CN115124328B - 一种高致密块状共晶复合陶瓷的选区激光熔化制备方法 - Google Patents

一种高致密块状共晶复合陶瓷的选区激光熔化制备方法 Download PDF

Info

Publication number
CN115124328B
CN115124328B CN202210790855.3A CN202210790855A CN115124328B CN 115124328 B CN115124328 B CN 115124328B CN 202210790855 A CN202210790855 A CN 202210790855A CN 115124328 B CN115124328 B CN 115124328B
Authority
CN
China
Prior art keywords
zro
powder
sintering
gdalo
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210790855.3A
Other languages
English (en)
Other versions
CN115124328A (zh
Inventor
苏海军
申仲琳
余明辉
赵迪
刘园
郭一诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, Shenzhen Institute of Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210790855.3A priority Critical patent/CN115124328B/zh
Publication of CN115124328A publication Critical patent/CN115124328A/zh
Application granted granted Critical
Publication of CN115124328B publication Critical patent/CN115124328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明提供了一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷及其制备方法,属于复合材料制备技术领域。本发明通过对预制体进行烧结并控制烧结的条件,可以去除混合粉末中的粘结剂,减少SLM加工过程中PVA挥发造成的粉末层较明显的收缩,从而获得高致密度的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。

Description

一种高致密块状共晶复合陶瓷的选区激光熔化制备方法
技术领域
本发明涉及复合材料制备技术领域,尤其涉及一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷及其制备方法。
背景技术
熔体生长的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷,耐高温、抗氧化、高温组织和结构稳定性优良,能够在1500℃以上高温氧化性环境中长期服役,因此在航空航天、机械能源等领域均具有巨大的应用前景。
陶瓷材料本征脆硬特性导致其机械加工难度大,利用选区激光熔化(SLM)技术直接高效、柔性制造、适于制备复杂结构零部件的突出优势,有望一步高效获得定制化陶瓷零件。目前,利用选区激光熔化制备的陶瓷试样致密度较低且需要后续的致密化烧结处理,无法直接获得致密的、超细化凝固共晶陶瓷试样。例如文献“Q.Liu,Y.Danlos,B.Song,B.Zhang,S.Yin,H.Liao.Effect of high-temperature preheating on the selectivelaser melting of yttria-stabilized zirconia ceramic[J].J.Mater.Process.Technol.2015,222:61-74.”制备出了尺寸约为5mm3的块体陶瓷试样,但致密度只有90~91%。
发明内容
本发明的目的在于提供一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的制备方法,本发明制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷致密度可以达到97.3%。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的制备方法,包括以下步骤:
按照共晶配比,将Al2O3粉末、Gd2O3粉末、ZrO2粉末和粘结剂进行球磨混合,将所得混合粉末进行压制,得到预制体;
将所述预制体进行烧结,将烧结后的预制体进行破碎和过筛,得到Al2O3-Gd2O3-ZrO2混合粉末;所述烧结包括依次进行第一烧结、第二烧结和第三烧结;所述第一烧结的温度为500~800℃,保温时间为30~60分钟;所述第二烧结的温度为800~1200℃,保温时间为8~10小时;所述第三烧结的温度为1500~1600℃,保温时间为30~60分钟;
将所述Al2O3-Gd2O3-ZrO2混合粉末铺设到基板上进行选区激光熔化,得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
优选的,所述粘结剂的用量为Al2O3粉末、Gd2O3粉末和ZrO2粉末总质量的5~10%。
优选的,所述Al2O3粉末的粒径为1~2μm;所述Gd2O3粉末的粒径为2~5μm;所述ZrO2粉末的粒径为1~5μm。
优选的,所述球磨混合的转速为300~400rpm,时间为3~6小时。
优选的,所述Al2O3-Gd2O3-ZrO2混合粉末的粒径为20~100μm,堆积密度为2.1~3.2g/cm3
优选的,所述选区激光熔化的条件包括:激光光斑直径为0.1~1mm,激光功率为100~300W,扫描速率为100~300mm/s。
优选的,所述选区激光熔化时,单层Al2O3-Gd2O3-ZrO2混合粉末堆积的厚度为0.04~0.5mm。
优选的,所述选区激光熔化过程中堆积的层数为1~20层。
优选的,所述选区激光熔化采用CO2激光器。
本发明提供了上述方案所述制备方法制备得到的高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷,致密度在94.1%以上。
本发明提供了一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的制备方法,包括以下步骤:按照共晶配比,将Al2O3粉末、Gd2O3粉末、ZrO2粉末和粘结剂进行球磨混合,将所得混合粉末进行压制,得到预制体;将所述预制体进行烧结,将烧结后的预制体进行破碎和过筛,得到Al2O3-Gd2O3-ZrO2混合粉末;所述烧结包括依次进行第一烧结、第二烧结和第三烧结;所述第一烧结的温度为500~800℃,保温时间为30~60分钟;所述第二烧结的温度为800~1200℃,保温时间为8~10小时;所述第三烧结的温度为1500~1600℃,保温时间为30~60分钟;将所述Al2O3-Gd2O3-ZrO2混合粉末铺设到基板上进行选区激光熔化,得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
本发明通过对预制体进行烧结并控制烧结的条件,可以去除混合粉末中的粘结剂,减少SLM加工过程中粘结剂挥发造成的粉末层较明显的收缩,从而获得高致密度的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
进一步的,本发明通过采用高扫描速率,使得组织细化至纳米级别,通过增大激光光斑直径降低裂纹敏感性,通过增大功率可以提升能量密度,各工艺参数配合,提升了Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的致密度,减小了凝固共晶组织,提高了Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的力学性能。
实施例的结果表明,本发明制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷致密度最高达97%,组织共晶间距细化至80nm,相尺寸可细化至30~40nm;硬度在17.1GPa以上,断裂韧性最高为3.66MPa·m1/2,力学性能良好。
附图说明
图1为实施例1~4及对比例1~4制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图;
图2为实施例3制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的组织图:其中,(a)为横截面组织图;(a1)为横截面组织(a)图放大图;(b)为纵截面组织图;(b1)为纵截面组织(b)图放大图。
具体实施方式
本发明提供了一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的制备方法,包括以下步骤:
按照共晶配比,将Al2O3粉末、Gd2O3粉末、ZrO2粉末和粘结剂进行球磨混合,将所得混合粉末进行压制,得到预制体;
将所述预制体进行烧结,将烧结后的预制体进行破碎和过筛,得到Al2O3-Gd2O3-ZrO2混合粉末;所述烧结包括依次进行第一烧结、第二烧结和第三烧结;所述第一烧结的温度为500~800℃,保温时间为30~60分钟;所述第二烧结的温度为800~1200℃,保温时间为8~10小时;所述第三烧结的温度为1500~1600℃,保温时间为30~60分钟;
将所述Al2O3-Gd2O3-ZrO2混合粉末铺设到基板上进行选区激光熔化,得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
在本发明中,未经特殊说明,所用原料均为本领域熟知的市售商品。
本发明按照共晶配比,将Al2O3粉末、Gd2O3粉末、ZrO2粉末和粘结剂进行球磨混合,将所得混合粉末进行压制,得到预制体。
在本发明中,所述Al2O3粉末的粒径优选为1~2μm,所述Al2O3粉末的纯度优选为99.99%以上;所述Gd2O3粉末的粒径优选为2~5μm,所述Gd2O3粉末的纯度优选为99.99%以上,所述ZrO2粉末的粒径优选为1~5μm,所述ZrO2粉末的纯度优选为99.99%以上。
在本发明中,所述Al2O3粉末、Gd2O3粉末和ZrO2粉末的摩尔比优选为58:19:23。本发明优选采用上述粒径的Al2O3粉末、Gd2O3粉末和ZrO2粉末,并将Al2O3粉末、Gd2O3粉末和ZrO2粉末的用量控制在上述范围内,有利于使Al2O3粉末、Gd2O3粉末和ZrO2粉末球磨混合均匀,进而有利于制备得到组织致密的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
在本发明中,所述粘结剂的用量优选为Al2O3粉末、Gd2O3粉末和ZrO2粉末总质量的5~10%;所述粘结剂优选为聚乙烯醇,所述粘结剂的作用是保证原始混合粉末能够紧密压制成形。
在本发明中,所述球磨混合的转速优选300~400rpm,更优选为300rpm,所述球磨混合的时间优选3~6小时,更优选为4h。
在本发明中,所述压制的压力优选为90~100kN,保压时间优选为2~3分钟。
得到预制体后,本发明将所述预制体进行烧结,将烧结后的预制体进行破碎和过筛,得到Al2O3-Gd2O3-ZrO2混合粉末。
在本发明中,所述烧结包括依次进行第一烧结、第二烧结和第三烧结;所述第一烧结的温度为500~800℃,保温时间为30~60分钟;所述第二烧结的温度为800~1200℃,保温时间为8~10小时;所述第三烧结的温度为1500~1600℃,保温时间为30~60分钟。
在本发明中,升温至所述第一烧结的温度的升温速率优选为8~10℃/min,自第一烧结的温度升温至所述第二烧结的温度的升温速率优选为5~8℃/min,自第二烧结的温度升温至所述第三烧结的温度的升温速率优选为2~5℃/min。本发明在所述第一烧结阶段将粘结剂去除,第二烧结阶段和第三烧结阶段获得致密的具有烧结组织的Al2O3-Gd2O3-ZrO2三元基体。在本发明中,所述烧结优选在空气氛围下进行。
完成所述烧结后,本发明将烧结后预制体进行破碎和过筛,得到Al2O3-Gd2O3-ZrO2混合粉末。本发明对所述破碎和过筛的过程没有特殊要求,采用本领域熟知的破碎和过筛过程即可。完成所述过筛后,本发明优选还包括烘干。本发明对所述烘干的过程没有特殊要求,采用本领域熟知的烘干过程即可。在本发明中,所述Al2O3-Gd2O3-ZrO2混合粉末的粒径优选为20~100μm,堆积密度优选为2.1~3.2g/cm3,更优选为2.77g/cm3
在本发明中,所述Al2O3-Gd2O3-ZrO2混合粉末具有共晶配比,内部为烧结组织,粉末无明显气孔,无粘结剂,致密度提高,堆积密度较大,有利于提高选区激光熔化加工过程的稳定性,避免粉末熔化凝固后产生过大收缩,减少加工过程中粉末蒸发对激光镜片造成的污染。
得到Al2O3-Gd2O3-ZrO2混合粉末后,本发明将所述Al2O3-Gd2O3-ZrO2混合粉末铺设到基板上进行选区激光熔化,得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
本发明优选先设置选区激光熔化加工模型,设置加工参数,然后将所述Al2O3-Gd2O3-ZrO2混合粉末铺设在Al2O3陶瓷基板上,关闭工作舱舱门,打开保护气瓶,开启洗气按钮,当氧含量降至小于0.001ppm后,打开激光器,进行选区激光熔化,层层堆积得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
在本发明中,所述选区激光熔化加工模型优选为立方体模型,模型尺寸优选为3~6mm3,更优选为5mm3,在本发明中,所述选区激光熔化的条件优选包括:激光光斑直径为0.1~1mm,激光功率为100~300W,扫描速率为100~300mm/s;进一步的,所述激光光斑直径更优选为1mm,激光功率更优选为200~300W,扫描速率更优选为100~200mm/s。在本发明中,所述选区激光熔化时,单层Al2O3-Gd2O3-ZrO2混合粉末堆积的厚度优选为0.04~0.5mm,更优选为0.05~0.2mm;所述选区激光熔化过程中堆积的层数优选为1~20层,更优选为5~15层。本发明通过采用高扫描速率,使得组织细化至纳米级别,通过增大激光光斑直径降低裂纹敏感性,通过增大功率可以提升能量密度,各工艺参数配合,提升了Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的致密度,减小了凝固共晶组织,提高了Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的力学性能。
在本发明中,所述选区激光熔化优选采用CO2激光器,波长为10.6μm,能保证陶瓷材料对所述激光光波有较高的吸收率。
在本发明中,所述选区激光熔化优选在保护性气氛条件下进行,具体优选为氩气氛。本发明限定在保护性气氛条件下进行,能够有效减少Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的气孔含量。
在高能激光束作用下,共晶配比的粉末能够在1935K共晶点温度下发生自生复合共晶反应,由液相同时析出Al2O3相、GAP(钙钛矿型铝酸钆)和ZrO2固相,室温下获得Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
本发明提供了上述方案所述制备方法制备得到的高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷,致密度在94.1%以上。在本发明中,所述Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷组织共晶间距优选为80~130nm,相尺寸可细化至30~40nm;硬度在17.4GPa以上,断裂韧性在3.4MPa·m1/2以上,力学性能良好。
下面结合实施例对本发明提供的一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
第一步,将按照共晶配比的Al2O3、Gd2O3和ZrO2混合粉末(摩尔比为58:19:23)与聚乙烯醇(PVA,用量为Al2O3、Gd2O3和ZrO2混合粉末总质量的5%)进行球磨混粉,所述Al2O3粉末的粒径为1~2μm;所述Gd2O3粉末的粒径为2~5μm;所述ZrO2粉末的粒径为1~5μm;球磨转速为300rpm,球磨时间为4小时,将所得混合粉末压制成预制体,压制条件为:90kN保压2分钟,对所述预制体进行高温致密化烧结,所述烧结工艺为50℃以10℃/min升温至500℃,保温30min,以8℃/min升温至1200℃,保温10h,以2℃/min升温至1600℃,保温30min,将烧结后的预制体进行破碎、过筛、烘干,得到选区激光熔化用Al2O3-Gd2O3-ZrO2混合粉末;所述Al2O3-Gd2O3-ZrO2混合粉末的粒径分布范围为20~100μm,致密无PVA,堆积密度为2.77g/cm3
第二步,设置选区激光熔化加工模型,设置CO2激光器加工参数;所述选区激光熔化模型优选为立方体模型,模型尺寸设为5mm3,激光光斑直径设为1mm,激光功率250W,扫描速率160mm/s,粉末层厚为0.1mm。
第三步,将所述Al2O3-Gd2O3-ZrO2混合粉末铺设在Al2O3陶瓷基板上,关闭工作舱舱门,打开保护气瓶,开启洗气按钮,当氧含量降至小于0.001ppm后,打开CO2激光器,进行选区激光熔化,在氩气保护下层层堆积(总层数为10层)得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
实施例2~4
与实施例1的区别仅在于激光功率和扫描速率,具体见表1。
表1实施例1~4的加工参数
激光功率 扫描速率
实施例1 250W 160mm/s
实施例2 250W 140mm/s
实施例3 250W 200m/s
实施例4 260W 200m/s
对比例1~4
与实施例1~4的区别在于不进行高温致密化烧结,而是将球磨混合后所得混合粉体进行喷雾造粒,得到Al2O3-Gd2O3-ZrO2混合粉末,然后将Al2O3-Gd2O3-ZrO2混合粉末按照实施例1~4的步骤铺设到基板上进行选区激光熔化,得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
测试例1
实施例1~4及对比例1~4制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图如图1所示,其中图1中的(a)为实施例1制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图,图1中的(b)为实施例2制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图,图1中的(c)为实施例3制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图,图1中的(d)为实施例4制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图,图1中的(a1)为对比例1制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图,图1中的(b1)为对比例2制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图,图1中的(c1)为对比例3制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图,图1中的(d1)为对比例4制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的实物图。由图1可以看出,本发明制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷表面光滑,呈块状,试样成形质量相对对比例喷雾造粒后的粉末成形质量更好,无明显收缩。
采用阿基米德排水法测试试样密度。仪器型号为METTLER TOLEDO-XS205型。测量介质采用无水乙醇。不同凝固条件下的试样进行多次测量,一般情况测试5~10次,排除最大值和最小值,取平均后获得试样密度。实际密度与理论密度的百分比为相对密度。测试结果见表2。
测试例2
对实施例3制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷进行组织观察,结果如图2所示,图2中,(a)为横截面组织图;(a1)为横截面组织(a)图放大图;(b)为纵截面组织图;(b1)为纵截面组织(b)图放大图。由图2可知,本发明获得了超细化的纳米级(约30nm)的共晶组织,组织细化有助于提升材料的力学性能。
陶瓷试样SEM图像采集完成后,利用ImageJ 64SAAinc图像处理软件进行微观组织的共晶间距测量。采用划线法分别对横截面和纵截面进行共晶间距的测量统计。首先尽可能地垂直于两相相界面做直线,测出直线长度,同时记录直线通过的某一选定相的个数,将直线长度与单相个数的比值作为单次平均共晶间距。随后,在界面内的不同区域,重复该操作40~60次,对数据取平均值,获得该微观组织图像的共晶间距。测试结果见表2。
测试例3
采用压痕法测试实施例1~4制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的硬度和断裂韧性,具体方法为:将试样表面进行仔细研磨和抛光(粗糙度达0.5μm),以此消除表面残余应力的影响,提高测试精度;采用型号为SHIMADAU-G20ST的显微硬度仪,金刚石压头型号为S347-20344 Vickers Indentor 100D,9.8N载荷下,加载15s测试获得硬度和断裂韧性数据;不同区域进行测试10次,获得压痕数据代入公式进行计算并取平均值,实施例1~4制备的Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的硬度为17.1~18.1GPa,断裂韧性为3.1~3.66MPa·m1/2
硬度计算公式如式I所示:
Figure BDA0003730154090000091
式I中,P为压痕载荷,取9.8N;d为压痕对角线长度的平均值,单位为m;Hv单位为GPa。
断裂韧性计算公式如式II所示:
Figure BDA0003730154090000092
式II中,E(GPa)和Hv(GPa)分别代表材料的弹性模量和硬度;l为压痕中心到裂纹尖端的距离,单位为m;a为压痕半对角线长度,单位为m;因子φ=3。测试结果见表2。
表2实施例1~4的性能数据
相对密度(%) 共晶间距(nm) 硬度(GPa) 断裂韧性(MPa·m1/2)
实施例1 94.1 100 17.4 3.45
实施例2 94.8 90 18.1 3.66
实施例3 97 80 17.6 3.46
实施例4 95.2 130 17.1 3.43
注:对比例1~4的成形质量较差,很容易破碎,所以表2中没有对比例1~4的性能数据。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷的制备方法,其特征在于,包括以下步骤:
按照共晶配比,将Al2O3粉末、Gd2O3粉末、ZrO2粉末和粘结剂进行球磨混合,将所得混合粉末进行压制,得到预制体;
将所述预制体进行烧结,将烧结后的预制体进行破碎和过筛,得到Al2O3-Gd2O3-ZrO2混合粉末;所述烧结包括依次进行第一烧结、第二烧结和第三烧结;所述第一烧结的温度为500~800℃,保温时间为30~60分钟;所述第二烧结的温度为800~1200℃,保温时间为8~10小时;所述第三烧结的温度为1500~1600℃,保温时间为30~60分钟;
将所述Al2O3-Gd2O3-ZrO2混合粉末铺设到基板上进行选区激光熔化,得到Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,所述粘结剂的用量为Al2O3粉末、Gd2O3粉末和ZrO2粉末总质量的5~10%。
3.根据权利要求1所述的制备方法,其特征在于,所述Al2O3粉末的粒径为1~2μm;所述Gd2O3粉末的粒径为2~5μm;所述ZrO2粉末的粒径为1~5μm。
4.根据权利要求1所述的制备方法,其特征在于,所述球磨混合的转速为300~400rpm,时间为3~6小时。
5.根据权利要求1所述的制备方法,其特征在于,所述Al2O3-Gd2O3-ZrO2混合粉末的粒径为20~100μm,堆积密度为2.1~3.2g/cm3
6.根据权利要求1所述的制备方法,其特征在于,所述选区激光熔化的条件包括:激光光斑直径为0.1~1mm,激光功率为100~300W,扫描速率为100~300mm/s。
7.根据权利要求1所述的制备方法,其特征在于,所述选区激光熔化时,单层Al2O3-Gd2O3-ZrO2混合粉末堆积的厚度为0.04~0.5mm。
8.根据权利要求1或7所述的制备方法,其特征在于,所述选区激光熔化过程中堆积的层数为1~20层。
9.根据权利要求1所述的制备方法,其特征在于,所述选区激光熔化采用CO2激光器。
10.权利要求1~9任一项所述制备方法制备得到的高致密Al2O3/GdAlO3/ZrO2三元共晶凝固陶瓷,致密度在94.1%以上。
CN202210790855.3A 2022-07-05 2022-07-05 一种高致密块状共晶复合陶瓷的选区激光熔化制备方法 Active CN115124328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210790855.3A CN115124328B (zh) 2022-07-05 2022-07-05 一种高致密块状共晶复合陶瓷的选区激光熔化制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210790855.3A CN115124328B (zh) 2022-07-05 2022-07-05 一种高致密块状共晶复合陶瓷的选区激光熔化制备方法

Publications (2)

Publication Number Publication Date
CN115124328A CN115124328A (zh) 2022-09-30
CN115124328B true CN115124328B (zh) 2023-06-20

Family

ID=83382232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210790855.3A Active CN115124328B (zh) 2022-07-05 2022-07-05 一种高致密块状共晶复合陶瓷的选区激光熔化制备方法

Country Status (1)

Country Link
CN (1) CN115124328B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392081B (zh) * 2016-09-18 2019-02-22 广东工业大学 一种表层富含陶瓷相的硬质合金及其制备方法
JP7201401B2 (ja) * 2018-11-12 2023-01-10 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための粉末材料、これを用いた粉末積層造形法および造形物
CN109760173B (zh) * 2019-03-07 2020-11-20 西北工业大学 壁状Al2O3-GdAlO3-ZrO2三元共晶陶瓷的激光熔化成形方法
CN109761587B (zh) * 2019-03-07 2021-05-07 西北工业大学 一种制备Al2O3-GdAlO3-ZrO2三元共晶陶瓷的方法
CN110385430B (zh) * 2019-08-21 2022-02-08 西迪技术股份有限公司 一种3d打印的粉体材料
CN112191854B (zh) * 2020-06-22 2023-05-09 中北大学 一种3d打印用硬质合金粉末及其应用
CN112441834B (zh) * 2020-11-22 2022-08-02 西北工业大学 选择性激光熔化制备Al2O3-GdAlO3-ZrO2三元共晶陶瓷的方法

Also Published As

Publication number Publication date
CN115124328A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
Liu et al. Research on selective laser sintering of Kaolin–epoxy resin ceramic powders combined with cold isostatic pressing and sintering
Jayaseelan et al. High‐strength porous alumina ceramics by the pulse electric current sintering technique
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
Fayazfar et al. Additive manufacturing of high loading concentration zirconia using high-speed drop-on-demand material jetting
Du et al. Optimisation parameters for the extrusion of thin YSZ tubes for SOFC electrolytes
Chen et al. Fabrication of complicated silicon carbide ceramic components using combined 3D printing with gelcasting
Zeng et al. Fabrication and properties of tape‐cast laminated and functionally gradient alumina–titanium carbide materials
CN108439979A (zh) 用于牙科应用的、CeO2稳定的ZrO2陶瓷
CN115124328B (zh) 一种高致密块状共晶复合陶瓷的选区激光熔化制备方法
Faria et al. Influence of ink rheology and post processing in the structural performance of silicon nitride-based ceramics fabricated by robocasting
Jardiel et al. Optimization of the Processing of 8‐YSZ Powder by Powder Injection Molding for SOFC Electrolytes
CN104261822A (zh) 一种氧化锆复合陶瓷及其制备方法
Liu et al. Pressureless sintering behavior of injection molded alumina ceramics
JP4122431B2 (ja) 層状構造を有する酸化アルミニウム耐摩耗性部材及びその製造方法
CN109266941A (zh) 板状碳化钨-钴合金及其制备方法
Kitaoka et al. Toughening and strengthening of NiAl with Al2O3 by the addition of ZrO2 (3Y)
JP3317421B2 (ja) 炭化ケイ素/窒化ケイ素複合材料およびその製造方法
JPH0350154A (ja) セラミックス焼結体とその製造法
SAELEE et al. Microstructure and properties of zirconia-alumina composites fabricated via powder injection molding
Kim et al. Microstructure control of Al2O3/ZrO2 composite by fibrous monolithic process
RU2816230C1 (ru) Способ получения жаростойкого керамического материала для изделий сложной геометрической формы
JPS61256963A (ja) 高強度アルミナ焼結体及びその製造方法
Zhang et al. Mechanical properties and microstructure evolution of in-situ formation whiskers reinforced 3D-printed ZrO2 ceramics using material extrusion
JP7116234B1 (ja) 複合セラミックスの製造方法
Wang et al. Microstructure and properties of silicon nitride ceramics fabricated by vat photopolymerization in combination with pressureless sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant