CN115189413B - 大功率集群并机/并网智能微电网的控制方法 - Google Patents

大功率集群并机/并网智能微电网的控制方法 Download PDF

Info

Publication number
CN115189413B
CN115189413B CN202210531992.5A CN202210531992A CN115189413B CN 115189413 B CN115189413 B CN 115189413B CN 202210531992 A CN202210531992 A CN 202210531992A CN 115189413 B CN115189413 B CN 115189413B
Authority
CN
China
Prior art keywords
power
population
grid
power supply
stricken
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210531992.5A
Other languages
English (en)
Other versions
CN115189413A (zh
Inventor
黄建祥
邓志勇
黄裕
林荣炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan Helios Automobile Co Ltd
Original Assignee
Longyan Helios Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan Helios Automobile Co Ltd filed Critical Longyan Helios Automobile Co Ltd
Priority to CN202210531992.5A priority Critical patent/CN115189413B/zh
Publication of CN115189413A publication Critical patent/CN115189413A/zh
Application granted granted Critical
Publication of CN115189413B publication Critical patent/CN115189413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了一种本发明提供的大功率集群并机/并网智能微电网的控制方法。可快速实现供电系统的并联控制,满足不同功率、不同品牌发电机组的并联运行。通过设置合理的负载分配和并机时间,大幅减小设备和电网冲击,降低功率损失。尤其适用5000kW以上集群并机/并网。

Description

大功率集群并机/并网智能微电网的控制方法
技术领域
本发明涉及一种大功率集群并机/并网智能微电网的控制方法。
背景技术
传统电力应急车只能实现2台并机供电,应急车快速协同大功率供电难。发电负荷需求难以确定,电力应急车需根据电力负荷智能切换并机并网的台数。采用中压电源车的多机并机并网,如图2中压电源车多机并机并网系统接线图所示,并机台数切换方法如图1所示。当所有发电机组额定功率总和大于系统功率+停机储备功率时,其中一台机组开始停机;当所有发电机组额定功率总和小于系统功率+启机储备功率时,其中一台机组开始启动。
发明内容
本发明提供了一种大功率集群并机/并网智能微电网的控制方法,可以有效解决上述问题。
本发明是这样实现的:
一种大功率集群并机/并网智能微电网的控制方法,所述控制方法包括以下步骤:
S1,建立智慧型大功率电力应急车能量调度模型多目标优化函数;
S2:设置能量调度的约束方程和不等式,并导入电力应急车组功率、电压和负荷预测值等基本参数,从而产生规模为NG的初始种群P0
S3:对初始种群P0进行快速非支配排序和拥挤度计算,根据初始总群P0个体的非劣水平,确认非劣种群个体,然后将拥挤度比较算子作为初始种群P0的适应度值,选择适应度较高的N个个体构建新的父代种群Pt
S4,令t=1,根据多目标遗传算法,对父代种群Pt进行选择、交叉和变异操作,生成新的子代种群Qt,从而保留最优的种群个体;
S5:令Rt=Pt∪Qt,将父代种群Pt与子代种群Qt合并形成新的种群Rt
S6:引入精英策略,将种群Rt按适应度升序进行快速非支配排序;
S7:计算种群Rt所有非支配层中种群个体的拥挤度和拥挤度比较算子,并进行拥挤度对比,选取拥挤度较小的N个最优种群个体放入Pt+1中,从而构建新一代种群Pt+1
S8:判断t是否小于等于Gmax,否则输出电力应急车能量调度的最优解集,循环结束,是则转到S4,继续循环计算,直到满足程序终止的条件作为进一步改进的,。
本发明的有益效果是:本发明的控制方法可快速实现供电系统的并联控制,满足不同功率、不同品牌发电机组的并联运行。通过设置合理的负载分配和并机时间,大幅减小设备和电网冲击,降低功率损失。尤其适用5000kW以上集群并机/并网。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例提供的中压电源车的多机并机并网系统的接线图之一。
图2是本发明实施例提供的中压电源车的多机并机并网系统的接线图之二。
图3是本发明实施例提供的中压电源车的电压互感器的接线示意图。
图4是本发明实施例提供的大功率集群并机/并网智能微电网的控制方法。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参照图1-2所示,一种中压电源车的多机并机并网系统,包括:
设置在10kV配电线路上的分段开关3;
多辆电源车,每一电源车内设置有相互电连接的发电机组与配电柜,所述配电柜包括顺次通过电缆线连接的第一进线柜01、第一出线柜11、第二进线柜12,所述第一进线柜01与所述发电机组电连接,所述第一出线柜11包括两根并联的第一电缆接口11a、第二电缆接口11b以及与之串联的一负荷开关111,所述第二进线柜12包括第三电缆接口12a,定义其中一电源车为主电源车;
还包括电连接设置在所述分段开关3两端的第一柔性电缆4的一端41、第二柔性电缆5的一端51,所述第一柔性电缆4的另一端42与所述主电源车的第一电缆接口11a连接,所述第二柔性电缆5的另一端52与所述主电源车的第三电缆接口12a连接;
若干第三柔性电缆6,用于连接相邻两电源车中后一辆电源车的第一电缆接口11a与前一辆电源车的第二电缆接口11b;其中连接在最后的一辆电源车的第二电缆接口11b用堵头封堵;
还包括若干通信线7,每一所述发电机组之间通过所述通信线7通信连接。
在本实施例中,所述第一进线柜01表示发电机进线柜,所述第二进线柜12表示高压市电进线柜。在本实施例中,所述第一进线柜01包括与所述发电机组顺次电连接的第一电流互感器CT1、第一隔离开关01-1与第一接地开关01-D3、第一断路器110,所述第一断路器110连接至所述第一出线柜11,还包括连接在所述第一隔离开关01-1与所述第一电流互感器CT1之间的第一带电显示器DXN1、第一避雷针LC1,所述第一带电显示器DXN1与所述第一避雷针LC1均接地设置。
所述第一出线柜11包括:相并联的第一电缆接口11a与第二电缆接口11b、与所述第一电缆接口11a顺次电连接的第二接地开关11-D3与负荷开关111,所述负荷开关111连接至所述第二进线柜12,所述第一电缆接口11a与所述负荷开关111之间连接第二带电显示器DXN2,所述第二带电显示器DXN2接地设置。
所述第二进线柜12包括:第三电缆接口12a、与所述第三电缆接口12a顺次电连接的第二电流互感器CT2、第三隔离开关12-3与第三接地开关12-D3、第二断路器120。
进一步包括PT柜,所述PT柜包括2组电压互感器,其中1组电压互感器连接至所述第二进线柜12,1组电压互感器连接至所述第二进线柜的母排。参照图3所示为电压互感器的接线方式。另外,所述电源车的发电机组上面设置一组电压互感器。这3组电压互感器共用所述第二进线柜的母排,每一电压互感器均采用V/V接法,以测量相间线电压。
参照图1所示,所述PT柜的2组电压互感器包括第二电压互感器PT2、第三电压互感器PT3,所述发电机组上设置一组第一电压互感器PT1,其中所述第一电压互感器PT1连接至所述发电机组,所述第二电压互感器PT2连接至所述第二断路器120,所述第三电压互感器PT3设置在所述第二断路器120与所述第三隔离开关12-3之间。现有模式中配置了一个旁路负荷开关用于市电侧接入隔离,但是输出侧为空柜,输出侧带电挂网时,环网柜的母线PT会产生感应电,有触电风险。相比于目前常见的电压互感器PT3连接在第三隔离开关12-3下部的做法来说,本实施例中将电压互感器PT3连接在第二断路器120与所述第三隔离开关12-3之间,这样能有效的避免带电挂电缆产生的感应电,而且省去一个旁路负荷开关的成本。另外,相对于目前常见的市电输入和负载输出端分别设置一个旁路负荷开关的做法来说,本实施例中在市电输入端和负载输出端省去了2个旁路负荷开关的成本,在保证性能的前提下,同时降低了成本。
传统应急救援仅2-3台电源车并网供电,然而多机大功率(即,大于5000kW)集群并机/并网一致是个难题。请一并参见图4,为此,本发明主要提供一种大功率集群并机/并网智能微电网的控制方法,具体包括以下步骤:
S1,建立智慧型大功率电力应急车能量调度模型多目标优化函数;
S2:设置能量调度的约束方程和不等式,并导入电力应急车组功率、电压和负荷预测值等基本参数,从而产生规模为NG的初始种群P0
S3:对初始种群P0进行快速非支配排序和拥挤度计算,根据初始总群P0个体的非劣水平,确认非劣种群个体,然后将拥挤度比较算子作为初始种群P0的适应度值,选择适应度较高的N个个体构建新的父代种群Pt
S4,令t=1,根据多目标遗传算法,对父代种群Pt进行选择、交叉和变异操作,生成新的子代种群Qt,从而保留最优的种群个体;
S5:令Rt=Pt∪Qt,将父代种群Pt与子代种群Qt合并形成新的种群Rt
S6:引入精英策略,将种群Rt按适应度升序进行快速非支配排序;
S7:计算种群Rt所有非支配层中种群个体的拥挤度和拥挤度比较算子,并进行拥挤度对比,选取拥挤度较小的N个最优种群个体放入Pt+1中,从而构建新一代种群Pt+1
S8:判断t是否小于等于Gmax,否则输出电力应急车能量调度的最优解集,循环结束,是则转到S4,继续循环计算,直到满足程序终止的条件。
在步骤S1中,所述智慧型大功率电力应急车能量调度模型多目标优化函数主要包括经济指标及技术指标。
其中,所述经济指标是要使得分布式应急电源车供电的总投资成本和运行成本最小,其经济指标可表达为:
Figure GDA0004187241530000071
式中,C为分布式电力应急车组供电的总投资成本;NDG为当前需要电力应急车组并网供电的支路数量;Y为受灾城镇区域节点处是否已分配应急电源车供电。若已分配,则Y=1,若未分配,则Y=0;CFX,i为受灾城镇区域节点i的设备成本;CMA,i为受灾城镇区域节点i处应急电源车组的运行成本;r为市场贴现率;n为设备的预计使用年数。
另外,所述技术指标包括两部分,一为系统的有功网络损耗最小,二受灾城镇区域节点电压的偏移量最小。这两个指标表达式分别为:
Figure GDA0004187241530000072
Figure GDA0004187241530000073
式中,Ploss为电力应急车并机/并网的有功网络损耗;Gij为电力应急车组并网供电支路的电导;Ui和Uj分别为受灾城镇区域节点i和节点j处的电压;δij为受灾城镇区域节点i和j之间的电压相角差值;ΔU为受灾城镇区域负荷节点电压的偏移量;Ul为受灾城镇区域负荷节点l处的实际电压;
Figure GDA0004187241530000074
为所允许的最大电压幅值差;UN为受灾城镇区域节点N处的额定电压值。
在步骤S2中,应急电源车能量调度多目标优化函数的约束条件由等式约束和不等式约束组成,其中,等式约束为硬件电源车并集/并网的潮流方程,不等式约束为功率和电压之间的数值关系,则多目标函数的约束方程和不等式可分别表示为:
Figure GDA0004187241530000081
Figure GDA0004187241530000082
Figure GDA0004187241530000083
/>
式中,Vimin和Vimax分别为受灾城镇区域节点i线电压的边界值;PDGi和QDGi分别为分布式电力应急车供电的有功功率和无功功率;PDGmax和PDGmin分别为电力应急车有功功率的边界;QDGmax和QDGmin分别为电力应急车无功功率的边界;ΣPDG和Pmax分别为分布式电力应急车组总有功功率和容许接入配电网的分布式电源车组的最大功率容量。
在步骤S3中,快速非支配排序是依据个体的非劣解水平对种群Qi进行分层得到Fi,作用是使得解靠近pareto最优解。这是一个循环的适应值分级过程,首先找出群体中的非支配解集,记为F1,将其所有个体赋予非支配序irank=1(其中irank是个体i的非支配序值),并从整个群体Qi中除去,然后继续找出余下群体中的非支配解集,记为F2,F2中的个体被赋予irank=2,如此进行下去,知道整个种群被分层,Fi层中的非支配序值相同。
个体拥挤度是指在同一层Fk中需要进行选择性排序,按照个体拥挤距离(crowding distance)大小排序。个体拥挤距离是Fk上与i相邻的个体i+1和i-1之间的距离,其计算步骤为:
①对同层的个体距离初始化,令L[i]d=0(表示任意个体i的拥挤距离)。
②对同层的个体按照第m个目标函数值升序排列。
③对于处在排序边缘上的个体要给予其选择优势。
④对于排序中间的个体,求拥挤距离:
⑤对于不同的目标函数,重复②到④的步骤,得到个体i的拥挤距离L[i]d,有限选择拥挤距离较大的个体,可以是计算结果在目标空间均匀地分布,维持群体的多样性。
在步骤S4中,多目标遗传算法中的选择、交叉和变异操作中,保持父代中优良个体直接进入子代,防止Pareto最优解丢失。选择指标对父代Pi和子代Qi合成的种群Ri进行优选,组成新父代Ri+1。先淘汰父代中方案检验标志不可行的方案,接着按照非支配序值irank从低到高将整层种群依次放入Ri+1,直到放入某一层Fk超过N的限制,最后,依据拥挤距离大小填充Ri+1直到种群数量为N。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种大功率集群并机/并网智能微电网的控制方法,其特征在于,所述控制方法包括以下步骤:
S1,建立智慧型大功率电力应急车能量调度模型多目标优化函数,主要包括经济指标及技术指标;其中,所述经济指标是要使得分布式应急电源车供电的总投资成本和运行成本最小,其经济指标表达为:
Figure FDA0004187241520000011
式中,C为分布式电力应急车组供电的总投资成本;NDG为当前需要电力应急车组并网供电的支路数量;Y为受灾城镇区域节点处是否已分配应急电源车供电;若已分配,则Y=1,若未分配,则Y=0;CFX,i为受灾城镇区域节点i的设备成本;CMA,i为受灾城镇区域节点i处应急电源车组的运行成本;r为市场贴现率;n为设备的预计使用年数;
所述技术指标包括两部分,一为系统的有功网络损耗最小,二为受灾城镇区域节点电压的偏移量最小;两个指标表达式分别为:
Figure FDA0004187241520000012
Figure FDA0004187241520000013
式中,Ploss为电力应急车并机/并网的有功网络损耗;Gij为电力应急车组并网供电支路的电导;Ui和Uj分别为受灾城镇区域节点i和节点j处的电压;δij为受灾城镇区域节点i和j之间的电压相角差值;ΔU为受灾城镇区域负荷节点电压的偏移量;Ul为受灾城镇区域负荷节点l处的实际电压;Ul max为所允许的最大电压幅值差;UN为受灾城镇区域节点N处的额定电压值;
S2:设置能量调度的约束方程和不等式,并导入电力应急车组功率、电压和负荷预测值等基本参数,从而产生规模为NG的初始种群P0;其中,应急电源车能量调度多目标优化函数的约束条件由等式约束和不等式约束组成;等式约束为硬件电源车并集/并网的潮流方程,不等式约束为功率和电压之间的数值关系,则多目标函数的约束方程和不等式分别表示为:
Figure FDA0004187241520000021
Figure FDA0004187241520000022
/>
Figure FDA0004187241520000023
式中,Vimin和Vimax分别为受灾城镇区域节点i线电压的边界值;PDGi和QDGi分别为分布式电力应急车供电的有功功率和无功功率;PDGmax和PDGmin分别为电力应急车有功功率的边界;QDGmax和QDGmin分别为电力应急车无功功率的边界;ΣPDG和Pmax分别为分布式电力应急车组总有功功率和容许接入配电网的分布式电源车组的最大功率容量;
S3:对初始种群P0进行快速非支配排序和拥挤度计算,根据初始总群P0个体的非劣水平,确认非劣种群个体,然后将拥挤度比较算子作为初始种群P0的适应度值,选择适应度较高的N个个体构建新的父代种群Pt
S4,令t=1,根据多目标遗传算法,对父代种群Pt进行选择、交叉和变异操作,生成新的子代种群Qt,从而保留最优的种群个体;
S5:令Rt=Pt∪Qt,将父代种群Pt与子代种群Qt合并形成新的种群Rt
S6:引入精英策略,将种群Rt按适应度升序进行快速非支配排序;
S7:计算种群Rt所有非支配层中种群个体的拥挤度和拥挤度比较算子,并进行拥挤度对比,选取拥挤度较小的N个最优种群个体放入Pt+1中,从而构建新一代种群Pt+1
S8:判断t是否小于等于Gmax,否则输出电力应急车能量调度的最优解集,循环结束,是则转到S4,继续循环计算,直到满足程序终止的条件。
2.如权利要求1所述的大功率集群并机/并网智能微电网的控制方法,其特征在于,所述控制方法用于5000kW以上集群并机/并网。
3.如权利要求1所述的大功率集群并机/并网智能微电网的控制方法,其特征在于,在步骤S4中,多目标遗传算法中的选择、交叉和变异操作中,保持父代中优良个体直接进入子代,防止Pareto最优解丢失,选择指标对父代Pi和子代Qi合成的种群Ri进行优选,组成新父代Ri+1,先淘汰父代中方案检验标志不可行的方案,接着按照非支配序值irank从低到高将整层种群依次放入Ri+1,直到放入某一层Fk超过N的限制,最后,依据拥挤距离大小填充Ri+1直到种群数量为N。
CN202210531992.5A 2022-05-17 2022-05-17 大功率集群并机/并网智能微电网的控制方法 Active CN115189413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210531992.5A CN115189413B (zh) 2022-05-17 2022-05-17 大功率集群并机/并网智能微电网的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210531992.5A CN115189413B (zh) 2022-05-17 2022-05-17 大功率集群并机/并网智能微电网的控制方法

Publications (2)

Publication Number Publication Date
CN115189413A CN115189413A (zh) 2022-10-14
CN115189413B true CN115189413B (zh) 2023-05-23

Family

ID=83512850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210531992.5A Active CN115189413B (zh) 2022-05-17 2022-05-17 大功率集群并机/并网智能微电网的控制方法

Country Status (1)

Country Link
CN (1) CN115189413B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044773A (ko) * 2002-11-22 2004-05-31 에스케이텔레텍주식회사 이동통신 단말기의 충전기
CN204701515U (zh) * 2015-05-16 2015-10-14 龙岩市海德馨汽车有限公司 模块化ups电源车
CN204845671U (zh) * 2015-07-25 2015-12-09 龙岩市海德馨汽车有限公司 客车型电源车
CN105958498A (zh) * 2016-04-28 2016-09-21 东南大学 一种考虑电动汽车的机组组合与分时电价联合优化方法
CN106887841A (zh) * 2017-03-23 2017-06-23 东北大学 一种含电动汽车微电网容量配置的多种群遗传粒子群优化方法
CN107104454A (zh) * 2017-06-06 2017-08-29 重庆大学 计及电动汽车功率可调控域的最优潮流节点电价计算方法
CN109598092A (zh) * 2018-12-28 2019-04-09 浙江工业大学 融合bp神经网络和多父代遗传算法的空气源热泵多目标优化设计方法
CN109858093A (zh) * 2018-12-28 2019-06-07 浙江工业大学 Svr神经网络辅助的非支配排序遗传算法的空气源热泵多目标优化设计方法
CN111612292A (zh) * 2020-04-03 2020-09-01 贵州乌江水电开发有限责任公司 基于关键水位控制的梯级水电站调度控制系统及方法
CN111900753A (zh) * 2020-07-06 2020-11-06 国网江苏省电力有限公司镇江供电分公司 一种城市储能应急车的应急优化调控方法
EP3838654A1 (en) * 2019-12-16 2021-06-23 Jolt Energy GmbH A method and system for power supply of electrically powered vehicles
CN113572205A (zh) * 2021-08-16 2021-10-29 龙岩市海德馨汽车有限公司 一种中压电源车的多机并机并网系统及测试方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044773A (ko) * 2002-11-22 2004-05-31 에스케이텔레텍주식회사 이동통신 단말기의 충전기
CN204701515U (zh) * 2015-05-16 2015-10-14 龙岩市海德馨汽车有限公司 模块化ups电源车
CN204845671U (zh) * 2015-07-25 2015-12-09 龙岩市海德馨汽车有限公司 客车型电源车
CN105958498A (zh) * 2016-04-28 2016-09-21 东南大学 一种考虑电动汽车的机组组合与分时电价联合优化方法
CN106887841A (zh) * 2017-03-23 2017-06-23 东北大学 一种含电动汽车微电网容量配置的多种群遗传粒子群优化方法
CN107104454A (zh) * 2017-06-06 2017-08-29 重庆大学 计及电动汽车功率可调控域的最优潮流节点电价计算方法
CN109598092A (zh) * 2018-12-28 2019-04-09 浙江工业大学 融合bp神经网络和多父代遗传算法的空气源热泵多目标优化设计方法
CN109858093A (zh) * 2018-12-28 2019-06-07 浙江工业大学 Svr神经网络辅助的非支配排序遗传算法的空气源热泵多目标优化设计方法
EP3838654A1 (en) * 2019-12-16 2021-06-23 Jolt Energy GmbH A method and system for power supply of electrically powered vehicles
CN111612292A (zh) * 2020-04-03 2020-09-01 贵州乌江水电开发有限责任公司 基于关键水位控制的梯级水电站调度控制系统及方法
CN111900753A (zh) * 2020-07-06 2020-11-06 国网江苏省电力有限公司镇江供电分公司 一种城市储能应急车的应急优化调控方法
CN113572205A (zh) * 2021-08-16 2021-10-29 龙岩市海德馨汽车有限公司 一种中压电源车的多机并机并网系统及测试方法

Also Published As

Publication number Publication date
CN115189413A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Qu et al. Planning and analysis of the demonstration project of the MVDC distribution network in Zhuhai
CN104537580B (zh) 基于K‑means聚类的配电网网架的构建方法
CN104037765B (zh) 基于改进遗传算法选取有源配电网供电恢复方案的方法
CN108923396B (zh) 一种多端柔性直流电网的短路电流快速计算方法
CN109687496B (zh) 一种交直流混联柔性配电网可靠性计算方法
CN108462194B (zh) 一种针对低压配电网三相负荷不平衡的广域优化方法
CN107546773A (zh) 一种基于图论的区域多微电网动态组网方法
CN106655253B (zh) 单三相多微网区域动态划分方法
CN106816872A (zh) 基于遗传算法的煤矿高压电网自适应并行短路计算方法
CN115189413B (zh) 大功率集群并机/并网智能微电网的控制方法
Kong et al. Optimization of current breaker and fault current limiter in DC micro-grid based on faulty transient analysis
Zhang et al. Optimal microgrid partition strategy of distribution generation based on advanced GA
CN114552579B (zh) 计及低压台区柔性互联的配电网最大供电能力计算方法
Do et al. Distribution network planning tool for rural areas
da Silva et al. Line losses and power capacity in low voltage AC and DC distribution systems: A numerical comparative study
CN114899825A (zh) 一种基于网络等值变换的配电网综合优化方法
CN110896215B (zh) 一种直流配电系统限流电抗器和断路器综合优化配置方法
Saitoh et al. A proposal of emergency microgrid operation of distribution systems after large scale disasters
Raghavendra et al. Voltage estimation in smart distribution networks with multiple DG systems
Shu-jun et al. Distribution network reconfiguration with distributed power based on genetic algorithm
CN110518572A (zh) 一种基于最小负荷损失的配电网孤岛划分方法
CN212991585U (zh) 一种变电站主接线交错环网接线结构
Loskutov et al. The development of electrical solutions for the intelligent network with distributed generation with the use of SOFC
Wu et al. Service restoration of active distribution network considering the islanded operation of distributed generation and micro-grid
Acevedo-Rueda et al. Localization of Energy Sources and Distribution System Sizing in a Low Voltage Isolated Microgrid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant