CN115160600A - 基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用 - Google Patents

基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用 Download PDF

Info

Publication number
CN115160600A
CN115160600A CN202210931035.1A CN202210931035A CN115160600A CN 115160600 A CN115160600 A CN 115160600A CN 202210931035 A CN202210931035 A CN 202210931035A CN 115160600 A CN115160600 A CN 115160600A
Authority
CN
China
Prior art keywords
solution
hydrogel
wet
hydrophobic alkyl
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210931035.1A
Other languages
English (en)
Other versions
CN115160600B (zh
Inventor
谢超鸣
侯跃
鲁雄
郭小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210931035.1A priority Critical patent/CN115160600B/zh
Publication of CN115160600A publication Critical patent/CN115160600A/zh
Application granted granted Critical
Publication of CN115160600B publication Critical patent/CN115160600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0019Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供一种基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用,属生物材料技术领域。步骤如下:1、将儿茶酚衍生物加入去离子水中,然后加入氢氧化钠NaOH以提供碱性环境;搅拌20 min后,在邻苯二酚衍生溶液中加入丙烯酰胺AM,得到溶液A;2、将疏水性烷基单体溶解在乙醇/甘油混合溶液或SDS/NaCl溶液中,得到溶液B;3、将步骤1得到的溶液A和步骤2得到的溶液B混合后,加入引发剂以及交联剂,搅拌均匀后倒入聚四氟乙烯模具中,在60℃下放置60min,获得聚多巴胺‑聚丙烯酰胺‑疏水性烷基单体水凝胶PDA‑PAM‑Cn(n=1,2,4,6,12);本发明水凝胶应用于创伤伤口、尤其是动脉、内脏的湿粘附和快速止血。

Description

基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用
技术领域
本发明涉及生物材料技术领域,具体涉及一种用作快速止血的基于疏水单体和儿茶酚协同作用的仿生湿粘附水凝胶。
背景技术
湿粘附性能对于生物医学应用中的水凝胶至关重要。例如,为了组织修复或控制大量出血而粘附到活体器官上时,应考虑伤口中的生理液体或血液。然而,大多数粘附性水凝胶在潮湿条件下无法实现有效粘合。这是因为水分子可以在潮湿条件下在目标基板表面形成薄水化层,这阻碍了水凝胶和目标基板之间的紧密接触。此外,水分子破坏了粘合剂水凝胶和目标基材之间的非共价相互作用。
迄今为止,文献报道了多种湿粘合剂水凝胶来克服这种界面水化层。有研究通过物理互锁实现湿粘附,在形成有效粘合时往往需要穿透目标基材与其形成互锁,因此对不同基材的粘合强度差异很大,且剥离时容易产生残留物。基于生物结构表面的粘合剂已经在微观形貌方面被探索用于水下粘附,例如壁虎、章鱼和粘鱼启发的纳米柱阵列、吸盘阵列和排水微阵列等,但是其表面微纳结构让制备过程较为复杂。
在自然界中,贻贝等海洋动物对海水中的各种基质表现出强大且可重复的水下附着力。贻贝的水下粘附是通过使用贻贝足蛋白 (Mfps) 中的阳离子赖氨酸和疏水残基破坏水化层来实现的,从而使儿茶酚基团与暴露的表面结合。此外,Mfps 中的疏水侧链,如Mfp-3S,在实现可靠的湿粘附方面也发挥着关键作用。这些研究表明,可以通过精心设计复杂的水凝胶网络并仔细选择它们的成分,开发基于亲疏水平衡的湿粘附水凝胶。
发明内容
本发明的目的是提供一种用做快速止血的湿粘附水凝胶,使之可以破坏生理液体或血液形成的阻碍粘附的界面水化层,牢固地粘附在出血部位,并能够促进血细胞聚集和粘附。
本发明采用的技术方案是:一种用作快速止血和伤口愈合的基于疏水单体和儿茶酚协同作用的仿生湿粘附水凝胶的制备方法,包括以下步骤:
步骤1:首先,将儿茶酚衍生物加入去离子水中,然后加入氢氧化钠NaOH以提供碱性环境。搅拌20 min后,在邻苯二酚衍生溶液中加入丙烯酰胺(AM),得到溶液A。
步骤2:将疏水性烷基单体溶解在乙醇/甘油混合溶液或SDS/NaCl 溶液中,得到溶液 B。
步骤3:将步骤1得到的溶液A和步骤2得到的溶液B混合后,加入引发剂以及交联剂,搅拌均匀后倒入聚四氟乙烯模具中,在60℃下放置60min,即得到水凝胶。
步骤1中所述的NaOH的质量分数为50%;所述的碱性环境为pH=11;步骤2中所述的乙醇/甘油混合溶液,其比例为9:1;所述的SDS/NaCl溶液,其质量比为50:23,通过在60℃下以低速搅拌直至变得澄清获得。
进一步的,步骤1中所述的儿茶酚衍生物为多巴胺盐酸盐、没食子酸、表没食子儿茶素没食子酸酯的一种。
进一步的,步骤2中所述的疏水性烷基单体为丙烯酸甲酯(C1)、丙烯酸乙酯(C2)、丙烯酸丁酯(C4)、丙烯酸己酯(C6)、丙烯酸十二烷基酯(C12);当疏水性烷基单体为C1、C2时,使用乙醇/甘油混合溶液溶解;当疏水性烷基单体为C4,C6,C12时,使用SDS/NaCl溶液溶解。
进一步的,步骤3中所述的引发剂为过硫酸盐和N,N,N',N'-四甲基二乙胺组成的引发体系;交联剂为N,N-亚甲叉双丙烯酰胺、聚乙二醇二丙烯酸酯中的一种;其中过硫酸盐包括过硫酸铵、过硫酸钾、过硫酸钠中的一种。
本发明通过上述技术措施与制备,初步获得所需适用快速止血的湿粘附聚多巴胺-聚丙烯酰胺-疏水性烷基单体水凝胶,表示为:PDA-PAM-Cn(n=1,2,4,6,12)。
本发明的有益效果是:
(1)本发明制备的仿生湿粘附水凝胶通过调节亲疏水平衡实现水下粘附。采用疏水性烷基破坏阻碍粘附的水层,再通过贻贝启发的多酚基团与各种底物相互作用,从而产生强大的湿粘附性。
(2)本发明制备的具有多酚基团和疏水官能团的湿粘附水凝胶,具有对多种基材的可调控的湿粘附强度。通过采用不同长度的疏水性烷基单体,对阻碍粘附的水层的破坏程度不同,并且会影响水凝胶的内聚能和粘附能,进而实现在一定范围内可调的湿粘附强度。
(3)本发明制备的具有多酚基团和疏水官能团的湿粘附水凝胶,可通过湿粘附性牢固地粘附在出血部位,并将血液中的水分吸收到亲水网络中;多酚通过与血液中的亲核试剂相互作用促进红细胞的聚集和粘附,疏水烷基链有利于锚定红细胞。因此,该水凝胶可用于快速止血。
附图说明
图1为本发明所述的水凝胶不同成分对玻璃基底的粘附强度热图。
图2为本发明所述的水凝胶不同疏水烷基链长对不同基底的粘附强度柱状图。
图3A1、图3A2、图3A3、图3B1、图3B2、图3B3、图3C、图3D、图3E为本发明实施例制备的水凝胶湿粘附实物图。
图4A1、图4A2、图4A3、图4A4、图4A5、图4B为本发明实施例制备的水凝胶用于大鼠肝脏止血的应用状态图。
图5A1、图5A2、图5A3、图5B1、图5B2、图5B3、图5C1、图5C2、图5C3、图5D1、图5D2、图5D3为本发明实施例制备的水凝胶用于猪体内止血的应用状态图。
图6A、图6B、图6C为本发明实施例制备的水凝胶血细胞粘附的SEM图。
图7为本发明实施例制备的水凝胶采用激光共聚焦扫描显微镜(CLSM)观察水凝胶上 L929细胞的形貌图。
具体实施方式
下面结合具体附图和实施例对本发明做进一步说明:
说明书附图1为本发明所述的水凝胶不同成分对玻璃基底的粘附强度热图。从图中可以看出,采用不同的儿茶酚衍生物和不同链长的疏水烷基单体,可以对玻璃基底实现不同强度的湿粘附。
图2为本发明所述的水凝胶不同疏水烷基链长对不同基底的湿粘附强度柱状图。从图中可以看出,采用不同链长的疏水烷基单体,可以实现对猪皮、金属、玻璃、PTFE的不同强度的湿粘附。相比于聚多巴胺-聚丙烯酰胺水凝胶(PDA-PAM),不同碳链长度的疏水单体的引入形成了对不同基底的可调的湿粘附,其中PDA-PAM-C2水凝胶的湿粘附强度最高,对玻璃,金属,PTFE,猪皮的湿粘附强度分别为23.50±1.94 kPA,20.29±1.36 kPA,16.20±1.42 kPA,8.97±0.59 kPA。分别是PDA-PAM的3到5倍。
图3A1、图3A2、图3A3为本发明实施例制备的PDA-PAM-C2水凝胶湿粘附水中物体的实物图,可以看出水凝胶可以在几乎没有预加载力的情况下粘附起水中的硬币:图3B1、图3B2、图3B3为本发明实施例制备的PDA-PAM-C2水凝胶在水下粘附重物的实物图,可以看出水凝胶在施加预加载力的情况下可以粘附起水中600g的重物;图3D、图3E为本发明实施例制备的PDA-PAM-C2水凝胶在流水冲刷下保持生物组织湿粘附的实物图,水凝胶还可以在水流冲刷的情况下牢固地粘附在猪胃、猪皮和猪大肠上。
图4A1、图4A2、图4A3、图4A4、图4A5为本发明实施例制备的水凝胶用于大鼠肝脏止血的应用状态图。该肝脏止血实验方法:SD大鼠用戊巴比妥钠麻醉,并固定在与桌子成30°角的木板上。在大鼠腹部切开3cm的切口,露出肝脏。将肝组织小心地置于石蜡膜上。小心去除大鼠肝脏周围的液体,以防止滤纸上吸收的血液测量不准确。将预先称重的石蜡膜上的滤纸置于肝脏下方。使用20 mL针头通过 5 mm 深的穿刺诱导右肝出血,并立即将水凝胶应用于出血部位。3分钟后,测量滤纸上的出血量。无水凝胶(图4 A1),PAM水凝胶(图4A2),PDA-PAM水凝胶(图4A3),医疗粘合剂(α-N-丁基氰基丙烯酸酯)(图4A4),和PDA-PAM-C2水凝胶(图4A5)。显示出本发明实施例的水凝胶应用于肝脏止血时的优良止血效果,与医用粘合剂处于同一水准。试验表明,PDA-PAM-C2 水凝胶组 (60 ± 21 mg) 180 秒的失血量远低于无水凝胶 (581 ± 136 mg)、聚丙烯酰胺(PAM)水凝胶 (543 ± 86 mg) 和 PDA-PAM 水凝胶 (546 ± 75 mg) 组,甚至低于医用粘合剂(α-氰基丙烯酸正丁酯)(196 ± 62 mg)。
图5 A1、图5A2、图5A3、图5B1、图5B2、图5B3、图5C1、图5C2、图5C3、图5D1、图5D2、图5D3为本发明实施例制备的水凝胶用于猪体内止血的应用状态图。该体内止血实验方法:使用了雄性巴马小型猪(20-30 kg)的心脏、股动脉、颈动脉和肝出血模型。图5 A1、图5A2、图5A3为股动脉止血,全身麻醉后,将猪的右大腿消毒并切开,暴露皮下动脉血管,用20mL注射器针头在血管上形成伤口,用止血钳夹住血管。将水凝胶附着在伤口部位90 s后,取出止血钳。图5B1、图5B2、图5B3为颈动脉止血,对猪的颈部进行消毒并切开,暴露皮下动脉血管,并使用20mL注射器针头在血管上形成伤口,用止血钳夹住血管。将水凝胶包裹在血管伤口90s后,取出止血钳。图5C1、图5C2、图5C2、图5C3、图5D1、图5D2、图5D3为心脏和肝脏损伤止血,全身麻醉后,用20mL注射器针头穿刺猪心肝心室。随后,将水凝胶快速粘附在伤口上。显示出本发明实施例的水凝胶应用于股动脉、颈动脉、心脏和肝脏止血时的优良止血效果。
图6A、图6A、图6C为本发明实施例制备的水凝胶血细胞粘附的SEM图。该实验方法:对于不同组的水凝胶样品,加入重新钙化后的全血,在37℃下放置180 s后,用扫描电镜观察血细胞的粘附情况。可以看出本发明实施例的PDA-PAM-C2(图6C)水凝胶相较于对PAM(图6A)和PDA-PAM(图6B)水凝胶具有更强的血细胞粘附能力,多酚通过与血液中的亲核试剂相互作用促进红细胞的聚集和粘附,疏水烷基链有利于锚定红细胞,更有助于血细胞的聚集和粘附。
图7为本发明实施例制备的水凝胶采用激光共聚焦扫描显微镜(CLSM)观察水凝胶上 L929细胞的形貌图。首先将L929细胞接种在水凝胶上,细胞密度为3×104细胞/孔,培养3天后,分别使用粘着斑染色试剂盒和 DAPI 对粘着斑蛋白 (vinculin) 和细胞核进行染色。最后采用激光共聚焦扫描显微镜观察水凝胶上L929细胞的形貌。结果表明,本发明水凝胶具有良好的生物相容性。此外,水凝胶组上的细胞形态更趋于梭形,有助于细胞铺展和生长。
表1 不同材料应用于SD大鼠肝脏止血时的出血量
Figure DEST_PATH_IMAGE002
实施例1
PDA-PAM-C1水凝胶的制备:将 0.02g多巴胺溶解在3ml去离子水中,再加入200μlNaOH(0.5g/mL)溶液,搅拌20min后加入1g丙烯酰胺,得到溶液A。将3ml丙烯酸甲酯溶解在4ml乙醇/甘油(乙醇:甘油=9:1)混合溶液中,得到溶液B。将溶液A和溶液B混合均匀后,加入600μl N,N-亚甲双丙烯酰胺,0.1g过硫酸铵,30μl N,N,N',N'-四甲基乙二胺。在60℃充分反映60min后得到所述水凝胶。
实施例2
PDA-PAM-C2水凝胶的制备:将 0.02g多巴胺溶解在3ml去离子水中,再加入200μlNaOH(0.5g/mL)溶液,搅拌20min后加入1g丙烯酰胺,得到溶液A。将3ml丙烯酸乙酯溶解在4ml乙醇/甘油(乙醇:甘油=9:1)混合溶液中,得到溶液B。将溶液A和溶液B混合均匀后,加入600μl N,N-亚甲双丙烯酰胺,0.1g过硫酸铵,30μl N,N,N',N'-四甲基乙二胺。在60℃充分反映60min后得到所述水凝胶。
实施例3
PDA-PAM-C4水凝胶的制备:将 0.02g多巴胺溶解在3ml去离子水中,再加入200μlNaOH(0.5g/mL)溶液,搅拌20min后加入1g丙烯酰胺,得到溶液A。将3ml丙烯酸丁酯溶解在4ml SDS/NaCl混合溶液中,得到溶液B。所述的SDS/NaCl溶液,通过在4ml去离子水中加入0.5g SDS和0.23g NaCl,在60℃下以低速搅拌直至变得澄清获得。将溶液A和溶液B混合均匀后,加入600μl N,N-亚甲双丙烯酰胺,0.1g过硫酸铵,30μl N,N,N',N'-四甲基乙二胺。在60℃充分反映60min后得到所述水凝胶。
实施例4
PDA-PAM-C6水凝胶的制备:将 0.02g多巴胺溶解在3ml去离子水中,再加入200μlNaOH(0.5g/mL)溶液,搅拌20min后加入1g丙烯酰胺,得到溶液A。将3ml丙烯酸己酯溶解在4ml SDS/NaCl混合溶液中,得到溶液B。所述的SDS/NaCl溶液,通过在4ml去离子水中加入0.5g SDS和0.23g NaCl,在60℃下以低速搅拌直至变得澄清获得。将溶液A和溶液B混合均匀后,加入600μl N,N-亚甲双丙烯酰胺,0.1g过硫酸铵,30μl N,N,N',N'-四甲基乙二胺。在60℃充分反映60min后得到所述水凝胶。
实施例5
PDA-PAM-C12水凝胶的制备:将 0.02g多巴胺溶解在3ml去离子水中,再加入200μlNaOH(0.5g/mL)溶液,搅拌20min后加入1g丙烯酰胺,得到溶液A。将3ml丙烯酸十二烷基酯溶解在4ml SDS/NaCl混合溶液中,得到溶液B。所述的SDS/NaCl溶液,通过在4ml去离子水中加入0.5g SDS和0.23g NaCl,在60℃下以低速搅拌直至变得澄清获得。将溶液A和溶液B混合均匀后,加入600μl N,N-亚甲双丙烯酰胺,0.1g过硫酸铵,30μl N,N,N',N'-四甲基乙二胺。在60℃充分反映60min后得到所述水凝胶。
本发明通过将具有不同链长的疏水性烷基单体和邻苯二酚衍生成分引入亲水性水凝胶网络中进行系列筛选,发现并制备了一种湿粘附水凝胶。儿茶酚衍生物的基团模仿3,4-二羟基-L-苯丙氨酸 (DOPA),它是贻贝粘附蛋白的一种成分,可与各种底物相互作用以实现强大的粘附;不同链长度的疏水性烷基会破坏阻碍粘附的水合层,从而产生稳定的湿粘附性。与此同时,多酚通过与血液中的亲核试剂相互作用促进红细胞的聚集和粘附,疏水烷基链有利于锚定红细胞。实现了本发明所述水凝胶能够用于湿粘附和快速止血的目的。

Claims (9)

1.一种基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法,包括以下步骤:
步骤1:将儿茶酚衍生物加入去离子水中,然后加入氢氧化钠NaOH以提供碱性环境;搅拌20 min后,在邻苯二酚衍生溶液中加入丙烯酰胺AM,得到溶液A;
步骤2:将疏水性烷基单体溶解在乙醇/甘油混合溶液或SDS/NaCl 溶液中,得到溶液B;
步骤3:将步骤1得到的溶液A和步骤2得到的溶液B混合后,加入引发剂以及交联剂,搅拌均匀后倒入聚四氟乙烯模具中,在60℃下放置60min,获得湿粘附水凝胶,命名为聚多巴胺-聚丙烯酰胺-疏水性烷基单体水凝胶PDA-PAM-Cn,其中n=1,2,4,6,12。
2.根据权利要求1所述的湿粘附水凝胶的制备方法,其特征在于,步骤1中所述的NaOH的质量分数为50%;所述的碱性环境为pH=11。
3.根据权利要求1所述的湿粘附水凝胶的制备方法,其特征在于,步骤2中所述的乙醇/甘油混合溶液,其比例为9:1;所述的SDS/NaCl溶液,其质量比为50:23,通过在60℃下以低速搅拌直至变得澄清获得。
4.根据权利要求1所述的湿粘附水凝胶的制备方法,其特征在于,步骤1中所述的儿茶酚衍生物为多巴胺盐酸盐、没食子酸、表没食子儿茶素没食子酸酯的一种。
5.根据权利要求1所述的湿粘附水凝胶的制备方法,其特征在于,步骤2中所述的疏水性烷基单体为丙烯酸甲酯C1、丙烯酸乙酯C2、丙烯酸丁酯C4、丙烯酸己酯C6、丙烯酸十二烷基酯C12。
6.根据权利要求1所述的湿粘附水凝胶的制备方法,其特征在于,当疏水性烷基单体为C1、C2时,使用乙醇/甘油混合溶液溶解;当疏水性烷基单体为C4,C6,C12时,使用SDS/NaCl溶液溶解。
7.根据权利要求1所述的湿粘附水凝胶的制备方法,其特征在于,步骤3中所述的引发剂为过硫酸盐和N,N,N',N'-四甲基二乙胺组成的引发体系;交联剂为N,N-亚甲叉双丙烯酰胺、聚乙二醇二丙烯酸酯中的一种;其中过硫酸盐包括过硫酸铵、过硫酸钾、过硫酸钠中的一种。
8.根据权利要求1—7任一项所述的湿粘附水凝胶的制备方法,其特征在于,获得适用快速止血的湿粘附水凝胶PDA-PAM-Cn。
9.一种根据权利要求1或8所述方法制备的水凝胶,其特征在于,所述方法制备得到水凝胶应用于创伤伤口、尤其是动脉、内脏的湿粘附和快速止血。
CN202210931035.1A 2022-08-04 2022-08-04 基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用 Active CN115160600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210931035.1A CN115160600B (zh) 2022-08-04 2022-08-04 基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210931035.1A CN115160600B (zh) 2022-08-04 2022-08-04 基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115160600A true CN115160600A (zh) 2022-10-11
CN115160600B CN115160600B (zh) 2024-06-14

Family

ID=83477964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210931035.1A Active CN115160600B (zh) 2022-08-04 2022-08-04 基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115160600B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116966346A (zh) * 2023-04-14 2023-10-31 宁波大学 一种粘附水凝胶的制备方法及其在食管仿生多层支架制备中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074158A2 (en) * 2001-03-20 2002-09-26 Eidgenossische Technische Hochschule Zurich Two-phase processing of thermosensitive polymers for use as biomaterials
US20180147326A1 (en) * 2015-05-26 2018-05-31 The University Of British Columbia Antifouling Polymeric Coating Compositions
CN108929412A (zh) * 2018-07-10 2018-12-04 南昌大学 一种温度响应的粘附性可注射水凝胶的制备方法
CN112898600A (zh) * 2021-02-07 2021-06-04 西安工业大学 一种聚多巴胺可逆粘附凝胶的分相制备方法
CN113502129A (zh) * 2021-07-27 2021-10-15 中国科学院兰州化学物理研究所 一种透明防污贴片及其制备方法和应用
CN113698654A (zh) * 2020-05-22 2021-11-26 华中科技大学 一种表面疏水的水凝胶、其制备和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074158A2 (en) * 2001-03-20 2002-09-26 Eidgenossische Technische Hochschule Zurich Two-phase processing of thermosensitive polymers for use as biomaterials
US20180147326A1 (en) * 2015-05-26 2018-05-31 The University Of British Columbia Antifouling Polymeric Coating Compositions
CN108929412A (zh) * 2018-07-10 2018-12-04 南昌大学 一种温度响应的粘附性可注射水凝胶的制备方法
CN113698654A (zh) * 2020-05-22 2021-11-26 华中科技大学 一种表面疏水的水凝胶、其制备和应用
CN112898600A (zh) * 2021-02-07 2021-06-04 西安工业大学 一种聚多巴胺可逆粘附凝胶的分相制备方法
CN113502129A (zh) * 2021-07-27 2021-10-15 中国科学院兰州化学物理研究所 一种透明防污贴片及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHUANGLI LI,等: ""Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》, vol. 607, 1 September 2021 (2021-09-01), pages 431 - 439, XP086859079, DOI: 10.1016/j.jcis.2021.08.205 *
WEI ZHANG,等: "Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications", 《CHEM. SOC. REV.》, vol. 49, 15 January 2020 (2020-01-15), pages 433 - 464 *
李肖亭,等: "贻贝仿生胶粘剂研究进展", 《高分子通报》, vol. 4, 30 April 2022 (2022-04-30), pages 52 - 59 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116966346A (zh) * 2023-04-14 2023-10-31 宁波大学 一种粘附水凝胶的制备方法及其在食管仿生多层支架制备中的应用

Also Published As

Publication number Publication date
CN115160600B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
Balkenende et al. Marine-inspired polymers in medical adhesion
EP3681546B1 (en) An agent for biological damage repair or hemostasis and method thereof
EP1837041A1 (en) Tissue-adhesive materials
KR20070051297A (ko) 조직-접착성 물질
Liu et al. Adhesive anastomosis for organ transplantation
WO2009066746A1 (ja) 組織癒着防止材および関節拘縮防止材
CN113398323B (zh) 一种丝胶粘合剂的制备方法及应用
CN115160600B (zh) 基于疏水链驱动的仿贻贝湿粘附水凝胶的制备方法及应用
CN111848855A (zh) 一种具有pH响应的可注射水凝胶敷料及其制备方法和应用
Wang et al. A catechol bioadhesive for rapid hemostasis and healing of traumatic internal organs and major arteries
CN112724415B (zh) 一种可水下强粘附的粘合剂及其制备方法和应用
Liang et al. A Janus hydrogel sealant with instant wet adhesion and anti-swelling behavior for gastric perforation repair
CN115746388A (zh) 一种含多尺度孔道网络的自粘附型止血修复凝胶、其制备方法及应用
Xu et al. Bridging wounds: tissue adhesives’ essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives
Yang et al. Tunable backbone-degradable robust tissue adhesives via in situ radical ring-opening polymerization
DK2741790T3 (en) MEDICAL ADHESIVE AND METHOD OF PRODUCING THEREOF
Li et al. In situ Injectable Tetra‐PEG Hydrogel Bioadhesive for Sutureless Repair of Gastrointestinal Perforation
US20240238477A1 (en) Self-adhesive absorbable biological patch and preparation method and use thereof
US20240216585A1 (en) Peg bicomponent self-adhesive absorbable biological patch and preparation method and use thereof
Wu et al. A bioinspired switchable adhesive patch with adhesion and suction mechanisms for laparoscopic surgeries
Wang et al. A cyanoacrylate/triethyl citrate/nanosilica-based closure glue with wet-adhesion capability for treatment of superficial varicose veins
Li et al. Epidermal growth factor-loaded, dehydrated physical microgel-formed adhesive hydrogel enables integrated care of wet wounds
Ren et al. Stimuli‐Responsive Hydrogel Adhesives for Wound Closure and Tissue Regeneration
CN112007204B (zh) 一种抗感染促愈合止血防粘连膜及其制备方法
FI82606B (fi) Material foer foerbindningselement foer mjuka vaevnader och inre organ.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant