nanocomposites prepared via a twin-screw extruder
CN115195230B (zh) 一种宽频吸波、高导热的柔性电磁损耗材料及制备方法
Gao et al. 3D printing of carbon black/polylactic acid/polyurethane composites for efficient microwave absorption
CN111002678B (zh) 一种低密度复合材料吸波板的制备方法
WO2020114092A1 (zh) 环氧橡胶吸波涂料及其制备方法
CN113773610A (zh) 一种羰基铁粉吸波材料及其制备方法
CN107974069A (zh) 一种碳纳米管基吸波超材料基材及其制备方法
Ting et al. Effect of silicon carbide dispersion on the microwave absorbing properties of silicon carbide-epoxy composites in 2–40 GHz
CN114957995B (zh) 一种耐腐蚀吸波导热的硅橡胶复合垫片及其制备方法
CN114142238B (zh) 一种基于多边形基元序构的微波/红外电磁兼容超材料及其制备方法
CN112898952B (zh) 一种具备导热和吸波一体化功能的石墨烯/Fe/Fe3O4复合材料及其制备方法
CN106832522B (zh) 一种具有取向隔离结构的电磁屏蔽复合材料及其制备方法
CN115087338A (zh) 一种电磁均匀及阻抗匹配电磁损耗材料及制备方法
CN108384125A (zh) 一种电动汽车充电桩电缆用高导热绝缘橡胶料及制备方法
CN106659104A (zh) 一种耐湿耐氧化低频电磁波吸收材料
CN114891353B (zh) 复合材料垫片及其制备方法和应用、电子器件
Cai et al. Effects of antioxidant on mechanical and electromagnetic properties of carbonyl iron/ethylene propylene diene monomer composites
CN115948071B (zh) 基于螺旋碳纳米管的多层微波吸收涂层及制备方法
CN116836552A (zh) 一种多功能层级硅橡胶电磁屏蔽复合材料的制备方法
CN110144086A (zh) 一种单层弹性体电磁波吸收材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant