CN115137336A - 处理方法、系统及存储介质 - Google Patents

处理方法、系统及存储介质 Download PDF

Info

Publication number
CN115137336A
CN115137336A CN202210958907.3A CN202210958907A CN115137336A CN 115137336 A CN115137336 A CN 115137336A CN 202210958907 A CN202210958907 A CN 202210958907A CN 115137336 A CN115137336 A CN 115137336A
Authority
CN
China
Prior art keywords
driving
information
biological information
work
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210958907.3A
Other languages
English (en)
Inventor
渡边尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018016972A external-priority patent/JP7045639B2/ja
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN115137336A publication Critical patent/CN115137336A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/12Limiting control by the driver depending on vehicle state, e.g. interlocking means for the control input for preventing unsafe operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0809Driver authorisation; Driver identity check
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/043Identity of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Educational Technology (AREA)
  • Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Social Psychology (AREA)
  • Psychiatry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)

Abstract

本发明的提供处理方法、系统及存储介质。由计算机执行的处理方法包括如下处理:取得驾驶车辆的驾驶者的生物体信息;取得与由上述驾驶者进行的驾驶操作有关的驾驶信息;使进行上述驾驶的期间的上述生物体信息与上述驾驶信息建立关联并储存到存储装置中;以及基于(1)储存在上述存储装置中的、过去的上述驾驶信息与上述生物体信息的相关关系、(2)当前的上述驾驶者的上述生物体信息、以及(3)当前的上述驾驶信息,判定当前的上述驾驶者的上述驾驶的适宜度。

Description

处理方法、系统及存储介质
本申请是申请日为2018年2月13日、申请号为201880004061.1、发明名称为“作业适宜度判定系统”的发明专利申请的分案。
技术领域
本发明涉及判定作业者的当前时间点的作业适宜度的系统。
背景技术
在日常的作业中,精神的集中度非常重要。缺乏注意力的散漫的作业不仅导致效率下降,还有造成事故的危险。例如,如果在业务中缺乏集中度,则导致作业效率的下降和生产率的下降。进而,在车辆的驾驶时缺乏集中力或被困倦袭扰可能成为交通事故的直接原因。只要能够总是监视集中度并根据其时时刻刻的集中度或紧张度进行适当的建议或辅助,则能够有助于作业效率的提高或安全性的提高。实际上,这样的对策被提出了很多。例如,提出了根据各种各样的生物体信息判定精神的集中度,并根据集中度进行建议或辅助的技术。专利文献1至3公开了这样的技术的例子。
现有技术文献
专利文献
专利文献1:日本特开2002-65650号公报
专利文献2:日本特许第6003782号公报
专利文献3:日本特许第5119375号公报
发明内容
发明要解决的课题
在判定与作业的适宜度有关的精神状态的以往的系统中,有生物体信息的个人差异较大、即使是相同的人物也按每次计测而偏差较大的课题。
本发明提供一种能够抑制生物体信息的个人差异的影响、稳定地判定作业者的作业的适宜度的作业适宜度判定系统。
用来解决课题的手段
有关本发明的一形态的由计算机执行的处理方法包括如下处理:取得驾驶车辆的驾驶者的生物体信息;取得与由上述驾驶者进行的驾驶操作有关的驾驶信息;使进行上述驾驶的期间的上述生物体信息与上述驾驶信息建立关联并储存到存储装置中;以及基于(1)储存在上述存储装置中的、过去的上述驾驶信息与上述生物体信息的相关关系、(2)当前的上述驾驶者的上述生物体信息、以及(3)当前的上述驾驶信息,判定当前的上述驾驶者的上述驾驶的适宜度。
本发明的包含性或具体的形态也可以由元件、装置、系统、方法或它们的任意的组合实现。
发明效果
根据本发明的一形态,能够抑制个人差异的影响,稳定地进行作业的适宜度的判定。
附图说明
图1A是表示本发明的例示性的实施方式的作业适宜度判定系统的结构的图。
图1B是表示本发明的例示性的实施方式的作业适宜度判定系统的动作的例子的图。
图2是表示由压力(stress)带来的生物体反应的个人差异的说明图。
图3A是表示使用射出具有均匀分布的光的光源的摄像装置的图。
图3B是表示使用射出进行时间调制后的光的光源的摄像装置的概念的图。
图3C是表示使用射出进行空间调制后的光的光源的摄像装置的概念的图。
图4A是表示有关本发明的实施方式1的作业适宜度判定系统的配置例的图。
图4B是表示有关本发明的实施方式1的脑血流计测装置的概略的图。
图5是表示有关本发明的实施方式1的作业适宜度判定系统的结构的图。
图6是表示驾驶的作业负荷的计算例的图。
图7是表示驾驶任务时的脑血流变化的实测值的图。
图8A是用来说明脑血流的推测方法的第1图。
图8B是用来说明脑血流的推测方法的第2图。
图8C是用来说明脑血流的推测方法的第3图。
图9A是表示正常驾驶时的推测出的脑血流变化和实测的脑血流变化的图。
图9B是表示欠缺驾驶适宜性的状态下的推测出的脑血流变化和实测的脑血流变化的图。
图10A是表示有关本发明的实施方式2的测量作业压力的系统的配置例的图。
图10B是表示实施方式2的脑血流计测装置的结构例的图。
图11A是用来说明实施方式2的生物体信息取得的信号处理的第1图。
图11B是用来说明实施方式2的生物体信息取得的信号处理的第2图。
图11C是用来说明实施方式2的生物体信息取得的信号处理的第3图。
图12是表示作业时的作业状况与生物体信息的关系的例子的图。
图13A是表示基于长期间的数据推测的生物体信息及作业信息的分布的图。
图13B是表示实测的生物体信息分布的一例的图。
图13C是表示实测的生物体信息分布的其他例子的图。
图14A是用来说明实施方式3的生物体信息取得的信号处理的第1图。
图14B是用来说明实施方式3的生物体信息取得的信号处理的第2图。
图14C是用来说明实施方式3的生物体信息取得的信号处理的第3图。
具体实施方式
本发明包括以下的各项目中记载的作业适宜度判定系统、方法及计算机程序。
[项目1]
有关本发明的项目1的作业适宜度判定系统具备:认证装置,基于作业者的特征确定作业者,输出确定上述作业者的信息;生物体感测装置,取得上述作业者的生物体信息,输出上述生物体信息;作业感测装置,检测上述作业者正在进行的作业的负荷,输出表示检测出的上述作业的上述负荷的作业信息;存储装置;以及信号处理装置。上述信号处理装置在上述作业者进行上述作业的期间,将确定上述作业者的上述信息、上述生物体信息、上述作业信息、以及时刻信息建立关联并储存到上述存储装置中;基于储存在上述存储装置中的、过去的上述作业信息的时间推移与上述生物体信息的时间推移的相关关系,推测当前的上述作业者的上述生物体信息;通过将推测出的当前的上述作业者的上述生物体信息与由上述生物体感测装置取得的当前的上述作业者的上述生物体信息进行比较,判定当前的上述作业者的上述作业的适宜度。
[项目2]
在项目1所述的作业适宜度判定系统中,也可以是,上述认证装置包括在进行上述作业之前使得上述作业者能够输入个人认证码的输入装置;上述认证装置基于被输入的上述个人认证码,确定上述作业者。
[项目3]
在项目1所述的作业适宜度判定系统中,也可以是,上述认证装置包括生物体认证装置,该生物体认证装置使用从由指纹、掌纹、虹膜及静脉图案构成的组中选择的至少一个确定上述作业者。
[项目4]
在项目1所述的作业适宜度判定系统中,也可以是,还具备拍摄上述作业者的图像而取得上述图像的数据的摄像装置;上述认证装置基于所取得的上述图像的上述数据,确定上述作业者。
[项目5]
在项目1~4中任一项所述的作业适宜度判定系统中,也可以是,上述生物体感测装置配置在从上述作业者离开的地点,包括摄像元件,该摄像元件拍摄包括上述作业者的头部的图像而取得上述图像的数据;上述生物体感测装置基于所取得的上述图像的上述数据,取得上述作业者的上述生物体信息。
[项目6]
在项目1~4中任一项所述的作业适宜度判定系统中,也可以是,上述生物体感测装置包括:光源,射出在空间上或时间上进行调制后的近红外光;以及摄像元件,拍摄包括由上述光源照射的上述作业者的面部的图像。
[项目7]
在项目6所述的作业适宜度判定系统中,也可以是,上述近红外光通过点阵列图案、线和空间图案或方格图案在空间上被进行调制。
[项目8]
在项目6所述的作业适宜度判定系统中,也可以是,上述近红外光是脉冲光;上述摄像元件包括受到上述脉冲光而积蓄信号电荷的至少一个电荷积蓄部。
[项目9]
在项目1~8中任一项所述的作业适宜度判定系统中,也可以是,上述信号处理装置通过多变量解析对储存在上述存储装置中的上述相关关系进行解析,由此推测当前的上述作业者的上述生物体信息。
[项目10]
在项目1~8中任一项所述的作业适宜度判定系统中,也可以是,上述信号处理装置通过机械学习对储存在上述存储装置中的上述相关关系进行学习,并基于学习结果,推测当前的上述作业者的上述生物体信息。
[项目11]
在项目1~10中任一项所述的作业适宜度判定系统中,也可以是,上述作业者是驾驶车辆的驾驶者;上述作业是上述车辆的驾驶;上述作业信息是与上述车辆的驾驶操作有关的信息。
[项目12]
在项目11所述的作业适宜度判定系统中,也可以是,上述驾驶操作包括从由加速器操作、制动器操作及方向盘操作构成的组中选择的至少一个。
[项目13]
在项目11或12所述的作业适宜度判定系统中,也可以是,上述作业感测装置包括加速度传感器;上述信号处理装置基于从上述加速度传感器输出的信息,推测与上述驾驶操作有关的信息。
[项目14]
在项目11~13中任一项所述的作业适宜度判定系统中,也可以是,上述车辆具有包括驾驶辅助的自动驾驶功能;上述信号处理装置根据判定出的上述驾驶者的上述适宜度,决定上述驾驶辅助的内容,使上述车辆执行上述驾驶辅助。
[项目15]
在项目1~10中任一项所述的作业适宜度判定系统中,也可以是,上述作业是使用计算机的输入作业;上述作业信息是与向上述计算机输入的操作有关的信息。
[项目16]
在项目15所述的作业适宜度判定系统中,也可以是,上述操作包括从由键盘输入及鼠标操作构成的组中选择的至少一个。
[项目17]
在项目15或16所述的作业适宜度判定系统中,也可以是,上述信号处理装置根据判定出的上述作业者的上述适宜度,使上述计算机输出表示对上述输入作业的建议的图像或语音。
[项目18]
在项目1~10中任一项所述的作业适宜度判定系统中,也可以是,上述作业是使用计算机的学习;上述作业信息是与上述学习的内容和上述计算机的操作有关的信息。
[项目19]
在项目18所述的作业适宜度判定系统中,也可以是,上述信号处理装置使上述计算机提供与判定出的上述作业者的上述适宜度相应的学习内容。
[项目20]
有关本发明的项目20的判定作业者的作业的适宜度的方法,取得确定上述作业者的信息、正在进行上述作业的上述作业者的生物体信息、以及表示上述作业的负荷的作业信息;将确定上述作业者的上述信息、上述生物体信息、上述作业信息和时刻信息建立关联并储存到存储装置中;基于储存在上述存储装置中的、过去的上述作业信息的时间推移与上述生物体信息的时间推移的相关关系,推测当前的上述作业者的上述生物体信息;通过将推测出的当前的上述作业者的上述生物体信息与所取得的当前的上述作业者的上述生物体信息进行比较,判定当前的上述作业者的上述作业的上述适宜度。
[项目21]
有关本发明的项目21的计算机程序,保存在计算机可读取的记录介质中,使上述计算机执行:取得确定作业者的信息、正在进行作业的上述作业者的生物体信息、以及表示上述作业的负荷的作业信息;将确定上述作业者的上述信息、上述生物体信息、上述作业信息、以及时刻信息建立关联并储存到存储装置中;基于储存在上述存储装置中的、过去的上述作业信息的时间推移与上述生物体信息的时间推移的相关关系,推测当前的上述作业者的上述生物体信息;通过将推测出的当前的上述作业者的上述生物体信息与所取得的当前的上述作业者的上述生物体信息进行比较,判定当前的上述作业者的上述作业的适宜度。
另外,以下说明的实施方式都表示包含性或具体的例子。因而,在以下的实施方式中表示的数值、形状、材料、构成要素、构成要素的配置位置等是一例,不是限定本发明的意思。此外,关于以下的实施方式的构成要素中的、在表示最上位概念的独立权利要求中没有记载的构成要素,设为任意的构成要素进行说明。
在本发明中,电路、单元、装置、部件或部的全部或一部分、或框图中的功能块的全部或一部分例如也可以由包括半导体装置、半导体集成电路(IC)或LSI(large scaleintegration)的一个或多个电子电路执行。LSI或IC既可以集成到一个芯片上,也可以将多个芯片组合而构成。例如,也可以将存储元件以外的功能块集成到一个芯片上。这里称作LSI或IC,但根据集成程度而叫法变化,也可以称作系统LSI、VLSI(very large scaleintegration)或ULSI(ultra large scale integration)。也可以以相同的目的使用可在LSI的制造后编程的Field Programmable Gate Array(FPGA)、或能够进行LSI内部的接合关系的重构或LSI内部的电路划分的设置的reconfigurable logic device。
进而,电路、单元、装置、部件或部的全部或一部分功能或操作可以通过软件处理来执行。在此情况下,将软件记录到一个或多个ROM、光盘、硬盘驱动器等非暂时性记录介质中,在由处理装置(processor)执行软件时,由该软件确定的功能被处理装置(processor)及周边装置执行。系统或装置也可以具备记录有软件的一个或多个非暂时性记录介质、处理装置(processor)及需要的硬件设备、例如接口。
(作为本发明的基础的认识)
在说明本发明的实施方式之前,说明作为本发明的基础的认识。
如上述那样,人的作业时的精神状态对于该作业是否适宜,是不仅与作业效率有关、而且与作业的安全性有关的很重要的因素。因此,目前采取了用来推测精神状态的各种各样的对策。为了推测紧张度、清醒度或集中度这样的精神状态,进行各种各样的生物体信息的检测。例如,使用心拍数、心拍数的摇摆、呼吸数、呼吸数的摇摆、呼吸的深度、血压、脑波、脑血流、瞳孔径、鼻部温度、眨眼或视线移动等的生物体信息。但是,根据这些生物体信息直接读取精神状态的方法中有3个大的课题。
第1课题是生物体反应的个人差异。即使在作业的正确性是相同程度的情况下、或基于对本人的访谈而计测的清醒度或集中度是相同程度的情况下,生物体反应的呈现方式根据每个人而大为不同。仅通过单纯地计测生物体信息,不能正确地推测该个人的精神状态。
第2课题是稳定性。即使是同一个对象者,也有依赖于计测时的环境或到计测为止的行动或作业的履历而生物体反应不同的情况。即使将对象者限定于特定的个人,也难以仅基于计测时的生物体反应来高精度地推测该个人的精神状态。
第3课题是检查方法。通常采用向对象者施加某种刺激,根据其生物体反应来推测精神状态的方法。在实验室中,能够使环境成为一定而进行特定的任务(例如,计算问题、问答或向身体的直接刺激等),来计测其生物体反应。但是,在实际的作业时,作业环境及作业内容可能各种各样地变化。在这样的状况下实时地推测作业者的精神状态并不容易。
图2是表示任务被执行时的生物体信息的变化的个人差异和每次计测的偏差的图。这里,对被测试者给出计算任务,基于放松时和任务执行时的心拍变动的摇摆,计测伴随于任务的压力的程度。有将此时的压力称作清醒度的情况。心拍总是在摇摆。据说该心拍变动的摇摆的高频成分受因呼吸而产生的副交感神经的活动的影响。另一方面,据说低频成分受交感神经及副交感神经双方的活动的影响。在该例中,高频成分的范围是0.20Hz以上且小于0.35Hz,低频成分的范围是0.05以上且小于0.20Hz。将表示心拍数的摇摆的高频成分的大小的值记为“HF”,将表示低频成分的大小的值记为“LF”。在压力时或处于紧张状态时LF/HF增加。因此,可以使用该数值作为压力或紧张状态的指标。
图2的纵轴的ΔLF/HF表示任务执行前后的LF/HF的变化量。根据图2的结果,ΔLF/HF除了一部分的例外以外都超过零(0)。因此,可知随着压力或紧张而LF/HF有增加的趋势。但是,该增加量有被测试者的年龄越增加则越减少的趋势。
图中的黑圈表示同一人物的多次试验的结果。可知即使是同一个被测试者,每次检查的变动也较大。
图2的结果是在向各被测试者给出特定任务的限定的条件下得到的。但是,在实际的作业时作业的内容即任务不是一定的。如果作业内容变动,则发生与其相伴的生物体信息的变动。因此,难以仅基于生物体信息的计测值来进行作业者的实际作业时的作业适宜度的判定。这里,“作业适宜度”是指能够无失误地有效地完成作业的精神状态的程度。作业适宜度例如是指清醒度、紧张度、注意力或集中度这样的精神状态的程度。
也可以考虑在作业中将作业中断而进行一定的判定任务,并根据其结果判定作业适宜度那样的系统。但是,实际上在作业中插入这样的任务并不现实。因此,这样的系统没有被广泛地利用。
本发明提供能够稳定地推测作业者的作业时的精神状态的新的技术。根据本发明的实施方式,按每个作业者对作业负荷进行监视,学习作业负荷与生物体信息的关系。通过利用通过多次学习而储存的数据,能够推测伴随于作业的生物体信息的变化。
图1A是表示本发明的例示性的实施方式的作业适宜度判定系统的结构的图。作业适宜度判定系统100具备认证装置101、作业感测装置102、生物体感测装置106、信号处理装置108、存储装置104及显示装置107。信号处理装置108包括生物体信息推测部103和作业适宜度判定部105。
在本实施方式中,在作业开始时对个人进行识别,按每个个人构建数据库。在该数据库中,按每个作业,将表示作业的负荷的信息(本说明书中,称作“作业信息”)和在该作业中取得的生物体信息建立关联而记录。作业信息也可以包含作业的内容。通过利用所记录的数据,能够降低生物体信息的个人差异的影响,不依赖于作业者而稳定地判定作业适宜度。
个人认证例如通过在作业开始时由作业者输入作业者ID或由认证装置101进行生物体认证来进行。生物体认证例如可以通过面部认证、指纹认证、虹膜认证或静脉认证等方法来进行。在作业者在作业前输入作业者ID等的个人认证码的形态中,认证装置101例如可以是便携信息终端或个人计算机(PC)等的具备输入装置的设备。输入装置例如可以包括键盘及鼠标中的至少一方。在认证装置101进行生物体认证的形态中,认证装置101是具备面部认证、指纹认证、虹膜认证或静脉认证等生物体认证的功能的装置。在后者的形态中,认证装置101具备例如相机或指纹传感器等的个人认证所需的一个以上的生物体认证装置。
作业感测装置102对作业者的当前的作业状况进行监视,输出表示作业的负荷的作业信息。作业感测装置102的结构根据作业的内容而不同。例如在作业是车辆的驾驶的情况下,作业感测装置102可以包括加速度传感器或角速度传感器等传感器。在作业是使用计算机的事务作业或学习的情况下,作业感测装置102可以包括该计算机或其输入装置。
生物体感测装置106在作业时连续或断续地计测作业者的生物体信息。由生物体感测装置106取得的生物体信息是实测的生物体信息。因此,有将该生物体信息称作“实测生物体信息”的情况。生物体感测装置106也可以以非接触的方式取得作业者的生物体信息。在生物体感测装置106以非接触的方式取得作业者的生物体信息的情况下,即使是根据作业内容而难以佩戴接触型的设备的情况,也能够取得生物体信息。通过使用非接触型的生物体感测装置106,能够消除由生物体传感器的佩戴带来的约束感或不适感。
存储装置104存储所取得的分个人的实测生物体信息及作业信息的数据库。在该数据库中,按每个个人及按每个作业储存数据。存储装置104例如可以包括闪存存储器、磁盘或光盘等任意的存储介质。
信号处理装置108例如可以通过数字信号处理器(DSP)、现场可编程门阵列(FPGA)等的可编程逻辑器件(PLD)或中央运算处理装置(CPU)与计算机程序的组合实现。信号处理装置108例如也可以是设置在远处的服务器等的外部装置的构成要素。在此情况下,服务器等的外部装置具备通信机构,与认证装置101、作业感测装置102、生物体感测装置106、存储装置104及显示装置107相互进行数据的收发。
信号处理装置108包括生物体信息推测部103及作业适宜度判定部105。这些部分别可以通过由信号处理装置108执行保存在存储装置104中的计算机程序来实现。或者,这些部各自也可以是构成为执行后述的动作的单独的电路。
生物体信息推测部103基于储存在存储装置104中的数据,推测作业者的当前的生物体信息。推测出的生物体信息是基于过去取得的作业者的作业负荷和生物体信息推测的当前的生物体信息的值。因此,有将其称作“推测生物体信息”的情况。作业适宜度判定部105将作业者的推测生物体信息与实测生物体信息进行比较,基于比较结果判定作业的适宜度。关于由生物体信息推测部103及作业适宜度判定部105进行的处理的具体例,在后面叙述。
如果作业者没有异常等,则基于过去的数据的推测生物体信息与当前的实测生物体信息大致一致。另一方面,如果作业者有某种异常,则在推测生物体信息与实测生物体信息之间,发生比根据过去的数据计算出的偏差值大的变化。在此情况下,作业适宜度判定部105判断为作业的适宜性不充分。在此情况下,作业适宜度判定部105使显示装置107执行对作业者的建议或警告等的显示。或者,作业适宜度判定部105也可以进行作业的强制停止。作业的强制停止例如是使装置或系统停止的处理。另外,也可以代替显示装置107或除了显示装置107以外还设置扬声器,使扬声器输出用于提醒注意或建议的语音。
接着,参照图1B说明作业适宜度判定系统的整体的动作的例子。
图1B是表示作业适宜度判定系统的动作的例子的流程图。本系统按每个作业执行图1B所示的动作。
首先,在步骤S101中,认证装置101确定作业者。该确定如上述那样,通过作业者的输入操作或生物体认证等方法来进行。
在步骤S102中,生物体感测装置106取得作业者的生物体信息。生物体信息的取得例如可以使用后述的非接触式的脑血流计测装置来进行。所取得的生物体信息例如可以是表示作业者的脑血流的时间变化的信息或表示作业者的心拍数的时间变化的信息。
在步骤S103中,作业感测装置102检测作业者的当前的作业内容,输出表示作业内容的信息。作业感测装置102还可以计算表示作业的负荷的程度的值。该作业的负荷的计算也可以由与作业感测装置102不同的装置、例如信号处理装置108的处理器进行。
在步骤S104中,信号处理装置108将实测的生物体信息和表示作业的负荷的信息与时刻信息建立关联,按每个作业者向存储装置104记录。
在步骤S106中,信号处理装置108将作业者的推测生物体信息与实测生物体信息进行比较。接着,在步骤S107中,信号处理装置108基于比较结果,判定作业者的作业适宜度。例如,在推测生物体信息的值与实测生物体信息的值的差超过了规定的阈值的情况下,可以判定为作业不适宜。或者,也可以根据推测生物体信息的值与实测生物体信息的值的差的大小,阶段性地决定作业的适宜度。
如果判断为作业不适宜,则信号处理装置108向步骤S108前进。在步骤S108中,信号处理装置108如上述那样,经由显示装置107等其他装置进行对作业者的建议、警告、作业的强制停止等。
步骤S102到S108的动作可以在作业者进行作业的期间例如以规定的时间间隔反复执行。此外,在一次作业结束并下一次进行同样的作业时,在步骤S105中,利用过去记录的数据。通过利用在比较长期间中储存的数据,能够进行精度更高的推测。
在本发明的实施方式中特别重要的点在于以下的点。
(1)将表示作业的负荷的作业信息和生物体信息按每个个人持续比较长期间向数据库储存。例如,可以按每个作业,持续几天、1周、一个月、几个月、半年、1年、数年等期间反复储存数据。
(2)基于所储存的数据,推测当前的生物体信息。
(3)将推测出的当前的推测生物体信息与实际计测的实测生物体信息进行比较,判定当前时间点的作业适宜度。
在本实施方式中,构建了对作业负荷的变化和生物体信息的变化进行学习,能够实时地推测当前时间点的生物体信息的机制。由此,能够更正确地推测作业者的负荷。
以往,存在如下系统:为了对个人差异进行修正,构建分个人的生物体信息的数据库,并对个人差异进行修正来判定作业者的作业适宜度。这样的系统在试验环境下进行一定的作业即试验用任务、观测其反应的试验中示出有效性。例如,已知有对作业者给出计算问题或想起关联的词语的试验任务,并计测脑血流变化的方法。但是,在实际的作业环境中,在业务时、学习时或驾驶时难以给出这样的作业任务。要求根据各种各样的负荷不同的作业时的生物体信息的变化来判定作业者的精神状态。但是,通过过去的数据的简单的平均化或抽取类似状况的数据而平均化等的简单的方法,未能对个人差异或作业负荷的影响进行修正。
在本发明的实施方式中,根据实际作业的作业负荷和生物体信息的计测值的过去的数据,导出分个人的作业负荷与生物体反应的关系。根据该作业负荷与生物体反应的关系,推测当前的作业者的精神状态或作业适宜性。与以往的系统的最大的不同点是根据过去的计测数据导出分个人的作业负荷与生物体信息的相关性,并基于该相关来推测当前的生物体信息这一点。
接着,说明生物体信息的计测方法的例子。
在本实施方式中,为了稳定地判定精神状态,使用稳定而高精度的生物体计测装置。如果要在作业时总是计测生物体信息,则有与身体接触的传感器对作业造成障碍的情况。此外,在接触式的传感器中,有可能因伴随于作业的身体运动而传感器的接触状态变化,计测精度下降。考虑到这样的课题,在图1A所示的实施方式中,使用以摄像装置为基础的非接触的生物体感测装置106。通过使用摄像装置,能够实现没有约束感的非接触的生物体感测。此外,摄像装置具有二维排列的许多像素,能够同时取得许多生物体信息。因此,能够实现由将多个像素的信号平均化等的处理带来的高精度化。进而,在摄像装置中能得到二维图像信号。根据该二维图像信号能够取得身体的不同部分的生物体反应不同的信息这一点也是较大的优点。例如,已知因精神压力而鼻部血流下降、鼻部温度下降。在使用摄像装置的情况下,能够同时计测鼻部血流和作为比较对象的额部血流。因此,能够稳定地计测生物体信息的变化。
如上述那样,在使用摄像装置的生物体信息取得方法中优点较多,但是也有课题。即在判断脑活动的状态方面需要的身体内部的信息的取得变得困难。这是因为,在拍摄了生物体那样的不透明的被摄体的情况下,被身体表面反射的光的信息占大半,来自生物体内部的光的信息被掩盖。近红外光与可视光相比向人体的透射性高,适合于取得生物体的更深部的信息的用途。但是,即使是使用近红外光的情况,与来自生物体内部的反射光相比,来自生物体表面或表皮的反射光的比率更高。因此,信噪比下降,有不能稳定地进行高精度的计测的课题。
为了提高包含生物体信息的来自生物体内部的反射光的比例、稳定地取得生物体信息,可以考虑对从光源射出的光赋予时间或空间上的调制。通过这样的结构,能够有选择地取得来自生物体更深部的光信号。
图3A是示意地表示使用射出具有均匀分布的光的光源的摄像方法的图。图3B是示意地表示使用射出实施时间调制后的光的光源的摄像方法的图。图3C是示意地表示使用射出实施空间调制后的光的光源的摄像方法的图。
在图3A所示的例子中,光源601a射出具有均匀分布的光。在用光源601a将生物体602照明而拍摄的情况下,由摄像装置603取得的信号的大部分是由被表面反射的光形成的成分。由于来自生物体内部的光的成分的比率很小,所以不能得到充分的精度。
相对于此,在图3B所示的例子中,光源601b射出施以时间调制后的光。使用光源601b将生物体602照明,与来自光源601b的光的调制同步地控制摄像装置603的拍摄定时。在此情况下,通过控制发光时间和拍摄定时,能够使从发光到检出的时间变化。这里,从发光到检出的时间依赖于从光源601b经过生物体602到达摄像装置603的光的传输距离。通过适当地控制发光和检测的定时,能够检测具有任意的深度的信息的反射光。如果使用该方式,则能够有选择地检测具有生物体的任意的深度的信息的反射光。因此,能够以高的信噪比检测生物体信息。
在图3C所示的例子中,光源601c射出在空间上进行调制后的光。用从光源601c射出的光照射生物体602,摄像装置603取得来自照射部位外的区域的信号。在光源601c的位置与检测位置远离的情况下,光经由被称作香蕉型的圆弧状的光路到达检测位置。与图3A所示的使用射出均匀的光的光源601a的情况相比,检测出的信号包含透射了生物体的更深部的光的信息。因此,使用光源601c的方式适合于取得生物体的深部信息的用途。
这样,通过使用射出在时间上进行调制后的光或在空间上进行调制后的光的光源,并采用与光源对应的摄像方法,能够取得生物体的更深部的信息。
在本发明的一实施方式中,基于以下的新的认识,进行了系统的设计。
·为了降低生物体反应的个人差异的影响而构建实用的作业适宜度判定系统,有效的是使用根据记录有生物体信息与作业负荷的关系的数据库推测的生物体信息。
·为了提高生物体信息取得的精度,有效的是使用包括射出在时间上或空间上进行调制后的近红外光的光源的摄像装置。
这里,近红外光即近红外线是指真空中的波长为约700nm以上且2500nm以下的电磁波。本发明的实施方式并不限定于利用近红外光的形态。但是,通过利用近红外光,能够以更高的精度取得生物体信号。
以下,更具体地说明本发明的实施方式。但是,有省略所需以上详细的说明的情况。例如,有省略已经周知的事项的详细说明及对于实质上相同的结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,使本领域技术人员容易理解。另外,发明人为了使本领域技术人员充分地理解本发明而提供了附图及以下的说明,并不是要由它们限定权利要求书所记载的主题。
(实施方式1)
作为第1实施方式,说明使用非接触式的脑血流计测装置的作业适宜度判定系统。在本实施方式中,根据作业者的脑血流的变化的信息判定作业适宜度。本实施方式是将作业适宜度判定系统应用于驾驶员监视的例子。对象作业是车辆的驾驶,作业者是驾驶员(也称作“驾驶者”)。
到目前为止也提出了使用近红外光计测脑血流量的变化的脑血流计测装置。在以往的方法中,作业者多次反复进行预先设定的一定的任务和休息。一定的任务例如是计算、存储、联想或问答等。脑血流计测装置计测各个期间的脑血流量的变化。根据通过计测得到的数据,能够推测脑活动的程度。但是,在车辆驾驶时反复进行这样的定型任务并不现实。
在本实施方式中,代替定型任务,使用驾驶操作这样的不定型的作业作为任务。并且,在驾驶操作中计测脑血流的变化。在驾驶操作中周边环境不断地变化。因此,驾驶操作可能总为不同的作业。在本实施方式中,基于由加速度传感器取得的信息来推测作业负荷。。根据本实施方式,能够不使用定型的任务,而用作为日常的作业的驾驶作业来代替任务。换言之,根据本实施方式,能够实现“无任务脑血流计测”。
图4A是表示有关本发明的实施方式1的作业适宜度判定系统的结构例的图。如图4A所示,作业适宜度判定系统具备脑血流计测装置401和加速度传感器403。脑血流计测装置401是上述生物体感测装置的一例。加速度传感器403是上述作业感测装置的一例。脑血流计测装置401计测驾驶员402的脑血流量。脑血流计测装置401配置在车辆上部的位置,以免妨碍驾驶员402的正面的驾驶席侧前风挡玻璃的前方的视野。邻接于脑血流计测装置401而设置有加速度传感器403。加速度传感器403监视驾驶作业的状况。
参照图4B说明脑血流计测装置401的结构。图4B是表示有关本发明的实施方式1的脑血流计测装置401的概略结构的图。脑血流计测装置401具备光源601、摄像装置603和控制电路604。控制电路604连接于光源601及摄像装置603。控制电路604对光源601及摄像装置603进行控制。
脑血流计测装置401使用TOF(Time Of Flight:飞行时间)方式的摄像装置603以非接触的方式计测驾驶员402的脑血流。光源601按照来自控制电路604的指示,射出被时间调制后的光。摄像装置603按照来自控制电路604的指示,与来自光源601的光的射出同步地进行拍摄。摄像装置603拍摄驾驶员402的作为计测部位的额部。摄像装置603包括接受光而积蓄信号电荷的至少一个电荷积蓄部。典型的是,摄像装置603包括二维排列的多个电荷积蓄部。由此,能够取得二维的图像信号。
本实施方式的光源601是射出波长750nm和850nm的近红外脉冲光的光源。光源601用这两种近红外光照射驾驶员402的额部。光源601例如是激光源。
本实施方式的摄像装置603具备具有二维地排列的多个受光元件的图像传感器。各受光元件对于上述2个波长的红外光具有灵敏度。因此,摄像装置603取得由照射在驾驶员402的额部上的上述两种红外光形成的二维图像。
控制电路604基于从光源601射出脉冲光到其反射光到达摄像装置603为止的时间,能够计测到被检部的距离。控制电路604将从额部返回来的光的信号在时间上进行分解,计测从额部的表面反射的光的成分404a的强度、和到达脑并返回来的光的成分404b的强度。例如,控制电路604对摄像装置603的电子快门的定时进行控制,计测上述2个光的成分404a及404b各自的强度。基于这2种光的强度,能够计测脑血液中的氧化血红蛋白(HbO2)的浓度和脱氧血红蛋白(Hb)的浓度各自的变化。这样,脑血流计测装置401使用射出2个波长的光的光源601,计测脑内的氧化血红蛋白及脱氧血红蛋白的浓度变化。由此,能够判定驾驶时的驾驶员402的作业适宜度。
血液的大的作用是从肺接受氧并向组织运送,从组织接受二氧化碳并使其向肺循环。在血液100ml中存在约15g的血红蛋白。将与氧结合的血红蛋白称作氧化血红蛋白,将没有与氧结合的血红蛋白称作脱氧血红蛋白。在氧化血红蛋白和脱氧血红蛋白间,光的吸收特性不同。氧化血红蛋白较好地吸收超过约830nm的波长的近红外线。另一方面,脱氧血红蛋白较好地吸收从比830nm短的波长的红色光到近红外线。关于830nm的波长的近红外线,两者的吸收率间没有差异。根据这些红外光和红色光的强度比,能够求出2种血红蛋白的比率或氧饱和度。氧饱和度是指表示血液中的血红蛋白中的多少与氧结合的值。氧饱和度用下述的数式定义。
氧饱和度=C(HbO2)/[C(HbO2)+C(Hb)]×100(%)
这里,C(Hb)表示脱氧血红蛋白的浓度,C(HbO2)表示氧化血红蛋白的浓度。
在生物体内,除了血液以外还包含吸收从红色到近红外的波长的光的成分。但是,光的吸收率的时间上的变动主要起因于动脉血中的血红蛋白。因此,基于吸收率的变动,能够以较高的精度测定两种血红蛋白的浓度变化及/或血中氧饱和度。从心脏搏出的动脉血成为脉波而在血管内移动。另一方面,静脉血不拥有脉波。入射到生物体中的光在动静脉及血液以外的组织等的生物体的各层中受到吸收而透射生物体。此时,动脉以外的组织的厚度不随时间变动。因此,来自生物体内的散射光对应于由脉动带来的动脉血层的厚度的变化而呈现时间上的强度变化。该变化反映动脉血层的厚度的变化,不包含静脉血及组织的影响。因此,通过仅着眼于散射光的变动成分,能够得到动脉血的信息。通过测定随时间变化的成分的周期,还能够求出脉搏。
另外,使用射出2波长的光的光源601不是必须的要件。例如,在仅计测氧化血红蛋白的浓度的情况下,也可以使用射出超过830nm的单一波长的近红外线的光源。
图5是表示有关本发明的实施方式1的作业适宜度判定系统200的结构的图。作业适宜度判定系统200除了上述加速度传感器403及脑血流计测装置401以外,还具备认证装置201、信号处理装置208、存储装置204及显示装置206。信号处理装置208包括生物体信息推测部203和驾驶适宜度判定部207。如上述那样,加速度传感器403作为作业感测装置发挥功能,脑血流计测装置401作为生物体感测装置发挥功能。
认证装置201进行作为作业者的驾驶员的认证。认证装置201具备摄像装置。在驾驶开始时,摄像装置取得驾驶员的面部的图像。通过将该面部图像与预先记录在存储装置204中的面部图像进行对照,确定驾驶员。
认证装置201的摄像装置也可以是与脑血流计测装置401中的摄像装置603为同一装置。在此情况下,脑血流计测装置401还使用在脑血流计测中使用的图像进行基于面部认证的驾驶员的确定。脑血流计测装置205还具有相机的功能。由从驾驶员的面部的表面反射的光的成分404a形成的图像类似于由通常的相机取得的图像。因此,能够使用从脑血流计测装置401输出的图像容易地进行个人认证。这样,也可以是一个装置兼具备认证装置的功能和生物体感测装置的功能。
加速度传感器403监视当前的驾驶状况,计测驾驶员402的作业负荷。加速度传感器403不仅监视驾驶时的加速及减速的程度,也可以监视表示驾驶速度的加速度的积分值、表示转弯处的转弯速度的横向加速度、以及表示车辆的摇晃的周期性的横加速度的变动。因此,加速度传感器403在掌握驾驶员402的驾驶操作状况方面是有效的。
为了掌握驾驶状况,也可以从车辆取得车的驾驶信息。这里,“驾驶信息”是指与加速器、制动器、方向盘操作等的驾驶操作的随时间的变化有关的信息。驾驶信息是上述作业信息的一例。作业适宜度判定系统200为了能够在与车辆之间进行数据的收发也可以具备通信电路。在这样的系统中,不是加速度传感器403,而是车辆内的计算机作为作业感测装置发挥功能。如果如本实施方式那样利用加速度传感器403,则能够以低成本构建系统。此外,不用按每个车种合并不同的信息,就能够简单地构成系统。如果今后汽车的信息通信进步而车辆信息的取得变得容易,则不用将加速度传感器403设置在作业适宜度判定系统200内而可能从车辆容易地接收驾驶信息。
以下,说明基于加速度传感器403的输出掌握驾驶状况、进而求出驾驶负荷即作业负荷的方法。
如已经叙述那样,加速度传感器403能够监视驾驶时的加速、减速、驾驶速度、转弯速度及车辆的摇晃等的各种各样的驾驶状况。可以基于这些信息的至少一部分来计算驾驶作业的负荷。加速或减速越大、车辆的速度越高、转弯速度越高,则驾驶作业的负荷越大。此外,将车辆稳定地保持在车线内也使驾驶负荷增大。车辆的摇晃表示车辆没有稳定地维持在车线内。因此,车辆的摇晃本身成为与驾驶适宜性有关的重要的指标。车辆的摇晃可以根据横向的加速度小的周期性的变化来检测。在驾驶负荷的计算中,摇晃向使驾驶负荷减小的方向作用。这是因为,为了将车辆稳定地控制,被要求较大的驾驶负荷。这里,设车辆的加速度为α,设横加速度为β,设横加速度的平缓的周期变动成分为γ。于是,驾驶负荷L(t)由式(1)表示。
L(t)=k1|α(t)|+k2∫α(t)dt+k3|β(t)|+k4|γ(t)| (1)
这里,k1到k4是常数,∫α(t)dt表示车辆的速度。对于常数k1到k4,例如基于实验而预先设定适当的值。
图6表示进行了加速和减速这样的驾驶操作的情况下的加速度α(t),速度v(t)及驾驶负荷L(t)的计算结果的例子。根据加速度传感器403的数据,基于式(1)能够简单地计算驾驶负荷L(t)。另外,驾驶负荷L(t)的计算可以由内置或连接于加速度传感器403的处理器执行。也可以由信号处理装置208计算驾驶负荷L(t)。
脑血流计测装置401通过上述方法,连续或断续地以非接触的方式计测驾驶员402的脑血流。
图7表示在测试线路中进行车辆的驾驶试验时的驾驶员的脑血流的变化的计测值的例子。驾驶员执行每40秒重复加速、减速及停止的循环的驾驶任务。由网格表示的区间表示进行加速或减速的期间,白色的部分表示车辆停止的期间。可知通过加速或减速的驾驶操作,驾驶者的脑血流中的氧化血红蛋白(HbO2)浓度增加,脱氧血红蛋白(Hb)浓度下降。此外,可知相对于驾驶操作,血流变化发生了时间延迟。可以认为该脑血流变化的特性是通过以下的机理发生的。
首先,因驾驶作业而在前头叶发生局部性的神经活动,脑细胞的氧消耗量增大。为了向活动的脑细胞供给氧,周围的毛细血管的局部血流量增大。此时,与实际的氧消耗量的增加(约5%)相比,用于氧供给的血流量的增加(约30%到约50%)较大。毛细血管及细静脉中的血流量及流速增加。由于氧化血红蛋白迅速地流动,所以氧化血红蛋白浓度增加,脱氧血红蛋白浓度减少。这是因脑活动而氧化血红蛋白浓度增加、脱氧血红蛋白浓度减少的机理。这里需要注意的是,由于脑在活动而消耗氧之后发生血流增加,所以相对于脑活动延迟而发生脑血流变化。根据图7可知,从因驾驶操作带来的脑活动延迟几秒的时间发生脑血流变化。该时间延迟在推测当前时间点的脑血流方面是重要的。
信号处理装置208将所取得的分个人的生物体信息及驾驶负荷储存到存储装置204中,构建数据库。信号处理装置208中的生物体信息推测部203根据所储存的数据推测当前的生物体信息。该推测出的生物体信息是根据作为作业者的驾驶员402的过去的驾驶负荷和生物体信息推测的当前的生物体信息的值。更详细地说明该生物体信息推测部203的动作。
通过将血流动态反应函数(Hemodynamic Response Function:HRF)与根据由加速度传感器403取得的数据得到的作业负荷进行卷积积分,能够计算脑血流变化的推测值。血流动态反应函数是表示通过脑活动发生的脑血流变化的时间变化的函数。脑血流量的变化量的计算式例如由式(2)表示。
HRFi(t)*Li(t)=ΔHbOi(t) (2)
这里,HRFi(t)是驾驶员i的血流动态反应函数,Li(t)是驾驶员i的作业负荷,ΔHbOi(t)是驾驶员i的推测出的氧化血红蛋白浓度的变化量。符号“*”表示卷积积分。本实施方式的脑血流计测装置401能够计测氧化血红蛋白浓度和脱氧血红蛋白浓度双方。但是,在该例中,仅利用氧化血红蛋白的浓度变化作为伴随于脑活动的脑血流的变化量。这是因为,如图7所示,在许多情况下,氧化血红蛋白浓度和脱氧血红蛋白浓度反向变化,氧化血红蛋白浓度的变化量更大。但是,也可以将脱氧血红蛋白浓度也用于例如计测数据的异常检测。如果正确地进行了计测,则如已经叙述那样,两者为反向的关系。但是,在因某种干扰、例如发生了照射光的变动或身体运动等的情况下,有两者联动而向相同的方向变化的情况。通过监视脱氧血红蛋白的浓度,能够容易地检测到计测异常,能够将这样的异常数据除去。这里重要的点是,血流动态反应函数HRFi(t)和作业负荷Li(t)随时间的经过而变化。
血流动态反应函数HRFi(t)可以用式(3)所示的函数近似。
HRFi(t)=Ao((t-δ)/τ)2exp(-((t-δ)/τ)2) (3)
作为该式的变量的Ao、δ及τ和表示作业负荷Li(t)的式(1)中的k1至k4根据计测结果总是被再计算。
图8A是表示血流动态反应函数HRFi(t)的例子的图。图8B是表示作业负荷Li(t)的例子的图。图8C是表示氧化血红蛋白浓度的变化量ΔHbOi(t)的例子的图。
图8C所示的氧化血红蛋白浓度的变化量ΔHbOi(t)使用图8A及图8B所示的函数通过由式(2)表示的方法计算。Ao、δ、τ及k1至k4被优化,以使计算出的ΔHbOi与实测的作为氧化血红蛋白浓度的变化量的ΔHbOm一致。在计算中,不仅使用当前时间点的数据,还使用在时间方向上加权的随时间变化数据。在该参数决定中使用多变量解析。并不限于该例,也可以使用机械学习更高精度地决定参数。信号处理装置208根据储存在存储装置204中的分个人的生物体信息及驾驶负荷的数据库,实时地对生物体信息的推测式进行学习及优化。由此,能够高精度地判定驾驶者的驾驶适宜度。通过制作分个人的数据库,能够除去个人差异的影响,通过储存个人数据,能够高精度地推测个人的生物体信息的变化。此外,通过基于来自加速度传感器403的数据计算伴随于驾驶的负荷,能够推测随着时间而变化的作业或与驾驶状况对应的生物体信息的变化。
图9A是表示正常驾驶时的脑血流变化的推测值(点线)和实测值(实线)的图。图9B是表示欠缺驾驶适宜性的状态下的脑血流变化的推测值(点线)和实测值(实线)的图。这里的脑血流变化是氧化血红蛋白浓度的变化。图9A的左侧的纵轴表示氧化血红蛋白浓度的变化(ΔHbO),右侧的纵轴表示加速度。图9B的左侧的纵轴表示氧化血红蛋白浓度的变化(ΔHbO),右侧的纵轴表示速度。相对于加速及减速的驾驶操作延迟而看到脑血流的变化。
驾驶适宜度判定部207将推测出的生物体信息与实际计测出的生物体信息进行比较。在驾驶者的驾驶适宜性没有问题的情况下,如图9A所示,根据数据库推测的当前的脑血流变化与实测的脑血流变化大致一致。另一方面,如果驾驶者有某种异常,则如图9B所示,在生物体信息的推测值与实测值之间发生比根据过去数据计算出的偏差值大的差。在图9B所示的例子中,实测出的脑血流变化量与推测出的脑血流变化量相比超前地小。在这样的状况持续的情况下,驾驶适宜度判定部207判断驾驶适宜性不充分。在此情况下,驾驶适宜度判定部207经由显示装置206或未图示的扬声器等装置,向驾驶员402进行提醒注意、警告或驾驶模式的切换。例如,也可以经由扬声器,向驾驶者进行“好像有些疲劳。请深呼吸”等的基于语音的建议。或者,也可以自动将换气加强或导入外界气体,或发出“危险,所以请将车辆停止在安全的地方”等的警告。也可以是,如果是搭载着驾驶辅助系统的车辆,则将车辆停止在安全的地方,或者根据驾驶者的驾驶适宜度做出进行向自动驾驶的切换等的处置。
本实施方式的系统是能够向已有的车辆从后方追加而搭载的独立的驾驶员监视系统。图1所示的全部的构成要素被搭载在如图4A所示的一体型的系统中。近年来,车辆的智能化正在发展。车辆搭载高性能的运算装置或计算机,能够综合车辆的各种各样的传感器的信息而掌握车辆状况。此外,具有互联网等的通信功能,能够与车辆外部的计算机进行信息的交换。在这样的车辆中,还能够将图1所示的功能的一部分作为软件装入到车辆的计算机侧。例如,可以仅将生物体感测装置106做成硬件,其以外的功能利用车辆的功能。已经存在具有驾驶员的个人认证功能的车种。可以利用车辆的计算机掌握的车辆的操作信息(例如,加速器、制动器或方向盘的操作)作为作业感测装置102的输出信息。车辆的计算机还具有存储装置。因此,也可以仅将生物体感测装置106做成固有的硬件,其以外的功能作为软件搭载到车辆的硬件中。这样,可以根据搭载的车辆的种类和状况,选择将图1的系统的哪个部分做成专用的硬件,将哪个部分作为软件搭载到车辆的计算机中。
通过使用本实施方式的驾驶员监视系统,能够减少由个人差异及驾驶状况的差别带来的误检测,总是稳定地监视驾驶员的驾驶适宜性。在该方式中,通过非接触脑血流监视,驾驶者不会感到约束感及压迫感而能够总是进行驾驶员监视。因此,能够进行更安全而舒适的驾驶。
(实施方式2)
本实施方式的作业适宜度判定系统进行作业者的作业压力的计测。本实施方式的目的例如为:掌握与使用PC等的计算机的事务性的业务有关的作业者的作业负荷的状况,作业的效率化和将作业者的心理健康失调防止于未然。该作业适宜度判定系统进行由职场中的作业带来的精神上的负荷的评价。在实施方式1中,在生物体信息的取得中使用了包括射出在时间上进行调制后的近红外脉冲光的光源的摄像系统。相对于此,在本实施方式中,在生物体信息的取得中使用包括射出在空间上进行调制后的近红外光的光源的摄像系统。
近年来,关于工作或职业生活感到较强的不安、苦恼或压力的劳动者增加。因此,要求在职场积极地实现心理健康的保持增进。在目前进行的“压力检测”中,例如使用以下这样的方法。首先,劳动者填写关于压力的问卷。通过对其进行统计并分析,能够掌握自己的压力处于怎样的状态。该方法基于本人的主观上的回答,个人差异较大。要求作为更客观的判定基础的作业负荷的指标。例如,要求能够对压力状态进行数值评价的简单的计测方法。
已知有与压力关联的许多生物体信号。已知已经叙述的心拍变动、鼻部温度、眨眼频度、呼吸频度或呼吸深度等的生物体信号与压力状态关联。将这些生物体信号用于压力检测时的问题是生物体反应的个人差异。如图2所示,生物体反应的个人差异较大,原样使用不能作为客观的压力评价指标。图2示出了由压力带来的心拍摇摆的结果。关于与压力的相关性已得到确认的其他生理指标也同样,仅基于计测出的数值不能直接判定压力程度。这里也成为问题的是与实施方式1同样是生物体反应的个人差异、再现性及作业任务的稳定性。
作为这些问题的解决对策,提供本实施方式的作业适宜度判定系统。如已经叙述那样,根据分个人的作业负荷和生物体信息的数据库,推测从作业预测的当前的生物体信息。将该推测出的当前的生物体信息与实际计测的生物体信息进行比较,判定当前时间点的作业适宜度。根据本实施方式的系统,总是对作业负荷的变化和生物体信息的变化进行学习,能够总是实时地推测伴随于当前时间点的作业的压力。
与使用PC等的计算机的业务有关的作业适宜度判定系统也具备图1A的结构。作业适宜度的判定按照图1B所示的流程图进行。在本实施方式中,由于以伴随于使用计算机的作业的作业适宜度的判定为目的,所以在作业中使用PC等的计算机。利用该作业用的计算机的运算能力能够使作业适宜度判定系统动作。
在本实施方式中,在图1A所示的各构成要素中,仅生物体感测装置106是固有的硬件。其以外的构成要素全部被作为硬件或软件存放在计算机中。随着作业者的计算机作业的开始,在作为目的的作业的背景下进行作业适宜度判定。作为与计算机不同的硬件的生物体感测装置106连接于该计算机。由生物体感测装置106取得的信息被计算机处理。
以下,参照图1A,具体地说明达到压力判定的次序。在本实施方式中,认证装置101基于作业者输入的ID进行个人认证。例如,通过由作业者使用连接在PC等的计算机上的键盘输入ID及口令,进行个人认证。关于业务用的计算机,通常在作业开始前的登录的阶段,通过分个人的ID输入和口令输入、或者生物体认证来确定个人。也可以使用该计算机的个人认证数据进行系统的个人认证。
本实施方式的作业适宜度判定系统也可以称作作业压力计测系统。
图10A是示意地表示本实施方式的作业适宜度判定系统的整体结构的图。本系统也与实施方式1的系统同样,作为生物体感测装置102而具备脑血流计测装置401。脑血流计测装置401例如配置在作业者402的正面的计算机410的画面上。本实施方式的脑血流计测装置401具备近红外点阵列光源和近红外摄像装置。脑血流计测装置401计测作业者402的面部血流。本实施方式的系统能够以非接触的方式监视面部的表面的血流量、心拍数及心拍变动。
图10B是表示本实施方式的脑血流计测装置401的概略性的结构的图。本实施方式的脑血流计测装置401具备将由近红外光形成的点图案投影的激光器等的光源601c、取得近红外图像的摄像装置603和控制电路604。光源601c照射生物体(这里是作业者402的头部)。摄像装置603拍摄被近红外光照射的作业者402的面部的图像。拍摄的图像由控制电路604进行解析。控制电路604也可以是内置在PC等的计算机中的处理器。在此情况下,脑血流计测装置401通过该处理器与计算机外部的光源601c及摄像装置603的组合来实现。
参照图11A至图11C,说明用来从由取得近红外图像的摄像装置603拍摄的图像取得生物体信息的信号处理的流程。
图11A表示所拍摄的近红外图像的例子。由于使用点阵列光源,所以能得到与点阵列的照射位置对应的较强的亮点和其周边的比较弱的信号。周边部的比较弱的信号是由照射光侵入到体内并在体内散射而回到表面的比较弱的光形成的信号。人的肌肤对于近红外光而言吸收系数小,散射系数大。因此,透射了皮肤的表面的光在体内反复进行多重散射而扩散,从而在大范围内从体表面射出。另外,并不限于点阵列图案,例如也可以使用投影线和空间图案或方格图案的近红外光的光源。在使用这样的光源的情况下,也能够得到同样的生物体信号。
图11B是生物体的信息检测区域的图像的放大图。该例的信息检测区域是在图11A中用点线框表示的作业者的额区域。在投影的红外光的点图案的周边,检测到从肌肤的内部散射回来的体内散射光501。表面反射光502包含肌肤表面的信息,体内散射光501包含体内的毛细血管的血液信息。因而,通过从图像数据仅提取相当于体内散射光501的数据来计算,能够取得体内的血流信息。
图11C表示这样取得的心拍信号的例子。根据该心拍信号,能够求出心拍变动或心拍摇摆。进而,由于体内散射光的反射强度的绝对值与表面的血液量对应,所以能够根据该信号计算血液量。
在以往的使用相机的生物体信息感测系统中,通常使用将图像中的生物体部分的区域整体的像素数据平均化而检测生物体信息的方法。相对于此,本实施方式的生物体信息感测系统由于使用点阵列光源,所以能够从二维图像除去不需要的肌肤表面上的表面反射光成分,有选择地提取包含生物体信息的体内散射光。通过有效地提取体内散射光,能够高精度地取得生物体信息。
已知能够根据心拍数的时间上的摇摆来推测心理的压力。已知在自律神经正常地发挥功能的情况下,心拍的间隔摇摆,但在压力下心拍的间隔的摇摆减少。基于该心拍的间隔的摇摆的变化,能够检测心理的压力的有无或程度。
接着,说明由作业感测装置102取得作业信息的取得方式。在本实施方式中,作业者的作业状况通过对向计算机的输入进行解析来得到。在PC作业的情况下,所进行的作业被输入到PC中。因此,通过对所使用的应用的种类和键盘输入或鼠标输入进行监视,能够取得作业信息。例如,如“作业内容是文字处理器作业,每单位时间的输入字符数是50字符/分钟”,或“作业内容是表计算软件作业,每单位时间的输入项目数是30项目/分钟”那样,能够容易地取得作业信息的履历。本实施方式的作业感测装置102通过计算机内的处理器与键盘及鼠标等输入装置的组合来实现。
接着,说明本实施方式的信号处理装置108的动作。
图12是表示由本实施方式的系统取得的与一个作业者有关的1周的作业负荷和生物体信息的变化的数据。作业内容是文字处理器中的输入作业,作业负荷是输入字数。作为生物体信息,使用作为交感神经的活性度的指标或压力指标的LF/HF。如上述那样,LF是心拍变动的低频成分,HF是高频成分。在该例中,高频成分的范围是0.20Hz以上且小于0.35Hz,低频成分的范围是0.05以上且小于0.20Hz。
随着由输入字数的增加带来的作业的负荷的提高,如箭头302所示,作为压力指标的LF/HF增加。如果进一步继续作业,则作业者的疲劳增加,作业效率下降,并且如箭头301所示压力指标的LF/HF进一步增加。但是,如已经叙述那样,这样的反应的个人差异较大,偏差也大。因此,不能单纯地仅基于输入字数和LF/HF的数值判定压力或疲劳度。
在本实施方式中,根据分个人的作业履历和生物体信息的数据库,按每个作业者,根据如图12所示的比较长期间的数据,制作在时间轴上加权的平均的分布。利用该分布作为推测的当前的生物体信息。长期间的平均的分布表示该作业者固有的作业负荷与生物体信息的关系。这是因为考虑到如果作业者是正常的状态则实际的生物体信息呈现与该分布接近的生物体信息。相对于此,使用通过距当前比较短时间(例如1小时左右)的作业得到的作业负荷和生物体反应的数据(例如,图12所示的曲线图的标绘)作为当前的计测出的生物体信息。以上的处理由信号处理装置108的生物体信息推测部103执行。这样,本实施方式的系统能够将作业负荷和生物体反应作为频度映射来捕捉,进行作业者的作业适宜性的判定。
信号处理装置108的作业适宜度判定部105将推测出的当前的生物体信息的映射即长期间的平均分布与当前的生物体信息的映射即短时间的平均分布进行比较。由此,能够判断作业者的作业适宜性。例如,在当前的映射中,与过去的数据的映射进行比较,如果属于图12所示的B区域的数据的比率高,则为以高作业效率完成了业务。另一方面,在属于A区域的数据的比例高的情况下,推测是没有集中于作业的状态、即清醒度低或厌倦了作业的状态。在这样的情况下,作业适宜度判定系统在显示装置107(例如计算机显示器)上显示例如“集中力有些下降。请进行伸展体操而恢复精神。”等忠告。相反,在当前的数据的分布偏向C区域的情况下,推测为疲劳累积而作业效率下降。在此情况下,本系统在显示装置107上显示如“好像有些疲倦,请喝杯咖啡休息一下。”这样的忠告。这样,通过使用本实施方式的系统,能够检测到作业效率的下降,在适当的定时进行忠告。由此,能够实现高作业效率。
进而,通过使用本系统,能够检测出抑郁症等的不好的心理健康的征兆。如已述那样,按每个作业者将比较长期间的作业负荷与生物体反应的关系总是更新并记录到数据库中。通过跟踪该分布的长期间的变动,能够掌握抑郁症的征兆。在抑郁倾向逐渐发展的情况下,分布逐渐向图12的箭头301所示的方向变动。通过检测这样的分布的变化,能够掌握抑郁倾向。在发现这样的倾向的情况下,能够采取使作业者接受产业医师的诊断等的对策。已知在抑郁症的情况下,表示副交感神经的活性度的心拍变动的低频成分LF减少。因此,不仅监视如图12所示的LF/HF与作业负荷的关系,也可以还监视LF与作业负荷的关系。通过这样,能够以更高的精度进行抑郁倾向的检测。
实际在以利用文字处理器的输入为业务的一名作业者的计算机终端中构建本系统,持续比较的长期间进行了数据的取得。取得数据的期间是3个月。作业者的主要的作业是利用文字处理器的输入作业。
图13A表示了从3个月期间的输入作业得到的作业时的每单位时间的输入词数与输入时的LF/HF的关系。越暗的区域表示出现频度越高。输入速度的平均值是约75字符/分钟。与不进行作业的平常时相比,LF/HF的值上升至1.3倍左右,可知伴随于作业处于较轻的紧张状态。该分布表示对象作业者的长期间的作业负荷的变动与生物体信息的变动的关系。只要作业者的身体状况及精神状态没有特别异常,则不会从该分布较大地偏离。这样的分布被用作推测出的生物体信息。将该分布与当前的生物体信息进行比较,进行作业者的作业适宜性的判断。作为当前的生物体信息,求出了短时间(在该例中的每1小时)的输入词数和生物体信息的变化的分布。在3个月期间的计测中,两种特异的分布被较多地计测出。将该分布的例子表示在图13B及图13C中。
在图13B的分布中,与图13A的分布相比,输入字符数减少。因此,可知作业效率下降。在此情况下,表示集中度或压力的LF/HF也下降。可以推测出此时作业者缺乏集中力。
另一方面,在图13C的分布中,与图13A的分布相比,输入字符数减少,在此情况下作业效率也下降。但是,与进行效率高的作业的情况相比表示压力的LF/HF变高。因此,可以推测为此时作业者因伴随于作业的疲劳而作业效率下降。
如以上这样,仅计测作业效率也能够确认作业效率的下降,但并不清楚其原因,不知道为了作业效率的提高,怎样的对策才是有效的。通过使用本实施方式的系统,能够判定作业者的作业适宜度,根据其结果来进行适当的建议。由此,能够实现劳动生产率的提高。
如上述那样,表示图13A所示的长期间的作业负荷与生物体信息的关系的数据总是被用最新的数据更新。通过解析该分布的变化,能够检查作业者的长期的心理健康的状况。例如,在图13A所示的高频度的部分的分布向图12所示的箭头301的方向逐渐变化的情况下,可知某种心理健康上的问题正在发展。早期掌握心理健康上的问题并进行适当的应对,在劳动安全上特别重要。
如上述那样,通过将比较长期间的作业负荷及生物体信息的分布与当前的比较短时间的作业负荷及生物体信息的分布进行比较,能够判定当前的作业效率或作业适宜度。此外,通过监视比较长期间的作业负荷及生物体信息的分布的时间变化,能够有效地进行对于心理健康的问题的对策。
(实施方式3)
本实施方式是在使用PC等的计算机的学习中以学习的效率化为目的的作业适宜度判定系统。本实施方式的作业适宜度判定系统也可以称作学习适宜度判定系统。本系统例如可以在学校、私塾、或在线学习中使用。本实施方式的作业者是学习者,作业内容是使用计算机的学习。
近年来,使用计算机的各种各样的学习系统及学习设备的市场正在扩大。优点是能够与学习者的状况匹配而在自由的时间中学习。但是,因为没有教师,所以有缺乏集中度、成果难以提升的课题。本实施方式为了解决这样的课题,提供在学习中判定学习者的集中度或学习适宜度、对学习进行反馈的系统。在本实施方式中,也与实施方式2同样使用计算机。因此,在本实施方式中也能够使用与实施方式2的硬件结构同样的硬件结构。如图10A所示,仅生物体感测装置401为固有的硬件,与PC等的计算机410连接而使用。在图1A所示的构成要素中,生物体感测装置401以外的构成要素全部作为硬件或软件存放在计算机410中。计算机410随着作业者的计算机作业的开始,在作为目的的作业的背景下进行作业适宜度判定。通过学习软件与本系统的协同,能够根据本人的理解度及集中度使学习内容变化,能够实现有效的学习。
在本实施方式中,个人认证也通过例如PC等的计算机中的ID输入来进行。
脑血流计测装置401的硬件结构与实施方式2的结构相同。如图10B所示,脑血流计测装置401具备作为近红外点阵列光源的光源601c和摄像装置603。实施方式2的系统根据面部的血流变化计测心拍数,利用心拍数的摇摆作为生物体信息。相对于此,本实施方式的系统根据鼻部的血流变化来判定集中度。
参照图14A至图14C,说明根据由摄像装置603拍摄的图像取得生物体信息的信号处理的流程。
图14A表示所拍摄的近红外图像的例子。图14B是生物体的信息检测区域的图像的放大图。在该例中,生物体的信息检测区域是在图14A中用点线框表示的鼻子的区域。在被投影的点图案的周边,检测到在肌肤的内部散射的体内散射光501。通过从图像数据中仅提取相当于体内散射光501的数据并计算,能够取得体内的血流信息。图14C表示了这样取得的血流信息的例子。如果血流量增加,则通过血液对光的吸收,反射率下降。因此,能够根据反射光的信号检测血流量的变化。图14C所示的信号与图11C所示的信号的差异是纵轴的宽度,与血流量变化相比,由心拍变动带来的反射率的变化较小。图14C表示通过进行时间移动平均而将心拍变动的影响除去后的结果。在图14C中,除了鼻部的计测结果以外,作为比较用数据还表示了额部的血流变化的计测结果。
已知因为压力而鼻部的温度变化。处于交感神经的支配下的被称作动静脉吻合血管的动脉与静脉的吻合部集中在鼻部的周边。因此,由自律神经的活性或抑制引起的血流量的变化直接反映到鼻部的皮肤温度的变化。当人感到紧张或压力时,交感神经活性化,血流量减少。由此,鼻部的皮肤温度下降。以往以来,通过用热图监视鼻部周边的皮肤温度,评价了精神上的压力或集中度。本实施方式的系统代替测定温度,通过近红外摄像装置直接评价产生温度变化的血流变化。如已述那样,鼻部与身体的其他部位相比动静脉吻合血管更集中,鼻部的血流较强地受到自律神经的变化的影响。相对于此,额部的血流不易受到自律神经的变化的影响而稳定,与身体深部的体温的关系较深。所以,本实施方式的系统计测额部和鼻部的血流变化双方,将额部的计测结果作为参考来利用。由此,能够除去照明光的照度变化及身体运动等干扰的影响,能够稳定地基于鼻部的血流变化来检测心理的压力的有无或程度。
接着,说明本实施方式的作业感测装置102取得作业信息的取得方式。学习者例如按照安装在PC或平板电脑等中的软件(以下称作“学习软件”)中的指示开展学习。因此,学习内容总是被计算机掌握。本实施方式的脑血流计测装置401计测学习软件提示问题而学习者进行回答时的血流变化。脑血流计测装置401取得如图14C所示的数据。如果集中于回答,则鼻部的血流下降,近红外光的反射率上升。
接着,说明信号处理装置108的生物体信息推测部103的动作。在本实施方式中,生物体信息推测部103也对学习者的作业负荷和生物体反应的长期的数据进行解析,在存储装置104中构建分个人的数据库。本实施方式的作业负荷是对问题的回答状况,生物体反应是鼻部血流的变化。从问题提示到回答的时间、问题的难易度、以及与学习者的回答是正确还是不正确有关的数据能够从计算机410获得。生物体信息推测部103基于该数据,计算该条件下的学习者的平均的鼻部血流的变化量。在本实施方式中,利用该变化量作为生物体信息的推测值。
信号处理装置108的作业适宜度判定部105将推测出的当前的鼻部血流的变化量与当前的实际计测的鼻部血流的变化量进行比较。由此,能够掌握学习者的学习状况。在回答时间比设想的时间短、鼻部血流的变化量比推测值小的情况下,可以判定问题相对于学习者的当前的学力水平过于容易。在此情况下,能够做出提示更高难度的问题、或者进入下一个学习步骤这样的判断。在回答时间比设想的时间长、鼻部血流的变化量比推测值小的情况下,推测为对学习的集中度不够。因此,能够通过计算机的显示器进行提醒注意,或建议进行气氛转换。在鼻部血流的变化量大、虽然集中但回答不正确的情况下,推测为在学习范围中有理解不够的部分。在此情况下,可以提示如能够对理解不充分的部分进行检测的问题,或如再学习重要部分那样对学习内容进行变更。在鼻部血流的变化量大而集中、并且回答正确的情况下,推测为学习正在顺利地开展。在此情况下,可以做出如提示难度更高的问题、或转移到难度高的学习内容那样的判断。这样,作业适宜度判定部105根据学习者的判定结果而向学习者提供与作业适宜度对应的学习内容。
如以上这样,通过使用本实施方式的系统,能够将学习的理解度或集中度作为作业适宜度进行判定。能够使计算机提供与学习者的作业适宜度的判定结果相应的学习内容或提醒注意等的显示。由此,能够在维持集中度的状态下进行有效的学习。
本发明还包括规定图1A所示的信号处理装置108执行的动作的计算机程序。这样的计算机程序被保存在作业适宜度判定系统内的存储器等记录介质中,使信号处理装置108执行上述的各动作。
产业上的可利用性
本发明能够利用于基于推测出的作业者的生物体信息和实测的作业者的生物体信息来判定作业者的作业适宜性的作业适宜度判定系统。
标号说明
100、200 作业适宜度判定系统
101、201 认证装置
102 作业感测装置
103 生物体感测装置
104、204 存储装置
105 作业适宜度判定部
106、205 生物体信息取得部
107、206 显示装置

Claims (8)

1.一种由计算机执行的处理方法,其中,包括如下处理:
取得驾驶车辆的驾驶者的生物体信息;
取得与由上述驾驶者进行的驾驶操作有关的驾驶信息;
使进行上述驾驶的期间的上述生物体信息与上述驾驶信息建立关联并储存到存储装置中;以及
基于(1)储存在上述存储装置中的、过去的上述驾驶信息与上述生物体信息的相关关系、(2)当前的上述驾驶者的上述生物体信息、以及(3)当前的上述驾驶信息,判定当前的上述驾驶者的上述驾驶的适宜度。
2.如权利要求1所述的处理方法,其中,
上述驾驶操作包括从由加速器操作、制动器操作及方向盘操作构成的组中选择的至少一个。
3.如权利要求2所述的处理方法,其中,
上述驾驶信息基于从上述加速度传感器输出的信息来推测。
4.如权利要求1所述的处理方法,其中,
上述车辆具有包括驾驶辅助的自动驾驶功能;
上述处理方法还包括如下处理:根据判定出的上述驾驶者的上述适宜度,决定上述驾驶辅助的内容,使上述车辆执行上述驾驶辅助。
5.如权利要求1所述的处理方法,其中,
还包括如下处理:使用从由个人认证码、上述驾驶者的图像以及由生物体认证装置取得的信息构成的组中选择的至少一个,确定上述驾驶者,
使上述生物体信息与上述驾驶信息建立关联并储存到上述存储装置中的处理包括使上述生物体信息、上述驾驶信息以及所确定的上述驾驶者建立关联并储存的处理。
6.如权利要求1所述的处理方法,其中,
上述适宜度表示从由上述驾驶者的集中度、疲劳度以及压力构成的组中选择的至少一个精神状态的程度。
7.一种系统,其中,包括:
生物体感测装置,取得驾驶车辆的驾驶者的生物体信息;
驾驶感测装置,取得与由上述驾驶者进行的驾驶操作有关的驾驶信息;
存储装置;以及
信号处理装置,
上述信号处理装置使上述驾驶者进行上述驾驶的期间的上述生物体信息与上述驾驶信息建立关联并储存到上述存储装置中,
上述信号处理装置基于(1)储存在上述存储装置中的、过去的上述驾驶信息与上述生物体信息的相关关系、(2)当前的上述驾驶者的上述生物体信息、以及(3)当前的上述驾驶信息,判定当前的上述驾驶者的上述驾驶的适宜度。
8.一种存储介质,其中,保存有用于使计算机执行权利要求1所述的处理方法的程序。
CN202210958907.3A 2017-02-28 2018-02-13 处理方法、系统及存储介质 Pending CN115137336A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-035796 2017-02-28
JP2017035796 2017-02-28
JP2018-016972 2018-02-02
JP2018016972A JP7045639B2 (ja) 2017-02-28 2018-02-02 作業適正度判定システム
PCT/JP2018/004777 WO2018159276A1 (ja) 2017-02-28 2018-02-13 作業適正度判定システム
CN201880004061.1A CN109890288B (zh) 2017-02-28 2018-02-13 作业适宜度判定系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880004061.1A Division CN109890288B (zh) 2017-02-28 2018-02-13 作业适宜度判定系统

Publications (1)

Publication Number Publication Date
CN115137336A true CN115137336A (zh) 2022-10-04

Family

ID=63370016

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210958907.3A Pending CN115137336A (zh) 2017-02-28 2018-02-13 处理方法、系统及存储介质
CN202210954582.1A Pending CN115137335A (zh) 2017-02-28 2018-02-13 处理方法、系统及存储介质

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202210954582.1A Pending CN115137335A (zh) 2017-02-28 2018-02-13 处理方法、系统及存储介质

Country Status (4)

Country Link
US (1) US20220315010A1 (zh)
JP (2) JP7316574B2 (zh)
CN (2) CN115137336A (zh)
WO (1) WO2018159276A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180357580A1 (en) * 2017-06-09 2018-12-13 Ford Global Technologies, Llc Vehicle driver workload management
WO2023119763A1 (ja) * 2021-12-21 2023-06-29 パナソニックIpマネジメント株式会社 運転者状態推定装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119375B2 (zh) 1972-05-24 1976-06-17
JPS603782B2 (ja) 1977-09-21 1985-01-30 株式会社日立製作所 回路素子取付用基板
JPH1165422A (ja) * 1997-08-22 1999-03-05 Omron Corp 作業者の心身状態評価方法,機器を用いた作業の作業内容制御方法及び作業内容制御システム
JPH11203006A (ja) * 1998-01-20 1999-07-30 Fujitsu Ltd ユーザ状況推定装置
JP2001344352A (ja) * 2000-05-31 2001-12-14 Toshiba Corp 生活支援装置および生活支援方法および広告情報提供方法
JP2002065650A (ja) 2000-09-04 2002-03-05 Nissan Motor Co Ltd 疲労度判定装置
JP4803490B2 (ja) * 2006-08-30 2011-10-26 株式会社エクォス・リサーチ 運転者状態推定装置及び運転支援装置
JP2008062852A (ja) * 2006-09-08 2008-03-21 Fujitsu Ten Ltd 車両制御装置
EP2570976A4 (en) * 2010-04-30 2015-01-21 Imatec Inc RISK ASSESSMENT SYSTEM USING INDIVIDUALS AS SENSORS
JP2015033457A (ja) * 2013-08-08 2015-02-19 日産自動車株式会社 運転状態推定装置及び運転状態推定方法

Also Published As

Publication number Publication date
WO2018159276A1 (ja) 2018-09-07
JP2022082547A (ja) 2022-06-02
JP7316574B2 (ja) 2023-07-28
US20220315010A1 (en) 2022-10-06
JP2023145468A (ja) 2023-10-11
CN115137335A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN109890288B (zh) 作业适宜度判定系统
US20200297270A1 (en) Biometric apparatus, biometric method, and determination apparatus
EP2371286B1 (en) Organism fatigue evaluation device and organism fatigue evaluation method
JP7316574B2 (ja) 作業適正度判定システム
US10696305B2 (en) Apparatus and method for measuring physiological information of living subject in vehicle
NZ732929A (en) Method and apparatus for deriving a mental state of a subject
Purnamasari et al. Heart beat based drowsiness detection system for driver
JP2021505262A (ja) 乗り物酔いを検知するためのシステム及び方法
Kraft et al. CareCam: Concept of a new tool for Corporate Health Management
Rahimpour et al. Classification of fNIRS based brain hemodynamic response to mental arithmetic tasks
JP2007313358A (ja) 装置
EP4033495A1 (en) Activity task evaluating system, and activity task evaluating method
Giusti et al. A noninvasive system for evaluating driver vigilance level examining both physiological and mechanical data
US10835169B2 (en) Brain function index computing device and brain function index computing method
Siddiquee et al. Accurate vigilance detection during gait by using movement artifact removal
Farha et al. Artifact removal of eye tracking data for the assessment of cognitive vigilance levels
Meza-García et al. Driver's Emotions Detection with Automotive Systems in Connected and Autonomous Vehicles (CAVs).
Bevilacqua et al. Proposal for non-contact analysis of multimodal inputs to measure stress level in serious games
Siritsa et al. Overview of Functional Near-Infrared Spectroscopy Application Opportunities for Functional Diagnostics and Cognitive Assessment Tasks
WO2024112442A1 (en) Human functional state detector
Amiri et al. Human motion identification using functional near-infrared spectroscopy and smartwatch
SIDDIQUEE Detection of Human Vigilance State During Locomotion Using Wearable FNIRS
De Carlo Unveiling the Influence of Stress and Mental Workload on Our Brain: An fNIRS Analysis
Çiftçi et al. Complexity analysis of functional near-infrared spectroscopy signals
Nishimura et al. Functional brain imaging for analysis of reading effort for computer-generated text

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination