CN115181305A - 改性聚酰亚胺质子交换膜及其制备方法 - Google Patents

改性聚酰亚胺质子交换膜及其制备方法 Download PDF

Info

Publication number
CN115181305A
CN115181305A CN202210880444.3A CN202210880444A CN115181305A CN 115181305 A CN115181305 A CN 115181305A CN 202210880444 A CN202210880444 A CN 202210880444A CN 115181305 A CN115181305 A CN 115181305A
Authority
CN
China
Prior art keywords
polyimide
modified
boron nitride
volume
hexagonal boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210880444.3A
Other languages
English (en)
Other versions
CN115181305B (zh
Inventor
王彦明
徐锋
苏碧海
石琳琳
王曜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Gellec New Energy Material Science and Technoloy Co Ltd
Original Assignee
Hebei Gellec New Energy Material Science and Technoloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Gellec New Energy Material Science and Technoloy Co Ltd filed Critical Hebei Gellec New Energy Material Science and Technoloy Co Ltd
Priority to CN202210880444.3A priority Critical patent/CN115181305B/zh
Publication of CN115181305A publication Critical patent/CN115181305A/zh
Application granted granted Critical
Publication of CN115181305B publication Critical patent/CN115181305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种改性聚酰亚胺质子交换膜及其制备方法,对六方氮化硼进行改性处理,使离子液体接枝到六方氮化硼表面,离子液体改性六方氮化硼的引入能明显增强改性聚酰亚胺质子交换膜的机械性能;本发明的离子液体改性六方氮化硼能与磺酸基团(改性聚酰亚胺溶液与低温硫酸磺化反应,产生磺酸基团)等结构发生静电反应,进而增强改性聚酰亚胺质子交换膜的质子传导速率。

Description

改性聚酰亚胺质子交换膜及其制备方法
技术领域
本发明属于燃料电池技术领域,具体来说涉及一种改性聚酰亚胺质子交换膜及其制备方法。
背景技术
PEMFC(质子交换膜染料电池)主要是以质子交换膜为核心的燃料电池,和其他燃料电池相比,它具有清洁高效、能量转化率高、不受卡诺循环的限制、发电时不产生污染、比功率高、结构简单等优点。
然而在高温条件下,质子交换膜在燃料电池中的稳定性较差。聚酰亚胺(PI)是综合性能最佳的一种有机高分子材料,具有优良的耐高温性能,高绝缘性能,其介电损只有0.004-0.007,这就为聚酰亚胺成为质子交换膜提供了充分的条件,特别是聚酰亚胺分子结构简单,可以针对不同要求进行改性处理,磺化聚酰亚胺具有优良的电化学性能,过去被用于离子交换膜,因此聚酰亚胺被认为是一种比较好的质子交换膜材料,可以用在燃料电池中,但聚酰亚胺质子交换膜的质子电导率较低。
发明内容
针对现有技术不足,本发明的目的在于提供一种改性聚酰亚胺质子交换膜的制备方法。
本发明的另一目的是提供上述制备方法获得的改性聚酰亚胺质子交换膜。
本发明的目的是通过下述技术方案予以实现的。
一种改性聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在氮气氛围中,将95~105体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,在10~15min之内缓慢加入6FDA(六氟异丙基邻苯二甲酸酐),再加入120~130体积份数的N,N二甲基吡咯烷酮,搅拌23-25h,得到聚酰亚胺酸,加入20~30体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点165~185℃并保持7~8.5h,得到聚酰亚胺溶液,其中,按质量份数计,所述聚酰亚胺反应物和N,N二甲基吡咯烷酮的比为(12-15):1,所述聚酰亚胺反应物为4,4'-二氨基苯酰替苯胺或4,4'-二氨基二苯砜;
在所述步骤1中,所述搅拌的速度为300~400r/s。
在所述步骤1中,所述体积份数的单位为mL,所述质量份数的单位为g。
步骤2,将六方氮化硼和水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,球磨,抽滤,冷冻干燥,得到离子液体改性六方氮化硼,其中,所述六方氮化硼的质量份数、水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为(8~11):(45~55):(0.8-1.2),所述体积份数的单位为mL,所述质量份数的单位为g;
在所述步骤2中,所述球磨的自转速度800~1000r/s,公转速度250~350r/s,球磨的时间为7.5~8.5h。
在所述步骤2中,所述冷冻干燥的温度为-78~-83℃,冷冻干燥的时间为24~25h。
步骤3,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,搅拌,得到改性聚酰亚胺溶液,其中,所述聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为(5-10):(0.1-0.2),所述体积份数的单位为mL,所述质量份数的单位为g;
在所述步骤3中,所述超声在28~30℃下进行,超声的频率为35~40KHz,超声的时间为0.5~1.5h。
在所述步骤3中,所述搅拌的速度为450~550r/s,搅拌的时间为7.5~8.5h。
步骤4,将步骤3所得的改性聚酰亚胺溶液涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,干燥,再放入低温硫酸中浸泡,烘干,得到改性聚酰亚胺质子交换膜。
在所述步骤4中,所述阶段升温的温度依次为60~70℃保持1~1.5h、90~100℃保持1~1.5h、140~150℃保持1~1.5h、200~210℃保持1~1.5h、240~250℃保持3.5~4h。
在所述步骤4中,所述干燥的温度为70~80℃,所述干燥的时间为10~12h。
上述制备方法获得的改性聚酰亚胺质子交换膜。
本发明对六方氮化硼进行改性处理,使离子液体接枝到六方氮化硼表面,离子液体改性六方氮化硼的引入能明显增强改性聚酰亚胺质子交换膜的机械性能,即,改变其微观形貌,形成微观通道,进而会影响改性聚酰亚胺质子交换膜的微相结果,从而增大质子传导速率。同时在聚合物中离子液体改性六方氮化硼能够与磺酸基团等结构件发生静电作用,进而能够增强质子传导速率。
本发明的离子液体改性六方氮化硼能与磺酸基团(改性聚酰亚胺溶液与低温硫酸磺化反应,产生磺酸基团)等结构发生静电反应,进而增强改性聚酰亚胺质子交换膜的质子传导速率。
本发明的改性聚酰亚胺质子交换膜在高温下稳定性良好。
附图说明
图1为本发明对比例1所得的改性聚酰亚胺质子交换膜的SEM。
图2为本发明实施例1所得的改性聚酰亚胺质子交换膜的SEM。
图3为本发明实施例2所得的改性聚酰亚胺质子交换膜的SEM。
图4为本发明实施例3所得的改性聚酰亚胺质子交换膜的SEM。
图5为本发明对比例2所得的改性聚酰亚胺质子交换膜的SEM。
图6为本发明实施例4所得的改性聚酰亚胺质子交换膜的SEM。
图7为本发明实施例5所得的改性聚酰亚胺质子交换膜的SEM。
图8为本发明实施例6所得的改性聚酰亚胺质子交换膜的SEM。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
本发明具体实施方式中使用的相关仪器设备如下:
冷冻干燥机:HX-12-80B
实施例1
一种改性聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在三口瓶中,通氮气15min,在氮气氛围中,将100体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,10分钟时间缓慢加入6FDA,再加入122体积份数的N,N二甲基吡咯烷酮,搅拌24h,得到聚酰亚胺酸(粘稠状),加入26体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点171℃并保持8h,得到聚酰亚胺溶液,其中,按质量份数计,聚酰亚胺反应物和6FDA的比为13.6356:26.6544,体积份数的单位为mL,质量份数的单位为g,搅拌的速度为350r/s,聚酰亚胺反应物为4,4'-二氨基苯酰替苯胺;
步骤2,在烧杯中,将六方氮化硼和去离子水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,在球磨罐中球磨以使离子液体(1-乙基-3-甲基咪唑鎓硫酸氢盐)接枝到六方氮化硼表面并充分均匀分散在去离子水中,抽滤,于-80℃冷冻干燥24h,得到离子液体改性六方氮化硼,其中,六方氮化硼的质量份数、去离子水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为10:50:1,体积份数的单位为mL,质量份数的单位为g,球磨的自转速度1000r/s,公转速度300r/s,球磨的时间为8h;
步骤3,在烧杯中,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,于500r/s磁力搅拌8h,得到改性聚酰亚胺溶液,其中,聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为10:0.1414,体积份数的单位为mL,质量份数的单位为g,超声在30℃下进行,超声的频率为40KHz,超声的时间为1h;
步骤4,将步骤3所得的改性聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于80℃干燥12h,以烘干膜表面水分,再放入2℃下1mol/L的硫酸中浸泡,于80℃烘干12h,得到改性聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,离子液体改性六方氮化硼占改性聚酰亚胺质子交换膜质量的1%。
实施例2
一种改性聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在三口瓶中,通氮气15min,在氮气氛围中,将100体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,10分钟时间缓慢加入6FDA,再加入122体积份数的N,N二甲基吡咯烷酮,搅拌24h,得到聚酰亚胺酸(粘稠状),加入26体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点173℃并保持8h,得到聚酰亚胺溶液,其中,按质量份数计,聚酰亚胺反应物和6FDA的比为13.6356:26.6544,体积份数的单位为mL,质量份数的单位为g,搅拌的速度为350r/s,聚酰亚胺反应物为4,4'-二氨基苯酰替苯胺;
步骤2,在烧杯中,将六方氮化硼和去离子水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,在球磨罐中球磨以使离子液体(1-乙基-3-甲基咪唑鎓硫酸氢盐)接枝到六方氮化硼表面并充分均匀分散在去离子水中,抽滤,于-80℃冷冻干燥24h,得到离子液体改性六方氮化硼,其中,六方氮化硼的质量份数、去离子水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为10:50:1,体积份数的单位为mL,质量份数的单位为g,球磨的自转速度1000r/s,公转速度300r/s,球磨的时间为8h;
步骤3,在烧杯中,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,于500r/s磁力搅拌8h,得到改性聚酰亚胺溶液,其中,聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为10:0.4242,体积份数的单位为mL,质量份数的单位为g,超声在30℃下进行,超声的频率为40KHz,超声的时间为1h;
步骤4,将步骤3所得的改性聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于80℃干燥12h,以烘干膜表面水分,再放入2℃下1mol/L的硫酸中浸泡,于80℃烘干12h得到改性聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,离子液体改性六方氮化硼占改性聚酰亚胺质子交换膜质量的3%。
实施例3
一种改性聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在三口瓶中,通氮气15min,在氮气氛围中,将100体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,10分钟时间缓慢加入6FDA,再加入122体积份数的N,N二甲基吡咯烷酮,搅拌24h,得到聚酰亚胺酸(粘稠状),加入26体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点171℃并保持8h,得到聚酰亚胺溶液,其中,按质量份数计,聚酰亚胺反应物和6FDA的比为13.6356:26.6544,体积份数的单位为mL,质量份数的单位为g,搅拌的速度为350r/s,聚酰亚胺反应物为4,4'-二氨基苯酰替苯胺;
步骤2,在烧杯中,将六方氮化硼和去离子水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,在球磨罐中球磨以使离子液体(1-乙基-3-甲基咪唑鎓硫酸氢盐)接枝到六方氮化硼表面并充分均匀分散在去离子水中,抽滤,于-80℃冷冻干燥24h,得到离子液体改性六方氮化硼,其中,六方氮化硼的质量份数、去离子水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为10:50:1,体积份数的单位为mL,质量份数的单位为g,球磨的自转速度1000r/s,公转速度300r/s,球磨的时间为8h;
步骤3,在烧杯中,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,于500r/s磁力搅拌8h,得到改性聚酰亚胺溶液,其中,聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为10:0.707,体积份数的单位为mL,质量份数的单位为g,超声在30℃下进行,超声的频率为40KHz,超声的时间为1h;
步骤4,将步骤3所得的改性聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于80℃干燥12h,以烘干膜表面水分,再放入2℃下1mol/L的硫酸中浸泡,于80℃烘干12h,得到改性聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,离子液体改性六方氮化硼占改性聚酰亚胺质子交换膜质量的5%。
实施例4
一种改性聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在三口瓶中,通氮气15min,在氮气氛围中,将100体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,10分钟时间缓慢加入6FDA,再加入122体积份数的N,N二甲基吡咯烷酮,搅拌24h,得到聚酰亚胺酸(粘稠状),加入24体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点171℃并保持8h,得到聚酰亚胺溶液,其中,按质量份数计,聚酰亚胺反应物和6FDA的比为13.3764:26.6544,体积份数的单位为mL,质量份数的单位为g,搅拌的速度为350r/s,聚酰亚胺反应物为4,4'-二氨基二苯砜;
步骤2,在烧杯中,将六方氮化硼和去离子水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,在球磨罐中球磨以使离子液体(1-乙基-3-甲基咪唑鎓硫酸氢盐)接枝到六方氮化硼表面并充分均匀分散在去离子水中,抽滤,于-80℃冷冻干燥24h,得到离子液体改性六方氮化硼,其中,六方氮化硼的质量份数、去离子水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为10:50:1,体积份数的单位为mL,质量份数的单位为g,球磨的自转速度1000r/s,公转速度300r/s,球磨的时间为8h;
步骤3,在烧杯中,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,于500r/s磁力搅拌8h,得到改性聚酰亚胺溶液,其中,聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为10:0.1832,体积份数的单位为mL,质量份数的单位为g,超声在30℃下进行,超声的频率为40KHz,超声的时间为1h;
步骤4,将步骤3所得的改性聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于120℃干燥12h,以烘干膜表面水分,再放入2℃下1mol/L的硫酸中浸泡,于80℃烘干12h,得到改性聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,离子液体改性六方氮化硼占改性聚酰亚胺质子交换膜质量的1%。
实施例5
一种改性聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在三口瓶中,通氮气15min,在氮气氛围中,将100体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,10分钟时间缓慢加入6FDA,再加入122体积份数的N,N二甲基吡咯烷酮,搅拌24h,得到聚酰亚胺酸(粘稠状),加入24体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点171℃并保持8h,得到聚酰亚胺溶液,其中,按质量份数计,聚酰亚胺反应物和6FDA的比为13.3764:26.6544,体积份数的单位为mL,质量份数的单位为g,搅拌的速度为500r/s,聚酰亚胺反应物为4,4'-二氨基二苯砜;
步骤2,在烧杯中,将六方氮化硼和去离子水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,在球磨罐中球磨以使离子液体(1-乙基-3-甲基咪唑鎓硫酸氢盐)接枝到六方氮化硼表面并充分均匀分散在去离子水中,抽滤,于-80℃冷冻干燥24h,得到离子液体改性六方氮化硼,其中,六方氮化硼的质量份数、去离子水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为10:50:1,体积份数的单位为mL,质量份数的单位为g,球磨的自转速度1000r/s,公转速度300r/s,球磨的时间为8h;
步骤3,在烧杯中,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,于500r/s磁力搅拌8h,得到改性聚酰亚胺溶液,其中,聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为10:0.5496,体积份数的单位为mL,质量份数的单位为g,超声在30℃下进行,超声的频率为40KHz,超声的时间为1h;
步骤4,将步骤3所得的改性聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于120℃干燥12h,以烘干膜表面水分,再放入2℃下1mol/L的硫酸中浸泡,于80℃烘干12h,得到改性聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,离子液体改性六方氮化硼占改性聚酰亚胺质子交换膜质量的3%。
实施例6
一种改性聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在三口瓶中,通氮气15min,在氮气氛围中,将100体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,10分钟时间缓慢加入6FDA,再加入122体积份数的N,N二甲基吡咯烷酮,搅拌24h,得到聚酰亚胺酸(粘稠状),加入24体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点171℃并保持8h,得到聚酰亚胺溶液,其中,按质量份数计,聚酰亚胺反应物和6FDA的比为13.3764:26.6544,体积份数的单位为mL,质量份数的单位为g,搅拌的速度为350r/s,聚酰亚胺反应物为4,4'-二氨基二苯砜;
步骤2,在烧杯中,将六方氮化硼和去离子水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,在球磨罐中球磨以使离子液体(1-乙基-3-甲基咪唑鎓硫酸氢盐)接枝到六方氮化硼表面并充分均匀分散在去离子水中,抽滤,于-80℃冷冻干燥24h,得到离子液体改性六方氮化硼,其中,六方氮化硼的质量份数、去离子水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为10:50:1,体积份数的单位为mL,质量份数的单位为g,球磨的自转速度1000r/s,公转速度300r/s,球磨的时间为8h;
步骤3,在烧杯中,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,于500r/s磁力搅拌8h,得到改性聚酰亚胺溶液,其中,聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为10:0.916,体积份数的单位为mL,质量份数的单位为g,超声在30℃下进行,超声的频率为40KHz,超声的时间为1h;
步骤4,将步骤3所得的改性聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于120℃干燥12h,以烘干膜表面水分,再放入2℃下1mol/L的硫酸中浸泡,于80℃烘干12h,得到改性聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,离子液体改性六方氮化硼占改性聚酰亚胺质子交换膜质量的5%。
对比例1
一种聚酰亚胺质子交换膜的制备方法,包括以下步骤:
将实施例1的步骤1所得的聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于80℃干燥12h,以烘干膜表面水分,再放入温度为2℃浓度为1mol/L的硫酸中浸泡,于80℃烘干12h,得到聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,该磺化聚酰亚胺由6FDA和4,4'-二氨基苯酰替苯胺缩聚所得。
对比例2
一种聚酰亚胺质子交换膜的制备方法,包括以下步骤:
步骤1,在三口瓶中,通氮气15min,在氮气氛围中,将100体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,10分钟时间缓慢加入6FDA,再加入122体积份数的N,N二甲基吡咯烷酮,搅拌24h,得到聚酰亚胺酸(粘稠状),加入24体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点171℃并保持8h,得到聚酰亚胺溶液,其中,按质量份数计,聚酰亚胺反应物和6FDA的比为13.3764:26.6544,体积份数的单位为mL,质量份数的单位为g,搅拌的速度为350r/s,聚酰亚胺反应物为4,4'-二氨基二苯砜;
步骤2,将步骤1所得的聚酰亚胺溶液均匀涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,放入烘箱中于120℃干燥12h,以烘干膜表面水分,再放入2℃下1mol/L的硫酸中浸泡,于80℃烘干12h,得到改性聚酰亚胺质子交换膜,阶段升温的温度依次为70℃保持1h,100℃保持1h,150℃保持1h,200℃保持1h,250℃保持4h。
本实施例中,该磺化聚酰亚胺由6FDA和4,4'-二氨基二苯砜缩聚所得。
将实施例1~6所得的改性聚酰亚胺质子交换膜和对比例1-2所得的聚酰亚胺质子交换膜进行性能测试,测试结果如表1所示。
耐热性是指受热条件下仍能保持优良的物理机械性能的性质,测试方法:用热分析仪,在氮气保护下,30℃逐渐升温至700℃,升温速率为10℃/min。
质子传导率:氢离子在去离子水中测试,采用电化学工作站,采用交流阳抗法进行测试。将改性聚酰亚胺质子交换膜和聚酰亚胺质子交换膜在去离子水中浸泡24h,用电化学工作站,采用交流阻抗法进行测试,测试时把改性聚酰亚胺质子交换膜和聚酰亚胺质子交换膜夹在两个铂电极之间,测试的频率范围为1Hz-100kHz。
尺寸稳定性是指材料在受机械力、热或其他外界条件下,其外形尺寸不发生变化的性能。
表1
Figure BDA0003764001580000101
由表1可知,实施例1-3和对比例1相比,采用相同原料的情况下,离子液体改性六方氮化硼在聚酰亚胺溶液中含量越高,质子电导率越高,力学性能也即拉伸强度越好,证明通过增加离子液体改性六方氮化硼进而增加了氮原子和碳基碳原子的电子云密度,以获得更高的水解稳定性,离子液体改性六方氮化硼能与磺酸基团等结构发生静电反应,从进而增强改性聚酰亚胺质子交换膜的质子传导速率。
由表1可知,实施例4-6和对比例2相比随着离子液体改性六方氮化硼在聚酰亚胺溶液中含量越高,尺寸稳定性和耐热性能越好,证明其使用越不易受到损坏,可以在更高温度下使用。
由图2-4和6-8中实施例1-6的扫描电镜可知,通过观察扫描电镜的微观形貌可知在离子液体改性六方氮化硼在改性聚酰亚胺质子交换膜分散比较均匀,随着离子液体改性六方氮化硼的占比在改性聚酰亚胺质子交换膜上的增加,改性聚酰亚胺质子交换膜表面的氮化硼颗粒的微小颗粒含量越多,离子液体六方氮化硼为质子传输提供了传输通道,从而增强了改性聚酰亚胺质子交换膜的质子电导率。
图1和图5为对比例1和对比例2的扫描电镜图。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种改性聚酰亚胺质子交换膜的制备方法,其特征在于,包括以下步骤:
步骤1,在氮气氛围中,将95~105体积份数的N,N二甲基吡咯烷酮和聚酰亚胺反应物混合,在搅拌条件下,在10~15min之内缓慢加入6FDA,再加入120~130体积份数的N,N二甲基吡咯烷酮,搅拌23-25h,得到聚酰亚胺酸,加入20~30体积份数的甲苯混合,加热使反应温度达到N,N二甲基吡咯烷酮、聚酰亚胺反应物和甲苯的共沸点165~185℃并保持7~8.5h,得到聚酰亚胺溶液,其中,按质量份数计,所述聚酰亚胺反应物和N,N二甲基吡咯烷酮的比为(12-15):1,所述聚酰亚胺反应物为4,4'-二氨基苯酰替苯胺或4,4'-二氨基二苯砜;
步骤2,将六方氮化硼和水搅拌均匀,加入1-乙基-3-甲基咪唑鎓硫酸氢盐,球磨,抽滤,冷冻干燥,得到离子液体改性六方氮化硼,其中,所述六方氮化硼的质量份数、水的体积份数和1-乙基-3-甲基咪唑鎓硫酸氢盐的体积份数的比为(8~11):(45~55):(0.8-1.2),所述体积份数的单位为mL,所述质量份数的单位为g;
步骤3,将步骤1所得的聚酰亚胺溶液与步骤2所得的离子液体改性六方氮化硼混合,超声,搅拌,得到改性聚酰亚胺溶液,其中,所述聚酰亚胺溶液的体积份数和离子液体改性六方氮化硼的质量份数的比为(5-10):(0.1-0.2),所述体积份数的单位为mL,所述质量份数的单位为g;
步骤4,将步骤3所得的改性聚酰亚胺溶液涂到聚四氟乙烯板上,阶段升温烘干以使固化成膜,将聚四氟乙烯板放入去离子水中保持1h以使膜脱落,干燥,再放入低温硫酸中浸泡,烘干,得到改性聚酰亚胺质子交换膜。
2.根据权利要求1所述的制备方法,其特征在于,在所述步骤1中,所述搅拌的速度为300~400r/s。
3.根据权利要求1所述的制备方法,其特征在于,在所述步骤1中,所述体积份数的单位为mL,所述质量份数的单位为g。
4.根据权利要求1所述的制备方法,其特征在于,在所述步骤2中,所述球磨的自转速度800~1000r/s,公转速度250~350r/s,球磨的时间为7.5~8.5h。
5.根据权利要求1所述的制备方法,其特征在于,在所述步骤2中,所述冷冻干燥的温度为-78~-83℃,冷冻干燥的时间为24~25h。
6.根据权利要求1所述的制备方法,其特征在于,在所述步骤3中,所述超声在28~30℃下进行,超声的频率为35~40KHz,超声的时间为0.5~1.5h。
7.根据权利要求1所述的制备方法,其特征在于,在所述步骤3中,所述搅拌的速度为450~550r/s,搅拌的时间为7.5~8.5h。
8.根据权利要求1所述的制备方法,其特征在于,在所述步骤4中,所述阶段升温的温度依次为60~70℃保持1~1.5h、90~100℃保持1~1.5h、140~150℃保持1~1.5h、200~210℃保持1~1.5h、240~250℃保持3.5~4h。
9.根据权利要求1所述的制备方法,其特征在于,在所述步骤4中,所述干燥的温度为70~80℃,所述干燥的时间为10~12h。
10.如权利要求1~9中任意一项所述制备方法获得的改性聚酰亚胺质子交换膜。
CN202210880444.3A 2022-07-25 2022-07-25 改性聚酰亚胺质子交换膜及其制备方法 Active CN115181305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210880444.3A CN115181305B (zh) 2022-07-25 2022-07-25 改性聚酰亚胺质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210880444.3A CN115181305B (zh) 2022-07-25 2022-07-25 改性聚酰亚胺质子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN115181305A true CN115181305A (zh) 2022-10-14
CN115181305B CN115181305B (zh) 2023-11-03

Family

ID=83521143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210880444.3A Active CN115181305B (zh) 2022-07-25 2022-07-25 改性聚酰亚胺质子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN115181305B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116364995A (zh) * 2023-05-30 2023-06-30 河北工程大学 一种改性聚酰亚胺质子交换膜及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038232A (ko) * 2001-11-10 2003-05-16 한국과학기술연구원 가교된 이온 교환 막 및 그 제조방법
US7022810B1 (en) * 2003-05-09 2006-04-04 Sandia Corporation Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology
US20100311918A1 (en) * 2008-02-11 2010-12-09 Faissal-Ali El Toufaili Method for producing polyamides
WO2016141301A1 (en) * 2015-03-04 2016-09-09 William Marsh Rice University Boron nitride-ionic liquid composites and their use for energy storage devices
US20190292338A1 (en) * 2017-03-14 2019-09-26 South China University Of Technology Method for preparing polyimide film having low dielectric constant and high fracture toughness
CN112175184A (zh) * 2020-10-16 2021-01-05 安徽省长荣新材料科技有限公司 一种改性的高透明聚酰亚胺柔性薄膜及其制备方法
CN112939915A (zh) * 2021-02-05 2021-06-11 武汉柔显科技股份有限公司 感光树脂用二胺单体、聚酰亚胺前体、感光树脂组合物及其应用
US20220204696A1 (en) * 2019-04-26 2022-06-30 Designer Molecules, Inc. Phenolic functionalized polyimides and compositions thereof
WO2022142305A1 (zh) * 2020-12-31 2022-07-07 宁波长阳科技股份有限公司 无色透明聚酰亚胺薄膜及其制备方法和led贴膜屏

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038232A (ko) * 2001-11-10 2003-05-16 한국과학기술연구원 가교된 이온 교환 막 및 그 제조방법
US7022810B1 (en) * 2003-05-09 2006-04-04 Sandia Corporation Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology
US20100311918A1 (en) * 2008-02-11 2010-12-09 Faissal-Ali El Toufaili Method for producing polyamides
WO2016141301A1 (en) * 2015-03-04 2016-09-09 William Marsh Rice University Boron nitride-ionic liquid composites and their use for energy storage devices
US20190292338A1 (en) * 2017-03-14 2019-09-26 South China University Of Technology Method for preparing polyimide film having low dielectric constant and high fracture toughness
US20220204696A1 (en) * 2019-04-26 2022-06-30 Designer Molecules, Inc. Phenolic functionalized polyimides and compositions thereof
CN112175184A (zh) * 2020-10-16 2021-01-05 安徽省长荣新材料科技有限公司 一种改性的高透明聚酰亚胺柔性薄膜及其制备方法
WO2022142305A1 (zh) * 2020-12-31 2022-07-07 宁波长阳科技股份有限公司 无色透明聚酰亚胺薄膜及其制备方法和led贴膜屏
CN112939915A (zh) * 2021-02-05 2021-06-11 武汉柔显科技股份有限公司 感光树脂用二胺单体、聚酰亚胺前体、感光树脂组合物及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116364995A (zh) * 2023-05-30 2023-06-30 河北工程大学 一种改性聚酰亚胺质子交换膜及其制备方法和应用
CN116364995B (zh) * 2023-05-30 2023-12-22 河北工程大学 一种改性聚酰亚胺质子交换膜及其制备方法和应用

Also Published As

Publication number Publication date
CN115181305B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced proton conductivity of sulfonated poly (ether ether ketone) membrane embedded by dopamine‐modified nanotubes for proton exchange membrane fuel cell
Imran et al. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage
CN112201795B (zh) 聚合物复合涂层制备方法及双极板和质子交换膜燃料电池
Liu et al. The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs
Zhao et al. Modification of cation exchange membranes with conductive polyaniline for electrodialysis applications
CN104530682A (zh) 纳米纤维素/磺化聚芳醚酮复合膜及其制备方法与应用
CN110797561A (zh) 一种基于碳量子点的质子交换膜及其制备方法
CN115181305B (zh) 改性聚酰亚胺质子交换膜及其制备方法
WO2021043009A1 (zh) 一种结晶性磺化聚酰亚胺嵌段共聚物质子交换膜及其制备方法和应用
CN105390721A (zh) 一种磷酸硼包覆碳纳米管复合质子交换膜的制备方法
Qu et al. Sulfonate poly (ether ether ketone) incorporated with ammonium ionic liquids for proton exchange membrane fuel cell
CN113150277B (zh) 自愈型聚酰亚胺导电粘结剂及制备方法、电极片和锂电池
CN109888346A (zh) 利用静电纺丝技术负载催化剂于膜纤维表面的燃料电池质子交换膜的制备方法
CN116505046A (zh) 一种离子液体/木质素磺酸钠改性聚酰亚胺质子交换复合膜及其制备方法和应用
CN111969232B (zh) 一种燃料电池隔膜材料的制备方法
Lu et al. Proton-conducting composite membranes derived from poly (2, 6-dimethyl-1, 4-phenylene oxide) doped with phosphosilicate gels
Miao et al. Enhanced performance of high‐temperature proton exchange membrane by introducing 1, 2, 4‐triazole‐functionalized graphene oxide into polybenzimidazole
CN111193054A (zh) 一种质子交换膜的制备方法
Di et al. Preparation and Characterization of Perfluorosulfonate‐Free Phosphosilicate Glass‐Based Composite Proton‐Exchange Membrane
CN108914556A (zh) 一种等离子体改性沙发面料的抗静电整理工艺
CN111945246B (zh) 一种燃料电池用碱性阴离子交换复合膜的制备方法
Talukdar et al. Reinforcing Nafion® with poly (ethylene-alt-maleic anhydride) as water-absorbing and film-forming polymer
TW477776B (en) Processing of high-impermeability fluorocarbon-graphite composite
CN114079072A (zh) 复合质子交换膜及含有其的固体高分子燃料电池
ul Imaan et al. Preparation and characterization of a novel nano-size titanium oxide-PVA (TiO2-PVA) composite ion exchange membrane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant