CN115160633A - 一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法 - Google Patents

一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法 Download PDF

Info

Publication number
CN115160633A
CN115160633A CN202210644813.9A CN202210644813A CN115160633A CN 115160633 A CN115160633 A CN 115160633A CN 202210644813 A CN202210644813 A CN 202210644813A CN 115160633 A CN115160633 A CN 115160633A
Authority
CN
China
Prior art keywords
porous material
polymer
solid particles
microstructure
polymer porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210644813.9A
Other languages
English (en)
Inventor
米亚策
张永锋
赵锦梅
张印民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Technology filed Critical Inner Mongolia University of Technology
Priority to CN202210644813.9A priority Critical patent/CN115160633A/zh
Publication of CN115160633A publication Critical patent/CN115160633A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Abstract

本发明涉及多孔材料制备领域,具体涉及一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,该方法以纳微级固体颗粒包括有机颗粒、无机颗粒和有机/无机复合颗粒作为添加组分,将其分散于聚合物共混体系中,利用相分离法包括非溶剂诱导相分离、热诱导相分离和反应诱导相分离,制备得到具有一定强度的、不同孔径的连续多孔骨架结构或闭孔结构的聚合物多孔材料。本发明适用范围广、可控性强,通过改变固体颗粒的形状、大小、浓度以及表面性质,可连续调控聚合物多孔材料微观结构包括比表面积、骨架尺寸以及孔径大小;固体颗粒可选择性去除,从而在不引入更多组分的情况下,实现聚合物多孔材料的精细调控。

Description

一种以固体颗粒为主导的聚合物多孔材料微观结构的调控 方法
技术领域
本发明涉及多孔材料制备领域,具体涉及一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法。
背景技术
聚合物多孔材料由于其独特的微孔结构,较大的比表面积和特殊的表面性质,在气体吸附、催化剂载体、过滤吸附、生物组织材料替代品以及环境科学等方面有很高的应用价值。聚合物多孔材料的制备方法,可归纳为三种类型,分别是发泡法、乳液法和相分离法。就相分离法而言,致孔组分的不同造成了体系两相间相容性的差异,从而影响了体系的相分离速率。同时由于极性、氢键和黏度等的不同,不同的致孔组分将对体系反应速率产生不同的影响,因此致孔组分的选择对聚合物多孔材料的最终形貌具有决定性作用。
通常情况下,根据与聚合物组分间相容性的不同,致孔组分可分为不良溶剂和良溶剂。研究表明,不良溶剂可以加速体系相分离,生成较大尺寸的孔结构;与之相反,良溶剂将抑制体系相分离,生成较小尺寸的孔结构,良溶剂的加入起到细化形貌的作用。与良溶剂作用类似,利用固体颗粒稳定界面,可抑制体系相分离,从而达到细化形貌的目的,但目前该方法主要用于聚合物改性。固体颗粒对多相聚合物形态结构的影响已从实验和理论两个角度得到证实。
通常情况下,固体颗粒的存在可促进相分离的发生(例如:由于颗粒表面被某一聚合物相润湿而引起组成波动),并且在随后的相分离过程中,颗粒的钉扎效应增加了聚合物共混物的粘度,阻止了质量传递过程,同时,颗粒对交联反应动力学的影响也会间接影响相分离过程。炭黑、有机黏土和SiO2颗粒等均可作为固体颗粒填充聚合物共混物。Gubbles等人研究了炭黑在聚乙烯(PE)/聚苯乙烯(PP)共混物中选择性分布的动力学和热力学,发现炭黑在单相或界面上的选择性分布可显著影响共混物的形态和导电性(Macromolecules,1995,28:1559)。有机改性纳米黏土因其固有的层间距和降低界面张力和平均液滴尺寸的能力,被广泛用作不互溶聚合物共混物中的纳米填料和相容剂。Si等人研究了填充改性有机黏土的聚苯乙烯(PS)/聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)/苯乙烯-丙烯腈(SAN)和PMMA/乙烯-醋酸乙烯酯(EVA)共混物的形态,发现域尺寸大大减小,有机黏土颗粒沿界面分布(Macromolecules,2006,39(14):4793-4801)。Elisa等人研究了两种气相SiO2微球(亲水性和疏水性)对PP/PS共混物形态的影响,发现亲水性SiO2微球倾向分散于PS相,而疏水性SiO2微球倾向分散于PP相或相界面,SiO2微球的加入,使PS相尺寸明显减小(Polymer,2007,48(20):6029-6040)。Yang等使用三元乙丙橡胶(EPDM)和两种纳米SiO2颗粒(亲水性和疏水性),采用两种加工方法(一步法和两步法)同时对PP进行改性。
研究发现,当填料网络结构形成时,可以同时提高韧性和模量,这种结构只能通过两步法在含有亲水性纳米SiO2颗粒的复合材料中形成。将无机纳米颗粒引入不相容的聚合物混合物中,分散相尺寸会显著减小,同时形貌细化,无机纳米粒子的存在,可以诱导聚合物共混物从液滴形态到双连续形态的转变(Polymer,2007,48(3):860-869)。这种效应在很大程度上取决于纳米颗粒的浓度,而无机颗粒与聚合物共混物两相的润湿性是影响无机颗粒选择性分布的主要原因,但关于无机颗粒稳定界面或改善形态的机制仍未达成一致。目前利用固体颗粒调控相分离过程从而达到改善两相分布状态的研究多集中于聚合物改性方面,而有关固体颗粒参与多孔材料结构调控的研究鲜有报道。
发明内容
为解决上述问题,本发明提供了一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,实现了基于相分离法制备的聚合物多孔材料微观结构的精细调控。
为实现上述目的,本发明采取的技术方案为:
一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,包括如下步骤:
S1、将固体颗粒与聚合物共混体系按一定比例通过搅拌、超声或振荡均匀混合后,在一定条件下诱导体系发生相分离;
S2、除去聚合物中的致孔剂相;
S3、干燥,得到聚合物多孔材料。
作为本方案的优选,还包括:去除聚合物多孔材料中的固体颗粒的步骤。
作为本方案的进一步地设计,所述固体颗粒选自有机颗粒、无机颗粒或有机/无机复合颗粒中的任意一种或者至少两种的混合物;固体颗粒形状为球状、棒状、块状以及不规则形状,尺寸为10nm~500μm;固体颗粒表面与水的接触角为0-150°。优选地,固体颗粒为纳微级聚合物颗粒、SiO2颗粒、炭黑、有机黏土、碳纳米管、粉煤灰等中的任意一种或者至少两种的混合物;任选地,颗粒表面可通过物理或化学方法改性,使得其与水的接触角为0-150°。
作为本方案的进一步地设计,所述步骤S1中,聚合物共混体系是指可在一定条件下发生相分离生成聚合物相和致孔剂相的体系。
作为本方案的进一步地设计,所述步骤S1中,固体颗粒与聚合物共混体系的质量比例为0.01%~10%,例如0.1%、0.5%、1%、3%、5%、7%、9%。
作为本方案的进一步地设计,所述步骤S1中,相分离包括非溶剂诱导相分离、热诱导相分离和反应诱导相分离;
当利用非溶剂诱导相分离时,其步骤为将固体颗粒与聚合物溶液混合均匀,涂于支撑膜表面;将涂有聚合物溶液的支撑膜浸入含有不良溶剂的凝固浴中;聚合物溶液中的良溶剂与凝固浴中的不良溶剂发生交换,从而诱发相分离。聚合物溶液由固体颗粒、至少一种聚合物和至少一种良溶剂组成,也可加入添加剂。其中聚合物选自聚砜(PSF)、聚醚砜(PES)、聚丙烯腈(PAN)、纤维素、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乳酸(PLA)、聚酰亚胺(PI)和聚酰胺(PA)等中的任意一种或者至少两种的混合物。所述良溶剂为能够溶解上述聚合物的溶剂,所述不良溶剂为对上述聚合物溶解性不好的溶剂。良溶剂和不良溶剂选自N,N二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、1,4二氧六环、环己酮、苯甲醚、甲苯、二甲苯、环己烷、丁酮、四氢呋喃、乙醇和去离子水等中的任意一种或者至少两种的混合物。
当利用热诱导相分离时,其步骤为在高温下,将固体颗粒与聚合物和稀释剂的均相溶液混合均匀;对体系进行可控降温,从而诱发相分离。聚合物选自聚偏氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)等中的任意一种或者至少两种的混合物。所述稀释剂为能在高温下溶解上述聚合物的溶剂,选自N,N二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、1,4二氧六环、环己酮、苯甲醚、甲苯、二甲苯、环己烷、丁酮、四氢呋喃、二苯酮、二苯砜、乙醇和去离子水等中的任意一种或者至少两种的混合物。
当利用反应诱导相分离时,其步骤为将固体颗粒、聚合物单体、交联剂、致孔剂以及任选的引发剂混合均匀;使得到的混合物在密封的条件下,发生聚合反应从而诱导相分离。所述聚合物单体是指适合逐步聚合或自由基聚合反应的单体,选自环氧类单体、多元羧酸类单体、苯酚类单体、乙烯基单体中的任意一种或者至少两种的混合物。与之相对应的交联剂为多元胺、多元酸酐、多元醇或醛类交联剂、多乙烯基化合物中的任意一种或者至少两种的混合物。
作为本方案的进一步地设计,所述步骤S2中,采用索氏提取或超声清洗或高温降解的方法去除聚合反应产物中的致孔剂相。
作为本方案的进一步地设计,所述步骤S3中,采用真空干燥,真空干燥的时间为12~24h,例如13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h。
作为本方案的进一步地设计,采用溶剂溶解或高温降解的方法去除固体颗粒。
本发明所述的调控方法可用于制备具有凹陷式双级结构的聚合物多孔材料,该聚合物多孔材料其结构为闭孔结构或连续骨架结构,其骨架表面分布着纳微级凹坑,制备时,包括如下步骤:
(1)将固体颗粒表面修饰至中性;所述中性是指就润湿性而言,固体颗粒介于聚合物相和致孔剂相之间;
(2)将固体颗粒与聚合物共混体系按一定比例均匀混合,然后在一定条件下诱导体系发生相分离;
(3)除去聚合物中的致孔剂相;
(4)干燥,得到聚合物多孔材料;
(5)得到的聚合物多孔材料中的固体颗粒去除。
本发明提供了一种以固体颗粒为主导的调节聚合物多孔材料结构的方法及其产品。该方法可精细调控聚合物多孔材料的比表面积、骨架尺寸以及孔径大小等结构参数;利用该方法可制备得到一种具有凹陷式双级结构的聚合物多孔材料,该材料骨架表面分布的纳微级凹坑赋予了该材料新的性能优势。同时,固体颗粒可选择性去除,从而在不引入更多组分的情况下,实现聚合物多孔材料的精细调控。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为实施例1中使用的SiO2颗粒的电镜图。
图2为实施例1中酸刻蚀前后环氧树脂多孔材料的电镜图。
图3为实施例2中添加不同质量亲水性SiO2颗粒制备的环氧树脂多孔材料的电镜图。
图4为实施例3中添加不同润湿性SiO2颗粒制备的环氧树脂多孔材料的电镜图。
图5为实施例4中制备的聚乳酸多孔材料的电镜图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
以E-51型环氧树脂(EP)为反应单体、聚乙二醇200(PEG200)为不良溶剂、1,4-二氧六环为良溶剂、4,4’-二氨基二环己基甲烷(DDCM)为交联剂、固体颗粒选用亲水性SiO2颗粒。
聚合物多孔材料的制备过程:
将EP、PEG200、1,4-二氧六环、SiO2颗粒按18:64:4:0.8的质量比混合均匀,然后加入交联剂DDCM,再次混合均匀后装入密闭反应容器中,80℃下进行固化反应8h。将所得反应物置于索氏提取器中经乙醇索提去除致孔相,即得聚合物多孔材料。最后将多孔材料浸入10wt%的HF中12h,以去除SiO2微球。
用扫描电子显微镜观察SiO2颗粒(图1)和上述刻蚀前后的聚合物多孔材料的微观形貌(图2(a,b)),从SEM图上可以看出,刻蚀前后聚合物多孔材料均呈现三维连续骨架贯通孔结构,孔径尺寸在1-3μm之间。刻蚀后的聚合物多孔材料有纳微级凹坑。
实施例2
以EP为反应单体、PEG200为不良溶剂、4,4’-二氨基二环己基甲烷(DDCM)为交联剂、固体颗粒选用亲水性SiO2颗粒。
聚合物多孔材料的制备过程:
将EP、PEG200、SiO2颗粒按25:74:1(或25:74:2或25:74:3)的质量比混合均匀,然后加入交联剂DDCM,再次混合均匀后装入密闭反应容器中,75℃下进行固化反应8h。将所得反应物置于索氏提取器中经乙醇索提去除致孔相,即得聚合物多孔材料。最后将多孔材料浸入10wt%的HF中12h,以去除SiO2微球。
用扫描电子显微镜观察上述制备得到的聚合物多孔材料的微观形貌,如图3(a-c)所示分别为添加1wt%、2wt%、3wt%SiO2的刻蚀后的聚合物多孔材料,从SEM图上可以看出,刻蚀后的聚合物多孔材料依然呈现三维连续骨架贯通孔结构,孔径尺寸随着SiO2质量分数的增加而减小。
实施例3
以EP为反应单体、PEG200为不良溶剂、4,4’-二氨基二环己基甲烷(DDCM)为交联剂、固体颗粒分别选用亲水性、中性和疏水性SiO2颗粒。
聚合物多孔材料的制备过程:
将EP、PEG200、SiO2颗粒按25:74:1的质量比混合均匀,然后加入交联剂DDCM,再次混合均匀后装入密闭反应容器中,75℃下进行固化反应8h。将所得反应物置于索氏提取器中经乙醇索提去除致孔相,即得聚合物多孔材料。最后将多孔材料浸入10wt%的HF中12h,以去除SiO2微球。
用扫描电子显微镜观察上述制备得到的聚合物多孔材料的微观形貌,如图4(a-c)所示分别为添加亲水性、中性和疏水性SiO2颗粒制备的聚合物多孔材料,从SEM图上可以看出,改变固体颗粒表面润湿性,聚合物多孔材料结构随之改变。
实施例4
以聚乳酸为反应单体,二氯甲烷作为溶剂,去离子水作为助溶剂,固体颗粒选用亲水性SiO2颗粒。
聚合物多孔膜的制备方法:
将聚乳酸溶解到二氯甲烷中,制备成聚乳酸溶液。将0.5wt%亲水性SiO2添加到聚乳酸溶液中,通过超声分散将其混合均匀,然后添加一定比例去离子水。超声后搅拌,此步骤进行5次以上,将制得的溶液滴到载玻片上放入乙醇中成膜。
用扫描电子显微镜观察上述制备得到的聚乳酸多孔膜的微观形貌,所得结果如图5所示,从SEM图上可以看出,添加SiO2颗粒的聚乳酸多孔膜呈蜂窝状结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

1.一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,包括如下步骤:
S1、将固体颗粒与聚合物共混体系按一定比例均匀混合后,在一定条件下诱导体系发生相分离;
S2、除去聚合物中的致孔剂相;
S3、干燥,得到聚合物多孔材料。
2.如权利要求1所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,还包括:去除聚合物多孔材料中的固体颗粒的步骤。
3.如权利要求1所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,所述固体颗粒选自有机颗粒、无机颗粒或有机/无机复合颗粒中的任意一种或者至少两种的混合物;固体颗粒形状为球状、棒状、块状以及不规则形状,尺寸为10nm~500μm;固体颗粒表面与水的接触角为0-150°。
4.如权利要求1所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,所述步骤S1中,聚合物共混体系是指可在一定条件下发生相分离生成聚合物相和致孔剂相的体系。
5.如权利要求1所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,所述步骤S1中,固体颗粒与聚合物共混体系的质量比例为0.01%~10%。
6.如权利要求1所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,所述步骤S1中,相分离包括非溶剂诱导相分离、热诱导相分离和反应诱导相分离。
7.如权利要求1所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,所述步骤S2中,采用索氏提取或超声清洗或高温降解的方法去除聚合反应产物中的致孔剂相。
8.如权利要求1所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,所述步骤S3中,采用真空干燥,真空干燥的时间为12~24h。
9.如权利要求2所述的一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法,其特征在于,采用溶剂溶解或高温降解的方法去除固体颗粒。
10.如权利要求1-9任一项所述的调控方法,其特征在于;可用于制备具有凹陷式双级结构的聚合物多孔材料,该聚合物多孔材料其结构为闭孔结构或连续骨架结构,其骨架表面分布着纳微级凹坑。
CN202210644813.9A 2022-06-09 2022-06-09 一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法 Pending CN115160633A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210644813.9A CN115160633A (zh) 2022-06-09 2022-06-09 一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210644813.9A CN115160633A (zh) 2022-06-09 2022-06-09 一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法

Publications (1)

Publication Number Publication Date
CN115160633A true CN115160633A (zh) 2022-10-11

Family

ID=83485980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210644813.9A Pending CN115160633A (zh) 2022-06-09 2022-06-09 一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法

Country Status (1)

Country Link
CN (1) CN115160633A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1513900A (zh) * 2003-07-30 2004-07-21 复旦大学 一种可降解管状高分子多孔泡沫材料及其制备方法
US20050161849A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
CN101791437A (zh) * 2010-03-16 2010-08-04 浙江大学 一种聚合物/无机粒子复合骨修复多孔支架的制备方法
US20130131200A1 (en) * 2011-11-18 2013-05-23 GM Global Technology Operations LLC Making a lithium ion battery separator
CN107163288A (zh) * 2017-05-10 2017-09-15 郑州大学 超疏水三维多孔聚合物基复合材料及其制备方法
CN107670108A (zh) * 2017-09-27 2018-02-09 四川大学 一种组织工程支架用聚乳酸多孔材料及其制备方法
CN109293977A (zh) * 2018-09-04 2019-02-01 成都新柯力化工科技有限公司 一种增强母料用氧化石墨烯/聚甲醛多孔微球及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1513900A (zh) * 2003-07-30 2004-07-21 复旦大学 一种可降解管状高分子多孔泡沫材料及其制备方法
US20050161849A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
CN101791437A (zh) * 2010-03-16 2010-08-04 浙江大学 一种聚合物/无机粒子复合骨修复多孔支架的制备方法
US20130131200A1 (en) * 2011-11-18 2013-05-23 GM Global Technology Operations LLC Making a lithium ion battery separator
CN107163288A (zh) * 2017-05-10 2017-09-15 郑州大学 超疏水三维多孔聚合物基复合材料及其制备方法
CN107670108A (zh) * 2017-09-27 2018-02-09 四川大学 一种组织工程支架用聚乳酸多孔材料及其制备方法
CN109293977A (zh) * 2018-09-04 2019-02-01 成都新柯力化工科技有限公司 一种增强母料用氧化石墨烯/聚甲醛多孔微球及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SULTANA, N,等: "In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering", JOURNAL OF NANOMATERIALS *
孙鑫: "多孔聚乳酸膜表面微纳结构的构筑与浸润性调控", 中国博士学位论文全文数据库工程科技Ⅰ辑 *
赵锦梅,等: "SiO 2 微球主导下多孔树脂微观结构的精细调控", 高分子材料科学与工程 *

Similar Documents

Publication Publication Date Title
Wu et al. Poly (vinylidene fluoride)/polyethersulfone blend membranes: effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology
CN100411722C (zh) 聚偏氟乙烯共混多孔膜及其制备方法
Liu et al. Progress in the production and modification of PVDF membranes
Nunes et al. From charge-mosaic to micelle self-assembly: block copolymer membranes in the last 40 years
Higuchi et al. Frustrated phases of block copolymers in nanoparticles
Zhao et al. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers
Zhang et al. Polymeric nanoporous materials fabricated with supercritical CO 2 and CO 2-expanded liquids
Zhang et al. Novel single-step hydrophobic modification of polymeric hollow fiber membranes containing imide groups: Its potential for membrane contactor application
JP2015529555A (ja) イソポーラス分離活性層を有する膜、及び膜の製造方法
Zhang et al. Understanding the multiple functions of styrene-co-maleic anhydride in fabricating polyvinylidene fluoride hollow fiber membrane via coupled phase inversion process and its effect on surface infiltration behavior and membrane permeability
CN111167316A (zh) 一种用于制备分离膜的常温选择性溶胀开孔方法
Luo et al. Colloidal particles with complex microstructures via phase separation in swelled polymer microspheres
Sun et al. Controllable surface morphology transition from inter-connected pores to flower-like structures for super-hydrophobic poly (L-lactic acid) films
Ho et al. Fabrication of high-flux asymmetric polyethersulfone (PES) ultrafiltration membranes by nonsolvent induced phase separation process: Effects of H2O contents in the dope
US10927229B2 (en) Method for preparing nanoporous polysulfone-based polymers
Reddy et al. Hydrophobic/hydrophilic nanostructured polymer blends
Gong et al. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO 2-expanded liquids
CN115160633A (zh) 一种以固体颗粒为主导的聚合物多孔材料微观结构的调控方法
Yu et al. An efficient preparation of porous polymeric microspheres by solvent evaporation in foam phase
CN114588792B (zh) 一种聚乙烯醇缩丁醛共混增强的聚偏二氯乙烯超滤膜及其制备方法
Zhu et al. Underwater superoleophobic poly (vinylidene fluoride)/poly (N-isopropylacrylamide) membranes for highly efficient oil-in-water emulsion separation
Zhou et al. Polysulfate membrane prepared with a novel porogen for enhanced ultrafiltration performance
CN113117530B (zh) 一种提高聚酰胺纳滤复合膜渗透选择性的复合膜及其制备
Liu et al. Effects of additive dosage and coagulation bath pH on amphoteric fluorocarbon special surfactant (FS-50) blend PVDF membranes
Sun et al. An effective approach towards endowing membranes with tunable charge characteristics and large nanopores

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221011