CN115132824A - 一种使用SiC二极管的IGBT功率模块及其制备方法 - Google Patents

一种使用SiC二极管的IGBT功率模块及其制备方法 Download PDF

Info

Publication number
CN115132824A
CN115132824A CN202210746919.XA CN202210746919A CN115132824A CN 115132824 A CN115132824 A CN 115132824A CN 202210746919 A CN202210746919 A CN 202210746919A CN 115132824 A CN115132824 A CN 115132824A
Authority
CN
China
Prior art keywords
layer
epitaxial layer
region
injection region
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210746919.XA
Other languages
English (en)
Inventor
马腾
王平原
王国亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Pingxin Microelectronics Co ltd
Original Assignee
Shenzhen Pingxin Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Pingxin Microelectronics Co ltd filed Critical Shenzhen Pingxin Microelectronics Co ltd
Priority to CN202210746919.XA priority Critical patent/CN115132824A/zh
Publication of CN115132824A publication Critical patent/CN115132824A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了使用SiC二极管的IGBT功率模块,掺杂层上形成第一外延层,第一外延层与掺杂层形成PN结,阱区内形成第一注入区和第二注入区,第一注入区和第二注入区连接,第二金属层与第一注入区和部分第二注入区形成欧姆接触,减小了导通电阻,第一注入区和第二注入区可以增大器件内的电流密度,第一氧化层位于部分第二注入区和阱区上作为栅极氧化层,栅氧位于第二外延层即漂移区,确保器件的导通性能,自掺杂区延伸至第二外延层形成间隔排列的沟槽,沟槽侧壁形成第二氧化层和沟槽内填充第一金属层,第二氧化层起隔离作用并形成电流支路以增强电导调制效应,沟槽长度方向形成第三注入区使得器件的电场分布均匀,也降低了器件的导通损耗。

Description

一种使用SiC二极管的IGBT功率模块及其制备方法
技术领域
本发明属于功率半导体器件技术领域,尤其涉及一种使用SiC二极管的IGBT功率模块及其制备方法。
背景技术
绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGGBT)是一种经过改良的双极型功率器件,可视为BJT和MOSFET的结合,兼具两者的长处,具有双输入阻抗,具有驱动功率小、BJT通态压降低、电流密度大等优点,同时,IGBT又有两者不具备的高阻断电压,因此,IGBT在电力电子领域的应用十分广泛,可替代绝大多数器件,在电力电子器件的市场中占据着重要位置。
目前,以碳化硅为禁带半导体材料,具有优异的材料特性,器件性能突出,切合节能减排、智能制造、网络信息安全等重大战略需求,是支撑5G通信、新能源汽车、高速轨道交通、智能电网等产业自主创新发展和转型升级的重点和核心。通常降低SiC IGBT关断能量损耗是器件设计的主要方向,但大部分新结构是通过降低空穴注入,折中正向压降与关断能量损耗来达到设计目的。但这种设计往往会大幅度牺牲正向压降,使SiC IGBT各项特性并不平衡,也使得器件的体积增大,影响了器件的工作性能,甚至限制了器件的应用领域。
发明内容
有鉴于此,本发明提供了一种提高IGBT器件的耐压特性和降低关断能量损耗的使用SiC二极管的IGBT功率模块及其制备方法,来解决上述存在的技术问题,具体采用以下技术方案来实现。
第一方面,本发明提供了一种使用SiC二极管的IGBT功率模块,包括:
第一导电类型的掺杂层,形成在所述掺杂层的上表面的第二导电类型的第一外延层;
形成在所述第一外延层上的第二导电类型的第二外延层、间隔形成在所述第二外延层内的第一导电类型的阱区、以及形成在所述阱区内的第一导电类型的第一注入区和与所述第一注入区连接的第二导电类型的第二注入区;
形成在部分所述第二注入区、所述阱区和所述第二外延层上的第一氧化层、及位于所述第一氧化层上的多晶硅层;
自所述掺杂层延伸至所述第二外延层内并间隔排列的沟槽、形成在所述沟槽侧壁的第二氧化层以及沿所述沟槽长度方向并位于所述沟槽上的第一导电类型的第三注入区;
形成在所述掺杂层的下表面和所述沟槽内的第一金属层、以及形成在所述第一注入区和部分所述第二注入区上的第二金属层。
作为上述技术方案的进一步改进,所述第一导电类型为P型,所述第二导电类型为N型,所述掺杂层的掺杂浓度大于所述第一外延层的掺杂浓度。
作为上述技术方案的进一步改进,所述第一注入区的掺杂浓度大于所述阱区的掺杂浓度,所述第二外延层的结深大于所述第一外延层的结深。
第二方面。本发明还提供了一种使用SiC二极管的IGBT功率模块的制备方法,所述制备方法包括以下步骤:
提供一个第二导电类型的SiC衬底,在所述SiC衬底上形成第一导电类型的掺杂层,在所述掺杂层的上表面形成第二导电类型的第一外延层;
在所述第一外延层上形成第二导电类型的第二外延层,在所述第二外延层进行光刻形成间隔排列的第一导电类型的阱区,依次在所述阱区内注入第一导电类型离子形成第一注入区、第二导电类型离子形成第二注入区,所述第一注入区和所述第二注入区连接;
在部分所述第二注入区、所述阱区和所述第二外延层上沉积第一氧化层,在所述第一氧化层上形成多晶硅层;
去除所述SiC衬底,自所述掺杂层延伸至所述第二外延层刻蚀形成间隔排列的沟槽,在所述沟槽侧壁形成第二氧化层,沿所述沟槽长度方向并位于所述沟槽上形成第一导电类型的第三注入区;
向所述沟槽和所述掺杂层的下表面形成第一金属层,并在所述第一注入区、部分所述第二注入区上形成第二金属层。
作为上述技术方案的进一步改进,所述第一导电类型为P型,所述第二导电类型为N型,所述第一外延层的掺杂浓度为1×1018cm-3~1×1019cm-3,所述第一外延层的厚度为2~4μm。
作为上述技术方案的进一步改进,所述阱区的掺杂浓度为1×1018cm-3~1.5×1019cm-3,所述第二外延层的掺杂浓度为4×1014cm-3~5×1014cm-3,所述第二外延层的厚度为135μm~145μm。
作为上述技术方案的进一步改进,所述阱区和所述第一注入区的掩膜均为二氧化硅,注入完成后在1650℃的氩气气氛下退火3min以完成离子注入激活;
利用牺牲氧化工艺去除原片表面残留的碳层,对圆片进行表面清洗,在高温氧化炉中对圆片进行干氧氧化形成所述第一氧化层,所述氧化层的厚度为50nm。
作为上述技术方案的进一步改进,采用磁控溅射工艺制备所述第一金属层和所述第二金属层,采用干法刻蚀制备所述沟槽。
作为上述技术方案的进一步改进,采用研磨工艺将晶圆减薄,减薄工艺包括:
对晶圆表面进行清洗,测量其晶圆厚度,通过键合机使晶圆与基板粘合;
放入减薄机进行减薄,通过粗磨、细磨和抛光工艺,通过分离清洗完成减薄工艺。
作为上述技术方案进一步改进,所述沟槽的宽度为0.6μm,所述沟槽的深度为5μm,所述沟槽内的第一金属层浓度为4E18,所述掺杂层的下表面的第一金属层浓度为1E19。
本发明提供了一种使用SiC二极管的IGBT功率模块及其制备方法,通过在掺杂层上形成第一外延层,第一外延层与掺杂层的导电类型不同形成PN结,提高了器件的耐压性能,依次在阱区内形成第一注入区和第二注入区,第一注入区和第二注入区连接,第二金属层与第一注入区和部分第二注入区形成欧姆接触,减小了导通电阻,第一注入区和第二注入区可以增大器件内的电流密度,第一氧化层位于部分第二注入区和阱区上可以作为栅极氧化层,栅极氧化层位于第二外延层即漂移区,从而确保器件内部的导通性能。自掺杂区延伸至第二外延层形成间隔排列的沟槽,沟槽侧壁形成第二氧化层和沟槽内填充第一金属层,第二氧化层起到隔离作用并形成电流支路以增强电导调制效应,沟槽长度方向形成第三注入区可以使得器件的电场分布均匀,也降低了器件的导通损耗,未额外增加器件的体积,降低制作成本。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例提供的使用SiC二极管的IGBT功率模块的制备方法的流程图;
图2至图8为本发明实施例提供的使用SiC二极管的IGBT功率模块的制备方法的过程图。
主要元件符号说明如下:
100-SiC衬底;110-掺杂层;120-第一外延层;130-第二外延层;140-阱区;150-第一注入区;160-第二注入区;170-第一氧化层;180-多晶硅层;190-沟槽;200-第二氧化层;210-第三注入区;220-第一金属层;230-第二金属层。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
参阅图1、图2至图8。本发明还提供了一种使用SiC二极管的IGBT功率模块的制备方法,所述制备方法包括以下步骤:
S10:提供一个第二导电类型的SiC衬底100,在所述SiC衬底100上形成第一导电类型的掺杂层110,在所述掺杂层110的上表面形成第二导电类型的第一外延层120;
参阅图2,本实施例中,SiC材料拥有10倍于Si材料的临界击穿电场,使得SiC器件在耐压特性上有着Si器件所不能比拟的优势,采用4H-SiC作为衬底,以增强后续器件的电导调制特性,采用外延生长工艺在SiC衬底100上形成掺杂层110,可使用外延生长技术包括化学气相沉积或者分子束外延技术。所述第一导电类型为P型,所述第二导电类型为N型,第一外延层120作为器件的缓冲层,P型为磷离子,N型为硼离子,所述第一外延层120的掺杂浓度为1×1018cm-3~1×1019cm-3,所述第一外延层120的厚度为2~4μm,SiC衬底100为N型重掺杂,便于后续制备第二外延层130。
S11:在所述第一外延层120上形成第二导电类型的第二外延层130,在所述第二外延层130进行光刻形成间隔排列的第一导电类型的阱区140,依次在所述阱区140内注入第一导电类型离子形成第一注入区150、第二导电类型离子形成第二注入区160,所述第一注入区150和所述第二注入区160连接;
参阅图3、图4和图5,本实施例中,所述阱区140的掺杂浓度为1×1018cm-3~1.5×1019cm-3,所述第二外延层130的掺杂浓度为4×1014cm-3~5×1014cm-3,所述第二外延层130的厚度为135μm~145μm,第二外延层130与第一外延层120的制备工艺相同,第二外延层130为器件的漂移区,漂移区掺杂浓度对器件的阻断特性、输出特性和开关特性都有重要影响。制备阱区的过程为:在第二外延层130上形成刻蚀阻挡层(图未示),然后在刻蚀阻挡层上形成光刻胶层(图未示),之后采用具有阱区140图形的掩膜版对光刻胶层进行曝光,再进行显影,得到具有阱区140图形的光刻胶层,以具有阱区140图形的光刻胶层为掩膜,采用反应离子刻蚀法等刻蚀方法,在刻蚀阻挡层上蚀刻形成阱区140图形开口的刻蚀阻挡层为掩膜,采用湿法刻蚀或干法刻蚀等方法,去除未被刻蚀阻挡层覆盖的第二外延层130区域,进而在第二外延层130内形成阱区,此后可采用化学清洗等方法去除光刻胶层和刻蚀阻挡层。在上述过程中,为了保证曝光精度,还可以在光刻胶层和刻蚀阻挡层之间形成抗反射层。阱区140、第一注入区150和第二注入区160均采用离子注入工艺制备,阱区140和第一注入区150均由多次P型离子实现,第二注入区160由高剂量N型离子注入实现,其中掩膜均为二氧化硅,注入完成后在1650℃的氩气气氛下退火3min以完成离子注入激活。第一注入区150和第二注入区160的导电类型不同可以形成PN结,两个阱区140之间的漂移区为N沟道以形成导电沟道,提高了器件的工作性能。
S12:在部分所述第二注入区160、所述阱区140和所述第二外延层130上沉积第一氧化层120,在所述第一氧化层120上形成多晶硅层180;
参阅图6,本实施例中,所述阱区140和所述第一注入区150的掩膜均为二氧化硅,注入完成后在1650℃的氩气气氛下退火3min以完成离子注入激活;利用牺牲氧化工艺去除原片表面残留的碳层,对圆片进行表面清洗,在高温氧化炉中对圆片进行干氧氧化形成第一氧化层170,第一氧化层170的厚度为50nm。第一氧化层170的材料为二氧化硅,第一氧化层170为栅极氧化层简称栅氧,多晶硅层10为栅极多晶硅。SiC材料生长的栅氧和碳化硅界面存在界面态,增加器件的沟道电阻,可以通过改善栅氧条件降低界面态密度,也可以通过缩短沟道长度降低沟道电阻。氩气退火激活工艺完成后,利用牺牲氧化工艺去除晶圆片表面残留的碳层,对晶片进行表面清洗后,在高温氧化炉中对晶片进行干氧氧化,形成所需栅氧化层。栅氧化层中界面陷阱密度也可以通过一氧化氮辅助的高温退火技术有效降低,之后,在栅氧化层上生长多晶硅以制作栅电极。
需要说明的是,SiC栅氧工艺主要包括两步,第一步高温氧化形成栅氧,第二步使用NO/N2O退火对栅氧进行氮钝化,第一步和第二步之间需要进行气体氛围的改变,对该气体转换过程采用的方式有两种,一种是直接吹扫氮气进行换气,而这样的过程剩余的氧气还会造成局部的氧化,导致氧化层的不均匀;第二个方式是降温换气的方式,在换气过程中先降低温度再进行换气,此时低温下的氧气在栅氧中的扩散系数大幅度降低。在降温过程中会有氧气达到碳化硅界面,而低温下碳化硅被氧化会生成SiO2,但同时多余的C原子很难被氧化,离开氧化层,而C原子会富集在SiC表面形成新的界面电荷。因此,采用真空置换的方式可以获得更低的界面态密度,有利于减小器件的沟道电阻,从而提升器件性能。
S13:去除所述SiC衬底100,自所述掺杂层110延伸至所述第二外延层130刻蚀形成间隔排列的沟槽190,在所述沟槽190侧壁形成第二氧化层200,沿所述沟槽190长度方向并位于所述沟槽190上形成第一导电类型的第三注入区210;
参阅图7,本实施例中,第二氧化层210可以是在沟槽190侧壁沉积或氧化等,第二氧化层200为二氧化硅。采用干法刻蚀制备所述沟槽190,采用研磨工艺将晶圆减薄,减薄工艺包括:对晶圆表面进行清洗,测量其晶圆厚度,通过键合机使晶圆与基板粘合;放入减薄机进行减薄,通过粗磨、细磨和抛光工艺,通过分离清洗完成减薄工艺。沟槽形成的过程为:在掺杂层110的下表面形成刻蚀阻挡层(图未示),然后在刻蚀阻挡层上形成光刻胶层(图未示),之后采用具有沟槽190图形的掩膜版对光刻胶层进行曝光,再进行显影得到具有沟槽190图形的光刻胶层,以具有沟槽190图形的光刻胶层为掩膜,采用反应离子刻蚀法等刻蚀方法,在刻蚀阻挡层上蚀刻形成沟槽190的图形开口(图未示),然后以具有沟槽190图形开口的刻蚀阻挡层为掩膜,采用湿法刻蚀或干法刻蚀等方法,去除未被刻蚀阻挡层覆盖的掺杂层110区域,进而在掺杂层110、第一外延层120和第二外延层130内形成沟槽190,此后可以采用化学清洗等方法去除光刻胶和刻蚀阻挡层。在上述过程中,为了保证曝光精度,可以在光刻胶层和刻蚀阻挡层之间形成抗反射层。第三注入区210采用离子注入方式注入P型离子,使得第三注入区210与第二外延层130形成PN结,从而提高了器件的工作稳定性。
需要说明的是,采用机械研磨工艺作为SiC衬底100去除技术,具有速度较快的特点,但研磨后的材料表面比较粗糙,衬底研磨去除后SiC表面的粗糙度的直接大小和所受的压力有关,加大磨料颗粒直径和压力能有效提高研磨速率,但同时研磨表面的粗糙度也会加大,制作SiC IGBT器件时,背面的粗糙度也是一个需要考虑的量,直接影响背面欧姆接触的质量,除了要优化机械研磨的条件外,可以在机械研磨结束后采用更细的磨料进行抛光,不但能提高SiC衬底100表面的平整度,而且还能有效降低材料表面损伤。背面粗糙度过大和过小都会影响欧姆接触,当粗糙度过大时,欧姆金属层起伏过大,欧姆接触变差;背面粗糙度过低,表面过于平滑,欧姆接触过小,同样不利于降低欧姆接触电阻。
S14:向所述沟槽190和所述掺杂层110的下表面形成第一金属层220,并在所述第一注入区150、部分所述第二注入区160上形成第二金属层230。
参阅图8,本实施例中,第一金属层220为器件的集电极,第二金属层230为器件的发射极,多晶硅层180为器件的栅极。采用磁控溅射工艺制备所述第一金属层220和所述第二金属层230,所述沟槽190的宽度为0.6μm,所述沟槽190的深度为5μm,所述沟槽190内的第一金属层220浓度为4E18,所述掺杂层110的下表面的第一金属层220浓度为1E19。在完成衬底减薄后通过在晶圆背面制作欧姆接触金属层即第一金属层220,通过激光退火的方法实现集电极欧姆接触,在金属选择方面,SiC器件欧姆接触通常采用TiAl的集电极欧姆接触金属化体系。通过将整形后的激光聚焦光斑照射在晶圆表面金属,使得局部温度急速升高,从而达到欧姆接触合金的效果,通过控制位移平台速度和激光频率及能量来实现圆片的加工过程。同样地,第二金属层230与第一金属层220的制备工艺相同,沟槽190内的第一金属层220与第三注入区210形成良好的欧姆接触,从而减小电阻率。
再次参阅图8,本发明还提供了一种使用SiC二极管的IGBT功率模块,包括:
第一导电类型的掺杂层110,形成在所述掺杂层110的上表面的第二导电类型的第一外延层120;
形成在所述第一外延层120上的第二导电类型的第二外延层130、间隔形成在所述第二外延层130内的第一导电类型的阱区140、以及形成在所述阱区140内的第一导电类型的第一注入区150和与所述第一注入区150连接的第二导电类型的第二注入区160;
形成在部分所述第二注入区160、所述阱区140和所述第二外延层130上的第一氧化层170、及位于所述第一氧化层170上的多晶硅层180;
自所述掺杂层110延伸至所述第二外延层130内并间隔排列的沟槽190、形成在所述沟槽190侧壁的第二氧化层200以及沿所述沟槽190长度方向并位于所述沟槽190上的第一导电类型的第三注入区210;
形成在所述掺杂层110的下表面和所述沟槽190内的第一金属层220、以及形成在所述第一注入区150和部分所述第二注入区160上的第二金属层230。
本实施例中,所述第一导电类型为P型,所述第二导电类型为N型,所述掺杂层110的掺杂浓度大于所述第一外延层120的掺杂浓度,所述第一注入区150的掺杂浓度大于所述阱区140的掺杂浓度,所述第二外延层130的结深大于所述第一外延层120的结深。第一金属层220为器件的集电极,第二金属层230为器件的发射极,多晶硅层180为器件的发射极,第一外延层120为器件的缓冲层,第二外延层130为器件的漂移区,第一注入区150与第二注入区160导电类型不同形成PN结,阱区140与第二外延层130之间形成导电沟道,缓冲层可以使漂移区的高电场能在短距离内降为零,从而使得韩尽区不会渗透到集电极。第一注入区150与第二注入区160形成的PN结可以视为体二极管,从而确保器件的防浪涌能力。第三注入区210与第二外延层130形成PN结可以实现分压性能,从而提高了器件的正向耐压。
需要说明的是,沟槽集电极可以改变对器件的正向压降和关断能量损耗的影响,在正向导通压降方面,随着沟槽集电极浓度的增加,导通压降呈单调递减趋势,变化幅度在0.7V左右,可以理解为随着沟槽集电极浓度的增加,器件在正向导通时会向N漂移区注入更多的空穴,从而增强电导调制效应,增大流过器件的电流,对于降低导通压降起到了优化的作用;在关断能量损耗方面,所呈现的趋势与正向压降相反,这是因为沟槽集电极浓度的变化对于低电阻路径的占比并无实质影响,但电导调制效应的提升却增加了N漂移区中存储的载流子数量,在相同的电子抽取速度下,会导致移除N漂移区中载流子的时间显著加长,进而延长了关断时间,增加了器件的关断能量损耗,通过在器件内制备沟槽而未增加器件的体积,也降低器件的制备成本。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种使用SiC二极管的IGBT功率模块,其特征在于,包括:
第一导电类型的掺杂层,形成在所述掺杂层的上表面的第二导电类型的第一外延层;
形成在所述第一外延层上的第二导电类型的第二外延层、间隔形成在所述第二外延层内的第一导电类型的阱区、以及形成在所述阱区内的第一导电类型的第一注入区和与所述第一注入区连接的第二导电类型的第二注入区;
形成在部分所述第二注入区、所述阱区和所述第二外延层上的第一氧化层、及位于所述第一氧化层上的多晶硅层;
自所述掺杂层延伸至所述第二外延层内并间隔排列的沟槽、形成在所述沟槽侧壁的第二氧化层以及沿所述沟槽长度方向并位于所述沟槽上的第一导电类型的第三注入区;
形成在所述掺杂层的下表面和所述沟槽内的第一金属层、以及形成在所述第一注入区和部分所述第二注入区上的第二金属层。
2.根据权利要求1所述的使用SiC二极管的IGBT功率模块,其特征在于,所述第一导电类型为P型,所述第二导电类型为N型,所述掺杂层的掺杂浓度大于所述第一外延层的掺杂浓度。
3.根据权利要求1所述的使用SiC二极管的IGBT功率模块,其特征在于,所述第一注入区的掺杂浓度大于所述阱区的掺杂浓度,所述第二外延层的结深大于所述第一外延层的结深。
4.一种使用SiC二极管的IGBT功率模块的制备方法,其特征在于,所述制备方法包括以下步骤:
提供一个第二导电类型的SiC衬底,在所述SiC衬底上形成第一导电类型的掺杂层,在所述掺杂层的上表面形成第二导电类型的第一外延层;
在所述第一外延层上形成第二导电类型的第二外延层,在所述第二外延层进行光刻形成间隔排列的第一导电类型的阱区,依次在所述阱区内注入第一导电类型离子形成第一注入区、第二导电类型离子形成第二注入区,所述第一注入区和所述第二注入区连接;
在部分所述第二注入区、所述阱区和所述第二外延层上沉积第一氧化层,在所述第一氧化层上形成多晶硅层;
去除所述SiC衬底,自所述掺杂层延伸至所述第二外延层刻蚀形成间隔排列的沟槽,在所述沟槽侧壁形成第二氧化层,沿所述沟槽长度方向并位于所述沟槽上形成第一导电类型的第三注入区;
向所述沟槽和所述掺杂层的下表面形成第一金属层,并在所述第一注入区、部分所述第二注入区上形成第二金属层。
5.根据权利要求4所述的制备方法,其特征在于,所述第一导电类型为P型,所述第二导电类型为N型,所述第一外延层的掺杂浓度为1×1018cm-3~1×1019cm-3,所述第一外延层的厚度为2~4μm。
6.根据权利要求4所述的制备方法,其特征在于,所述阱区的掺杂浓度为1×1018cm-3~1.5×1019cm-3,所述第二外延层的掺杂浓度为4×1014cm-3~5×1014cm-3,所述第二外延层的厚度为135μm~145μm。
7.根据权利要求4所述的制备方法,其特征在于,所述阱区和所述第一注入区的掩膜均为二氧化硅,注入完成后在1650℃的氩气气氛下退火3min以完成离子注入激活;
利用牺牲氧化工艺去除原片表面残留的碳层,对圆片进行表面清洗,在高温氧化炉中对圆片进行干氧氧化形成所述第一氧化层,所述氧化层的厚度为50nm。
8.根据权利要求4所述的制备方法,其特征在于,采用磁控溅射工艺制备所述第一金属层和所述第二金属层,采用干法刻蚀制备所述沟槽。
9.根据权利要求4所述的制备方法,其特征在于,采用研磨工艺将晶圆减薄,减薄工艺包括:
对晶圆表面进行清洗,测量其晶圆厚度,通过键合机使晶圆与基板粘合;
放入减薄机进行减薄,通过粗磨、细磨和抛光工艺,通过分离清洗完成减薄工艺。
10.根据权利要求4所述的制备方法,其特征在于,所述沟槽的宽度为0.6μm,所述沟槽的深度为5μm,所述沟槽内的第一金属层浓度为4E18,所述掺杂层的下表面的第一金属层浓度为1E19。
CN202210746919.XA 2022-06-28 2022-06-28 一种使用SiC二极管的IGBT功率模块及其制备方法 Pending CN115132824A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210746919.XA CN115132824A (zh) 2022-06-28 2022-06-28 一种使用SiC二极管的IGBT功率模块及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210746919.XA CN115132824A (zh) 2022-06-28 2022-06-28 一种使用SiC二极管的IGBT功率模块及其制备方法

Publications (1)

Publication Number Publication Date
CN115132824A true CN115132824A (zh) 2022-09-30

Family

ID=83379031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210746919.XA Pending CN115132824A (zh) 2022-06-28 2022-06-28 一种使用SiC二极管的IGBT功率模块及其制备方法

Country Status (1)

Country Link
CN (1) CN115132824A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118248535A (zh) * 2024-05-30 2024-06-25 芯联越州集成电路制造(绍兴)有限公司 碳化硅外延片及其制备方法、半导体器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118248535A (zh) * 2024-05-30 2024-06-25 芯联越州集成电路制造(绍兴)有限公司 碳化硅外延片及其制备方法、半导体器件
CN118248535B (zh) * 2024-05-30 2024-10-22 芯联越州集成电路制造(绍兴)有限公司 碳化硅外延片及其制备方法、半导体器件

Similar Documents

Publication Publication Date Title
US8258032B2 (en) Power semiconductor devices and methods for manufacturing the same
KR20020083107A (ko) 경사 베이스 영역을 갖는 횡형 트랜지스터, 반도체집적회로 및 그 제조방법
JP4774196B2 (ja) 成長したベース領域を有する炭化ケイ素バイポーラ接合トランジスタ
US8264036B2 (en) Power semiconductor device with low on-state voltage and method of manufacturing the same
EP1459376A1 (en) Method and structure for a heterojunction bipolar transistor
CN112382655B (zh) 一种宽禁带功率半导体器件及制备方法
US4195307A (en) Fabricating integrated circuits incorporating high-performance bipolar transistors
US7790519B2 (en) Semiconductor device and manufacturing method thereof
CN115132824A (zh) 一种使用SiC二极管的IGBT功率模块及其制备方法
US4099987A (en) Fabricating integrated circuits incorporating high-performance bipolar transistors
US20110095398A1 (en) Bipolar semiconductor device and method of producing same
US20020158246A1 (en) Semiconductor device and manufacturing method for the same
EP0036499B1 (en) A polysilicon-base self-aligned bipolar transistor process
US11616123B2 (en) Enhancement on-state power semiconductor device characteristics utilizing new cell geometries
US6774455B2 (en) Semiconductor device with a collector contact in a depressed well-region
US11271100B2 (en) Narrow semiconductor mesa device
KR100718937B1 (ko) 자기 정렬된 실리콘 카바이드 바이폴라 접합 트랜지스터를제조하는 방법 및 이에 따라 제조되는 장치
JP4715324B2 (ja) 整流素子
JPH10335630A (ja) 半導体装置及びその製造方法
CN221447177U (zh) 一种rc-igbt器件及终端结构
CN116705604A (zh) 双沟槽mosfet器件及其提高耐压能力的制备方法
CN118435360A (zh) 结势垒肖特基二极管及其制造方法
CN116895699A (zh) 一种具有异质结的共源共栅沟槽mosfet及制备方法
JP2646872B2 (ja) バイポーラトランジスタの製造方法
CN117012805A (zh) 一种适用于高压功率芯片的终端结构及制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination