CN115095326A - Method for determining height of dragline standing platform in throwing blasting-dragline reverse piling process - Google Patents
Method for determining height of dragline standing platform in throwing blasting-dragline reverse piling process Download PDFInfo
- Publication number
- CN115095326A CN115095326A CN202210795124.8A CN202210795124A CN115095326A CN 115095326 A CN115095326 A CN 115095326A CN 202210795124 A CN202210795124 A CN 202210795124A CN 115095326 A CN115095326 A CN 115095326A
- Authority
- CN
- China
- Prior art keywords
- dragline
- throwing
- dumping
- blasting
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/26—Methods of surface mining; Layouts therefor
- E21C41/28—Methods of surface mining; Layouts therefor for brown or hard coal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D3/00—Particular applications of blasting techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
技术领域technical field
本发明涉及煤炭露天开采领域,具体而言,涉及一种抛掷爆破-拉斗铲倒堆工艺拉斗铲站立平台高度确定方法。The invention relates to the field of coal open-pit mining, in particular to a method for determining the height of a standing platform of a dragline shovel in a throwing blasting-drawback dumping process.
背景技术Background technique
拉斗铲倒堆工艺是一种集采掘、运输、排弃于一体的合并式剥离工艺。该工艺采用大型拉斗铲作为倒堆剥离设备,将位于露天煤矿采场的剥离物直接采挖、倒排至内排土场。拉斗铲倒堆工艺通常与抛掷爆破技术相结合,通过抛掷爆破,将倒堆剥离台阶约30%的剥离物直接抛掷到内排土场采空区,从而大幅提高剥离生产效率,降低生产成本。The dragline dumping process is a combined stripping process that integrates mining, transportation and disposal. In this process, a large dragline is used as the dumping stripping equipment, and the stripped material located in the stope of the open-pit coal mine is directly excavated and discharged to the inner dump. The dragline dumping process is usually combined with the throwing blasting technology. Through throwing blasting, about 30% of the exfoliated objects in the dumping step are thrown directly into the goaf of the inner dump, thereby greatly improving the stripping production efficiency and reducing production costs. .
我国采用抛掷爆破-拉斗铲倒堆工艺的露天煤矿,首先在倒堆剥离台阶进行抛掷爆破,再由单斗-卡车工艺在推土机的配合下对爆堆进行必要的整平,最后拉斗铲在整平后的站立平台上进行倒堆剥离作业。In my country's open-pit coal mines using the throwing blasting-drag shovel dumping process, first throwing blasting is carried out on the dumping stripping step, and then the single bucket-truck technology is used to carry out the necessary leveling of the blasting pile with the cooperation of the bulldozer, and finally the dragline shovel Carry out the stacking stripping operation on the leveled standing platform.
拉斗铲倒堆作业工作面参数设计不合理将增大辅助工程量,降低拉斗铲作业效率与生产能力,增加剥离成本。在拉斗铲倒堆作业工作面参数中,拉斗铲站立平台高度直接影响拉斗铲站立平台宽度、拉斗铲倒堆作业循环时间、拉斗铲二次倒堆量、推土机或单斗挖掘机辅助剥离量,进而影响露天矿的生产成本及原煤生产能力,是较为重要的参数之一。因此,结合露天煤矿抛掷爆破爆堆形态、拉斗铲规格参数、露天矿原煤生产能力,确定合理的拉斗铲站立平台高度,对采用抛掷爆破-拉斗铲倒堆工艺的露天矿实现原煤生产持续稳定、充分发挥拉斗铲生产能力、降低开采成本等具有重要意义。The unreasonable design of the working face parameters of the dragline dumping operation will increase the amount of auxiliary works, reduce the work efficiency and production capacity of the dragline, and increase the stripping cost. In the working face parameters of dragline dumping operation, the height of dragline standing platform directly affects the width of dragline standing platform, the cycle time of dragline dumping operation, the secondary dumping amount of dragline, bulldozer or single bucket excavation The amount of machine-assisted stripping, which in turn affects the production cost and raw coal production capacity of the open pit mine, is one of the more important parameters. Therefore, according to the shape of the throwing blasting blasting pile, the specification parameters of the dragline shovel, and the raw coal production capacity of the opencast coal mine, the reasonable standing platform height of the dragline shovel is determined, and the raw coal production is realized for the opencast mine using the throwing blasting-drawing shovel dumping process. It is of great significance to maintain stability, give full play to the production capacity of draglines, and reduce mining costs.
也就是说,现有技术中抛掷爆破-拉斗铲倒堆工艺存在由于拉斗铲站立平台高度设计不合理而导致的拉斗铲作业效率低的问题。That is to say, in the prior art, the throwing blasting and dragline dumping process has the problem of low operation efficiency of the dragline due to the unreasonable height design of the standing platform of the dragline.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种抛掷爆破-拉斗铲倒堆工艺拉斗铲站立平台高度确定方法,以解决现有技术中抛掷爆破-拉斗铲倒堆工艺由于拉斗铲站立平台高度设计不合理而导致拉斗铲作业效率低的问题。The main purpose of the present invention is to provide a method for determining the height of the standing platform of the dragline shovel in the process of throwing and blasting - dragline dumping, so as to solve the problem of the throwing blasting - dragline dumping process in the prior art due to the design of the height of the standing platform of the dragline shovel. Unreasonable and lead to the problem of low efficiency of dragline operations.
为了实现上述目的,根据本发明的一个方面,提供了一种抛掷爆破-拉斗铲倒堆工艺拉斗铲站立平台高度确定方法,包括:步骤S10:基于抛掷爆破爆堆形态历史数据,建立抛掷爆破台阶高度与有效抛掷率的回归方程f(H抛);步骤S20:基于抛掷爆破爆堆形态历史数据,建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站);建立拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站);步骤S30:根据公式(1)确定充分发挥拉斗铲生产能力、确保原煤生产持续稳定情况下的拉斗铲站立平台高度,In order to achieve the above object, according to one aspect of the present invention, there is provided a method for determining the height of a standing platform of a dragline shovel in a throwing blasting-drawback dump process, comprising: Step S10: Based on the historical data of the throwing blasting blasting pile shape, establish a throwing blasting process Regression equation f(H throw ) of blasting step height and effective throwing rate; Step S20: Based on the historical data of blasting pile shape of throwing blasting, establish the proportion of dragline dumping operation in the total stripping operation and dragline standing The regression equation k of the platform height (H station ); establish the regression equation g (H station) of the proportion of the secondary dumping amount of the dragline in the total dumping operation and the standing platform height of the dragline (H station ); Step S30: According to Formula (1) determines the standing platform height of the dragline shovel under the condition that the production capacity of the dragline shovel can be fully utilized and the production of raw coal can be ensured continuously and stably.
其中,H抛为抛掷爆破台阶高度,单位为m;b为抛掷爆破台阶采掘带宽度,单位为m;λ为抛掷爆破松散系数;H站为拉斗铲站立平台高度,单位为m;M2为抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量,单位为m3;H煤为原煤平均厚度,单位为m;l煤为原煤工作线长度,单位为m;γ为原煤容重,单位为t/m3;M煤为原煤年生产能力,单位为Mt/a;l倒为倒堆工作线长度,单位为m。Among them, H throw is the height of the throwing blasting step, the unit is m; b is the width of the excavation belt of the throwing blasting step, the unit is m ; is the annual dumping operation volume of the dragline in the throwing blasting-dragline dumping system, the unit is m 3 ; H coal is the average thickness of the raw coal, the unit is m; l coal is the length of the raw coal working line, the unit is m; γ is the The bulk density of raw coal, the unit is t/m 3 ; M coal is the annual production capacity of raw coal, the unit is Mt /a; l is the length of the stacking working line, the unit is m.
进一步地,步骤S10中包括:收集整理抛掷爆破爆堆的形态数据;统计分析不同抛掷爆破台阶高度条件下的有效抛掷率;通过对不同抛掷爆破台阶高度条件下的有效抛掷率的回归分析,建立抛掷爆破台阶高度与有效抛掷率的回归方程f(H抛)。Further, step S10 includes: collecting and arranging morphological data of the throwing blasting stack; statistically analyzing the effective throwing rates under different throwing and blasting step height conditions; The regression equation f(H- throwing ) between the height of the throwing blasting step and the effective throwing rate.
进一步地,步骤S20包括:收集整理抛掷爆破爆堆的形态历史数据;绘制不同抛掷爆破台阶高度、不同拉斗铲站立平台高度条件下的抛掷爆破-拉斗铲倒堆系统各环节作业截面积剖面图;统计分析不同抛掷爆破台阶高度、不同拉斗铲站立平台高度条件下,抛掷爆破-拉斗铲倒堆系统内各环节作业的截面积;根据不同抛掷爆破台阶高度、不同拉斗铲站立平台高度下的抛掷爆破-拉斗铲倒堆系统内各环节作业的截面积,建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站);建立拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站)。Further, step S20 includes: collecting and arranging the shape history data of the throwing blasting and blasting pile; drawing the operation cross-sectional area profile of each link of the throwing blasting-drawing bucket dumping pile system under the conditions of different throwing blasting step heights and different dragline standing platform heights Figure: Statistical analysis of the cross-sectional area of each link operation in the throwing blasting-drawback dumping system under the conditions of different throwing and blasting step heights and different dragline standing platform heights; Throwing blasting at the height - the cross-sectional area of each link in the dragline dumping system, establish the regression equation k(H Station ); establish the regression equation g (H station ) of the proportion of the secondary dumping amount of the dragline in the total dumping operation and the height of the standing platform of the dragline.
进一步地,在步骤S20和S30之间还包括:根据公式(2)和拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站)确定拉斗铲倒堆作业截面积S拉,Further, between steps S20 and S30, it also includes: according to formula (2) and the regression equation k ( station H) of the proportion of the dragline dumping operation in the total stripping operation and the height of the dragline standing platform Determine the cross-sectional area S pull of the dragline shovel dumping operation,
S=S1+S2+S3=H抛·b·λ·[1-f(H抛)]·[1+g(H站)] 公式(2);S=S 1 +S 2 +S 3 =H throw ·b·λ·[1-f(H throw )]·[1+g(H station )] Formula (2);
S拉=S2+S3=H抛·b·λ·[1-f(H抛)]·(1+g(H站))·k(H站) 公式(3);S pull =S 2 +S 3 =H throw ·b·λ·[1-f(H throw )]·(1+g(H station ))·k(H station ) Formula (3);
公式(1)由公式(3)和公式(4)得到,Equation (1) is obtained from Equation (3) and Equation (4),
其中,S为抛掷爆破-拉斗铲倒堆系统作业截面积,单位为m2;S1为单斗-卡车工艺辅助作业截面积,单位为m2;S2为拉斗铲倒堆作业一次倒堆截面积,单位为m2;S3为拉斗铲倒堆作业二次倒堆截面积,单位为m2;H抛为抛掷爆破台阶高度,单位为m;b为抛掷爆破台阶采掘带宽度,单位为m;λ为抛掷爆破松散系数;H站为拉斗铲站立平台高度,单位为m;S拉为拉斗铲倒堆作业截面积,单位为m2;M2为抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量,单位为m3;H煤为原煤平均厚度,单位为m;l煤为原煤工作线长度,单位为m;γ为原煤容重,单位为t/m3;M煤为原煤年生产能力,单位为Mt/a;l倒为倒堆工作线长度,单位为m。Among them, S is the operating sectional area of the throwing blasting-draw bucket dumping system, the unit is m 2 ; S 1 is the single bucket-truck process auxiliary operation sectional area, the unit is m 2 ; S 2 is the drag bucket dumping operation once The cross-sectional area of the dumping pile, the unit is m 2 ; S 3 is the cross-sectional area of the second dumping dumping operation of the dragline, the unit is m 2 ; H throw is the height of the throwing blasting step, the unit is m; b is the throwing blasting step mining zone Width, the unit is m; λ is the throwing blasting loosening coefficient; H is the standing platform height of the dragline, the unit is m; Spu is the sectional area of the dragline dumping operation, the unit is m2 ; M2 is the throwing blasting- In the dragline dumping system, the annual amount of dragline dumping, the unit is m 3 ; H coal is the average thickness of raw coal, the unit is m; l coal is the length of the raw coal working line, the unit is m; γ is the raw coal bulk density, the unit is t/m 3 ; M coal is the annual production capacity of raw coal, and the unit is Mt /a; l is the length of the stacking working line, and the unit is m.
进一步地,在公式(1)由公式(3)和公式(4)得到的过程中还包括:根据工作线年推进度T’建立倒堆系统年作业量与原煤年生产能力的函数关系式,Further, in the process of obtaining formula (1) from formula (3) and formula (4), it also includes: establishing a functional relationship between the annual operation volume of the stacking system and the annual production capacity of raw coal according to the annual advancement degree T' of the working line,
根据公式(5)建立抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量与拉斗铲倒堆作业截面积S拉的函数关系式,According to the formula (5), the functional relationship between the annual dragline dumping operation volume and the dragline dumping cross-sectional area S pull in the throwing blasting- dragline dumping system is established,
其中,M倒为倒堆系统年作业量,单位为m3;S为抛掷爆破-拉斗铲倒堆系统作业截面积,单位为m2;S2为拉斗铲倒堆作业一次倒堆截面积,单位为m2;S3为拉斗铲倒堆作业二次倒堆截面积,单位为m2;H抛为抛掷爆破台阶高度,单位为m;b为抛掷爆破台阶采掘带宽度,单位为m;λ为抛掷爆破松散系数;M2为抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量,单位为m3;H煤为原煤平均厚度,单位为m;l煤为原煤工作线长度,单位为m;γ为原煤容重,单位为t/m3;M煤为原煤年生产能力,单位为Mt/a;l倒为倒堆工作线长度,单位为m;T’为工作线年推进度,单位为m/a。Among them, M is the annual operation volume of the dumping system, the unit is m 3 ; S is the operation cross-sectional area of the throwing blasting-draw bucket dumping system, the unit is m 2 ; S 2 is the dumping interception of one dragging operation. Area, the unit is m 2 ; S 3 is the cross-sectional area of the secondary dumping of the drag bucket dumping operation, the unit is m 2 ; H throw is the height of the throwing blasting step, the unit is m; b is the width of the excavation belt of the throwing blasting step, the unit is m; λ is the loosening coefficient of throwing blasting; M 2 is the annual amount of dragline dumping operation in throwing blasting-drawback dumping system, the unit is m 3 ; H coal is the average thickness of raw coal, the unit is m; l coal is the length of the raw coal working line, the unit is m; γ is the bulk density of the raw coal, the unit is t/m 3 ; M is the annual production capacity of the raw coal , the unit is Mt/a; l is the stacking working line length, the unit is m; T ' is the annual advancement of the working line, in m/a.
进一步地,在步骤S10中,建立一元二次回归方程f(H抛)。Further, in step S10, a quadratic regression equation f(H throw ) is established.
进一步地,在步骤S20中,建立一元二次回归方程k(H站)。Further, in step S20, a quadratic regression equation k(H station ) is established.
进一步地,在步骤S20中,建立一元二次回归方程g(H站)。Further, in step S20, a quadratic regression equation g(H station ) is established.
应用本发明的技术方案,抛掷爆破-拉斗铲倒堆工艺拉斗铲站立平台高度确定方法包括:步骤S10:基于抛掷爆破爆堆形态历史数据,建立抛掷爆破台阶高度与有效抛掷率的回归方程f(H抛);步骤S20:基于抛掷爆破爆堆形态历史数据,建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站);建立拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站);步骤S30:根据公式(1)确定充分发挥拉斗铲生产能力、确保原煤生产持续稳定情况下的拉斗铲站立平台高度,Applying the technical solution of the present invention, the method for determining the height of the standing platform of the dragline shovel in the throwing blasting-drawback dumping process includes: Step S10: Based on the historical data of the throwing blasting blast pile shape, establish a regression equation between the throwing blasting step height and the effective throwing rate f(H throwing ); Step S20: Based on the historical data of the blasting pile shape of throwing blasting, establish a regression equation k (H station ) of the proportion of the dragline dumping operation amount in the total stripping operation and the dragline standing platform height ; Establish the regression equation g (H station ) of the proportion of the secondary dumping amount of the dragline in the total dumping operation and the height of the dragline standing platform; Step S30: Determine according to formula (1) to give full play to the dragline production capacity, the height of the standing platform of the dragline shovel to ensure the continuous and stable production of raw coal,
其中,H抛为抛掷爆破台阶高度,单位为m;b为抛掷爆破台阶采掘带宽度,单位为m;λ为抛掷爆破松散系数;M2为抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量,m3;H煤为原煤平均厚度,单位为m;l煤为原煤工作线长度,单位为m;γ为原煤容重,单位为t/m3;M煤为原煤年生产能力,单位为Mt/a;l倒为倒堆工作线长度,单位为m。Among them, H is the height of the throwing blasting step, the unit is m; b is the width of the mining belt of the throwing blasting step, the unit is m; λ is the throwing blasting loosening coefficient ; Annual dumping operation volume, m 3 ; H coal is the average thickness of raw coal, in m; l coal is the length of the raw coal working line, in m; γ is the bulk density of raw coal, in t/m 3 ; M coal is the annual production of raw coal Capacity, the unit is Mt /a; l is the length of the stacking working line, the unit is m.
通过步骤S10,分析抛掷爆破爆堆形态历史数据,能够明确剥离台阶抛掷爆破后形成的爆堆曲线形状,统计不同抛掷爆破台阶高度下的有效抛掷率,便于明确抛掷爆破台阶高度与有效抛掷率之间的关系,建立抛掷爆破台阶高度与有效抛掷率的回归方程f(H抛),从而对不同抛掷爆破台阶高度下的有效抛掷率进行预测。Through step S10, analyzing the historical data of the blasting pile shape of the throwing blasting, the shape of the blasting pile curve formed after the throwing blasting of the stripping step can be determined, and the effective throwing rate under different throwing blasting step heights can be counted, which is convenient to clarify the difference between the throwing blasting step height and the effective throwing rate. The relationship between the throwing blasting step height and the effective throwing rate f(H throwing ) is established to predict the effective throwing rate under different throwing blasting step heights.
需要说明的是,在剥离台阶抛掷爆破后,一部分剥离物被直接抛掷到内排土场拉斗铲倒堆排弃的排土堆范围内,此部分被称为有效抛掷量,不需要再经拉斗铲倒堆剥离。有效抛掷量在全部抛掷爆破量中所占的比率为有效抛掷率。在抛掷爆破区域地质条件、抛掷爆破参数均没有发生较大变化时,抛掷爆破台阶有效抛掷率主要受抛掷爆破台阶高度影响。It should be noted that after the stripping step is thrown and blasted, a part of the exfoliated material is directly thrown into the dumping area of the inner dumping yard, which is called the effective throwing amount and does not need to be Pull bucket to dump the pile for stripping. The ratio of the effective throwing volume to the total throwing blasting volume is the effective throwing rate. When the geological conditions of the throwing blasting area and throwing blasting parameters have not changed greatly, the effective throwing rate of throwing blasting steps is mainly affected by the height of throwing blasting steps.
通过步骤S20,分析抛掷爆破爆堆形态历史数据,能够明确拉斗铲站立平台高度对拉斗铲倒堆作业量、拉斗铲二次倒堆量、剥离作业总量以及倒堆作业总量的影响,建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站),以及拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站),对不同的拉斗铲站立平台高度下的拉斗铲倒堆作业量、拉斗铲二次倒堆量、剥离作业总量以及倒堆作业总量进行预测。Through step S20, analyzing the historical data of the shape of the throwing blasting blasting pile, it is possible to clarify the relationship between the height of the standing platform of the dragline shovel on the stacking operation volume of the dragline shovel, the secondary stacking volume of the dragline shovel, the total amount of stripping operations, and the total amount of stacking operations. Influence, establish the regression equation k ( station H) of the proportion of the dragline dumping operation in the total stripping operation and the height of the dragline standing platform, and the secondary dumping amount of the dragline in the total dumping operation Regression equation g(H station ) of the proportion of in and the height of the standing platform of the dragline shovel. The total amount and the total amount of dumping operations are forecasted.
需要说明的是,剥离台阶抛掷爆破后的有效抛掷量,不需要再经拉斗铲倒堆剥离,抛掷爆破爆堆上分层由单斗-卡车工艺在推土机辅助下进行整平,抛掷爆破爆堆整平后形成拉斗铲倒堆作业站立平台,站立平台外侧扩展部分由爆堆上分层剥离物构筑而成,此部分剥离物需要经拉斗铲二次倒堆倒排至内排土场,此部分剥离量即拉斗铲二次倒堆量。It should be noted that the effective throwing volume after the throwing blasting of the stripping step does not need to be stripped by the drag bucket. After the pile is leveled, a standing platform for dragline dumping operation is formed. The outer extension part of the standing platform is constructed by the layered exfoliation on the blasting heap. In the field, the peeling amount of this part is the secondary dumping amount of the dragline shovel.
通过步骤S30,通过公式(1)确定拉斗铲站立平台高度,以便充分发挥拉斗铲生产能力,确保原煤生产接续,降低抛掷爆破-拉斗铲倒堆工艺系统剥离成本,提高开采效率。Through step S30, the standing platform height of the dragline is determined by formula (1), so as to give full play to the production capacity of the dragline, ensure the continuous production of raw coal, reduce the stripping cost of the throwing blasting-drawback dumping process system, and improve the mining efficiency.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings forming a part of the present application are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1示出了根据本发明一个可选实施例的采煤与拉斗铲倒堆作业示意图;Figure 1 shows a schematic diagram of coal mining and dragline dumping operations according to an optional embodiment of the present invention;
图2示出了图1中的抛掷爆破-拉斗铲倒堆工艺系统有效抛掷量剖面示意图;FIG. 2 shows a schematic cross-sectional schematic diagram of the effective throwing amount of the throwing blasting-draw bucket dumping process system in FIG. 1;
图3示出了图1中的抛掷爆破-拉斗铲倒堆系统各环节作业区域截面图;Fig. 3 shows a cross-sectional view of the operation area of each link of the throwing blasting-draw bucket dumping system in Fig. 1;
图4示出了图1中综合开采工艺系统布置示意图;Figure 4 shows a schematic diagram of the layout of the integrated mining process system in Figure 1;
图5示出了图1中的抛掷爆破台阶高度35m时的爆堆剖面图;Fig. 5 shows the sectional view of the blasting stack when the height of the throwing blasting step in Fig. 1 is 35m;
图6示出了图1中的抛掷爆破台阶高度40m时的爆堆剖面图;Fig. 6 shows the sectional view of the blasting stack when the height of the throwing blasting step in Fig. 1 is 40m;
图7示出了图1中的抛掷爆破台阶高度45m时的爆堆剖面图;Fig. 7 shows the sectional view of the blasting stack when the height of the throwing blasting step in Fig. 1 is 45m;
图8示出了图1中的抛掷爆破台阶高度50m时的爆堆剖面图;Fig. 8 shows the sectional view of the blasting stack when the height of the throwing blasting step in Fig. 1 is 50m;
图9示出了图1中的抛掷爆破台阶高度与有效抛掷率关系;Fig. 9 shows the relationship between the throwing blasting step height and the effective throwing rate in Fig. 1;
图10示出了图1中的抛掷爆破-拉斗铲倒堆工艺系统内各环节作业量剖面图;Fig. 10 shows the sectional view of the workload of each link in the throwing blasting-draw bucket dumping process system in Fig. 1;
图11示出了图1中的抛掷爆破台阶高度40m时倒堆系统中各部分作业量占比;Figure 11 shows the proportion of the work volume of each part of the dumping system when the height of the throwing blasting step in Figure 1 is 40m;
图12示出了图1中的抛掷爆破台阶高度45m时倒堆系统中各部分作业量占比;Fig. 12 shows the proportion of the workload of each part in the dumping system when the height of the throwing blasting step in Fig. 1 is 45m;
图13示出了图1中的抛掷爆破台阶高度50m时倒堆系统中各部分作业量占比;Figure 13 shows the proportion of the work volume of each part in the dumping system when the height of the throwing blasting step in Figure 1 is 50m;
图14示出了图1中抛掷爆破-拉斗铲倒堆工艺拉斗铲站立平台高度确定方法的流程图。FIG. 14 is a flow chart showing the method for determining the height of the standing platform of the dragline bucket in the throwing blasting-drawback dumping process in FIG. 1 .
其中,上述附图包括以下附图标记:Wherein, the above-mentioned drawings include the following reference signs:
1、排土堆;2、拉斗铲;3、拉斗铲站立平台;4、煤层顶板;5、电铲;6、抛掷爆破爆堆;7、运煤通道;8、卡车排弃黄土;9、卡车排弃岩石;10、黄土层;11、上部岩层;12、下部岩层;13、煤层。1. Mound dump; 2. Dragline; 3. Standing platform of dragline; 4. Coal seam roof; 5. Electric shovel; 6. Throwing blasting pile; 7. Coal transport channel; 9. The truck discards the rock; 10. The loess layer; 11. The upper rock layer; 12. The lower rock layer; 13. The coal seam.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present invention will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that, unless otherwise specified, all technical and scientific terms used in this application have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。In the present invention, unless otherwise stated, the directional words used such as "upper, lower, top, bottom" are usually for the directions shown in the drawings, or for the components themselves in vertical, In terms of vertical or gravitational direction; similarly, for the convenience of understanding and description, "inner and outer" refers to the inner and outer relative to the contour of each component itself, but the above-mentioned orientation words are not used to limit the present invention.
为了解决现有技术中抛掷爆破-拉斗铲倒堆工艺由于拉斗铲站立平台高度设计不合理而导致拉斗铲作业效率低的问题,本发明提供了一种抛掷爆破-拉斗铲倒堆工艺拉斗铲站立平台高度确定方法。In order to solve the problem of low dragline operation efficiency caused by the unreasonable height design of the standing platform of the dragline shovel in the prior art throwing blasting - dragline dumping process, the present invention provides a throwing blasting - dragline dumping stacking A method for determining the height of a standing platform of a craft dragline.
如图1至图14所示,抛掷爆破-拉斗铲倒堆工艺拉斗铲站立平台高度确定方法包括:步骤S10:基于抛掷爆破爆堆6形态历史数据,建立抛掷爆破台阶高度与有效抛掷率的回归方程f(H抛);步骤S20:基于抛掷爆破爆堆6形态历史数据,建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站);建立拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站);步骤S30:根据公式(1)确定充分发挥拉斗铲生产能力、确保原煤生产持续稳定情况下的拉斗铲站立平台高度,As shown in Fig. 1 to Fig. 14, the method for determining the height of the standing platform of the dragline shovel in the throwing blasting-drawback dumping process includes: Step S10: Based on the historical data of the
其中,H抛为抛掷爆破台阶高度,单位为m;b为抛掷爆破台阶采掘带宽度,单位为m;λ为抛掷爆破松散系数;H站为拉斗铲站立平台高度,单位为m;M2为抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量,单位为m3;H煤为原煤平均厚度,单位为m;l煤为原煤工作线长度,单位为m;γ为原煤容重,单位为t/m3;M煤为原煤年生产能力,单位为Mt/a;l倒为倒堆工作线长度,单位为m。Among them, H throw is the height of the throwing blasting step, the unit is m; b is the width of the excavation belt of the throwing blasting step, the unit is m ; is the annual dumping operation volume of the dragline in the throwing blasting-dragline dumping system, the unit is m 3 ; H coal is the average thickness of the raw coal, the unit is m; l coal is the length of the raw coal working line, the unit is m; γ is the The bulk density of raw coal, the unit is t/m 3 ; M coal is the annual production capacity of raw coal, the unit is Mt /a; l is the length of the stacking working line, the unit is m.
通过步骤S10,分析抛掷爆破爆堆6的形态历史数据,能够明确剥离台阶抛掷爆破后形成的抛掷爆破爆堆6的曲线形状,统计不同抛掷爆破台阶高度下的有效抛掷率,便于明确抛掷爆破台阶高度与有效抛掷率之间的关系,建立抛掷爆破台阶高度与有效抛掷率的回归方程f(H抛),从而对不同抛掷爆破台阶高度下的有效抛掷率进行预测。Through step S10, analyzing the shape history data of the throwing blasting
需要说明的是,如图2所示,在剥离台阶抛掷爆破后,一部分剥离物被直接抛掷到内排土场拉斗铲倒堆排弃的排土堆1范围内,此部分被称为有效抛掷量,不需要再经拉斗铲倒堆剥离(如图2中的阴影部分所示)。有效抛掷量在全部抛掷爆破量中所占的比率为有效抛掷率。在抛掷爆破区域地质条件、抛掷爆破参数均没有发生较大变化时,抛掷爆破台阶有效抛掷率主要受抛掷爆破台阶高度影响。It should be noted that, as shown in Figure 2, after the stripping step is thrown and blasted, a part of the exfoliated material is directly thrown into the
通过步骤S20,分析抛掷爆破爆堆6的形态历史数据,能够明确拉斗铲站立平台高度对拉斗铲倒堆作业量、拉斗铲二次倒堆量、剥离作业总量以及倒堆作业总量的影响,建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站),以及拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站),对不同拉斗铲站立平台高度下的拉斗铲倒堆作业量、拉斗铲二次倒堆量、剥离作业总量以及倒堆作业总量进行预测。Through step S20, analyzing the shape history data of the throwing blasting
需要说明的是,剥离台阶抛掷爆破后的有效抛掷量,不需要再经拉斗铲倒堆剥离,抛掷爆破爆堆6上分层由单斗-卡车工艺在推土机辅助下进行整平,抛掷爆破爆堆6整平后形成拉斗铲倒堆作业站立平台,站立平台外侧扩展部分由抛掷爆破爆堆6上分层剥离物构筑而成,此部分剥离物需要经拉斗铲二次倒堆倒排至内排土场,此部分剥离量即拉斗铲二次倒堆量。It should be noted that the effective throwing amount after the throwing blasting of the stripping step does not need to be stripped by a drag shovel. The upper layer of the throwing
通过步骤S30,通过公式(1)确定拉斗铲站立平台高度,以便充分发挥拉斗铲生产能力,确保原煤生产接续,降低抛掷爆破-拉斗铲倒堆工艺系统剥离成本,提高开采效率。Through step S30, the standing platform height of the dragline is determined by formula (1), so as to give full play to the production capacity of the dragline, ensure the continuous production of raw coal, reduce the stripping cost of the throwing blasting-drawback dumping process system, and improve the mining efficiency.
具体的,步骤S10中包括:收集整理抛掷爆破爆堆6的形态数据;统计分析不同抛掷爆破台阶高度条件下的有效抛掷率;通过对不同抛掷爆破台阶高度条件下的有效抛掷率的回归分析,建立抛掷爆破台阶高度与有效抛掷率的回归方程f(H抛)。在收集整理抛掷爆破爆堆6的形态数据的过程中,能够根据煤矿开采的实际情况选取最接近的一些抛掷爆破爆堆6的形态,进行统计分析不同抛掷爆破台阶高度条件下的有效抛掷率,进而对有效抛掷率进行回归分析,通过回归方程f(H抛)预测不同的抛掷爆破台阶高度下的有效抛掷率。Specifically, step S10 includes: collecting and arranging the morphological data of the
如图3所示,步骤S20包括:收集整理抛掷爆破爆堆6的形态历史数据;绘制不同抛掷爆破台阶高度、不同拉斗铲站立平台高度条件下的抛掷爆破-拉斗铲倒堆系统各环节作业截面积剖面图;统计分析不同抛掷爆破台阶高度、不同拉斗铲站立平台高度条件下,抛掷爆破-拉斗铲倒堆系统内各环节作业的截面积;根据不同抛掷爆破台阶高度、不同拉斗铲站立平台高度下的抛掷爆破-拉斗铲倒堆系统内各环节作业的截面积,建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站);建立拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站)。As shown in FIG. 3 , step S20 includes: collecting and sorting out the shape history data of the throwing and
在收集整理抛掷爆破爆堆6的形态数据的过程中,能够根据煤矿开采的实际情况选取最接近的抛掷爆破爆堆6的形态,在一个确定的抛掷爆破台阶高度以及拉斗铲站立平台高度的条件下,能够得到抛掷爆破-拉斗铲倒堆系统各环节作业截面积剖面图,便于得到抛掷爆破-拉斗铲倒堆系统内各环节作业的截面积,也就是单斗-卡车工艺辅助作业、拉斗铲一次倒堆作业、拉斗铲二次倒堆作业、拉斗铲站立平台3外侧无需倒堆作业和抛掷爆破有效抛掷量的截面积,进而便于分析拉斗铲倒堆作业量在剥离作业总量中的占比以及拉斗铲二次倒堆量在倒堆作业总量中的占比。In the process of collecting and arranging the shape data of the
需要说明的是,在绘制抛掷爆破-拉斗铲倒堆系统各环节作业截面积剖面图时,需要先扫描抛掷爆破爆堆6的历史形态图,再根据扫描图像绘制各环节作业截面积剖面图。It should be noted that, when drawing the cross-sectional area sectional diagram of each link of the throwing blasting-draw bucket dumping system, it is necessary to scan the historical shape diagram of the throwing
在该抛掷爆破台阶高度条件下,选取不同的拉斗铲站立平台高度,重复上述过程,统计分析数据,能够建立拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站)以及拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度的回归方程g(H站),从而对不同的拉斗铲站立平台高度下的拉斗铲倒堆作业量、拉斗铲二次倒堆量和倒堆作业总量进行预测。Under the condition of the height of the throwing blasting step, selecting different platform heights of the dragline shovel, repeating the above process, and analyzing the data statistically, the proportion of the dragline dumping operation in the total stripping operation can be established and the dragline standing The regression equation k ( station H) of the platform height and the proportion of the secondary dumping amount of the dragline in the total dumping operation and the regression equation g ( station H) of the standing platform height of the dragline shovel, so that the different pull The dragline dumping volume, the second dragline dumping volume and the total dumping volume are predicted at the height of the bucket bucket standing platform.
改变抛掷爆破台阶高度,重复上述过程,实现对不同抛掷爆破台阶高度、不同拉斗铲站立平台高度的统计分析。Change the height of the throwing blasting step and repeat the above process to achieve statistical analysis of different throwing blasting step heights and different dragline standing platform heights.
需要说明的是,抛掷爆破台阶高度和拉斗铲站立平台高度不是随意选取的,而是根据实际露天煤矿开采情况的历史数据确定范围,保证分析的内容不脱离生产实际的需要。It should be noted that the height of the throwing blasting step and the height of the standing platform of the dragline are not randomly selected, but the range is determined according to the historical data of the actual open-pit coal mining situation to ensure that the content of the analysis does not deviate from the actual production needs.
需要说明的是,单斗-卡车工艺辅助作业截面积S1与拉斗铲倒堆作业二次倒堆截面积S3、拉斗铲站立平台3外侧无需倒堆作业部分的截面积S4、之间满足以下关系:It should be noted that the cross-sectional area S 1 of the auxiliary operation of the single bucket-truck process, the cross-sectional area S 3 of the secondary dumping operation of the dragline dumping operation, the cross-sectional area S 4 of the outside of the standing
S1=ky·(S3+S4) 公式(6);S 1 = ky ·(S 3 +S 4 ) formula (6);
其中,ky为抛掷爆破爆堆6整平后的压实系数。Among them, ky is the compaction coefficient of the
需要说明的是,抛掷爆破有效抛掷量截面积S5可以通过公式(7)进行限定,It should be noted that the effective throwing amount cross-sectional area S5 of throwing blasting can be limited by formula ( 7 ),
S5=H抛·b·λ·f(H抛) 公式(7)。S 5 =H throw ·b·λ·f(H throw ) Formula (7).
具体的,在步骤S20和S30之间还包括:根据公式(2)和拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站)确定拉斗铲倒堆作业截面积S拉;Specifically, between steps S20 and S30, it also includes: according to formula (2) and the regression equation k ( station H) of the proportion of the dragline dumping operation in the total stripping operation and the height of the dragline standing platform Determine the cross-sectional area S of the dragline dumping operation;
S=S1+S2+S3=H抛·b·λ·[1-f(H抛)]·[1+g(H站)] 公式(2);S=S 1 +S 2 +S 3 =H throw ·b·λ·[1-f(H throw )]·[1+g(H station )] Formula (2);
S拉=S2+S3=H抛·b·λ·[1-f(H抛)]·(1+g(H站))·k(H站) 公式(3);S pull =S 2 +S 3 =H throw ·b·λ·[1-f(H throw )]·(1+g(H station ))·k(H station ) Formula (3);
公式(1)由公式(3)和公式(4)得到,Equation (1) is obtained from Equation (3) and Equation (4),
其中,S为抛掷爆破-拉斗铲倒堆系统作业截面积,单位为m2;S1为单斗-卡车工艺辅助作业截面积,单位为m2;S2为拉斗铲倒堆作业一次倒堆截面积,单位为m2;S3为拉斗铲倒堆作业二次倒堆截面积,单位为m2;H抛为抛掷爆破台阶高度,单位为m;b为抛掷爆破台阶采掘带宽度,单位为m;λ为抛掷爆破松散系数;H站为拉斗铲站立平台高度,单位为m;S拉为拉斗铲倒堆作业截面积,单位为m2;M2为抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量,单位为m3;H煤为原煤平均厚度,单位为m;l煤为原煤工作线长度,单位为m;γ为原煤容重,单位为t/m3;M煤为原煤年生产能力,单位为Mt/a;l倒为倒堆工作线长度,单位为m。Among them, S is the operating sectional area of the throwing blasting-draw bucket dumping system, the unit is m 2 ; S 1 is the single bucket-truck process auxiliary operation sectional area, the unit is m 2 ; S 2 is the drag bucket dumping operation once The cross-sectional area of the dumping pile, the unit is m 2 ; S 3 is the cross-sectional area of the second dumping dumping operation of the dragline, the unit is m 2 ; H throw is the height of the throwing blasting step, the unit is m; b is the throwing blasting step mining zone Width, the unit is m; λ is the throwing blasting loosening coefficient; H is the standing platform height of the dragline, the unit is m; Spu is the sectional area of the dragline dumping operation, the unit is m2 ; M2 is the throwing blasting- In the dragline dumping system, the annual amount of dragline dumping, the unit is m 3 ; H coal is the average thickness of raw coal, the unit is m; l coal is the length of the raw coal working line, the unit is m; γ is the raw coal bulk density, the unit is t/m 3 ; M coal is the annual production capacity of raw coal, and the unit is Mt /a; l is the length of the stacking working line, and the unit is m.
通过拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度的回归方程k(H站)和抛掷爆破-拉斗铲倒堆系统作业截面积,能够得到拉斗铲倒堆作业截面积S拉;而抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量可以由公式(4)得到,也就是抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量可以由拉斗铲倒堆作业截面积对应得到。Through the regression equation k(H station ) of the proportion of the dragline dumping operation volume in the total stripping operation and the height of the dragline standing platform and the operating cross-sectional area of the throwing blasting-drawbine dumping system, the dragline can be obtained. The cross-sectional area S of shoveling and dumping; and the annual amount of dragline dumping in the throwing blasting-draw bucket dumping system can be obtained from formula (4), that is, the pulling bucket in the throwing blasting-drawing bucket dumping system The annual amount of dumping work can be obtained from the cross-sectional area of the dragline dumping operation.
具体的,在公式(1)由公式(3)和公式(4)得到的过程中还包括:根据工作线年推进度T’建立倒堆系统年作业量与原煤年生产能力的函数关系式,Specifically, the process of obtaining formula (1) from formula (3) and formula (4) also includes: establishing a functional relationship between the annual operation volume of the stacking system and the annual production capacity of raw coal according to the annual advancement degree T' of the working line,
根据公式(5)建立抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量与拉斗铲倒堆作业截面积S拉的函数关系式,According to the formula (5), the functional relationship between the annual dragline dumping operation volume and the dragline dumping cross-sectional area S pull in the throwing blasting- dragline dumping system is established,
其中,M倒为倒堆系统年作业量,单位为m3;S为抛掷爆破-拉斗铲倒堆系统作业截面积,单位为m2;S2为拉斗铲倒堆作业一次倒堆截面积,单位为m2;S3为拉斗铲倒堆作业二次倒堆截面积,单位为m2;H抛为抛掷爆破台阶高度,单位为m;b为抛掷爆破台阶采掘带宽度,单位为m;λ为抛掷爆破松散系数;M2为抛掷爆破-拉斗铲倒堆系统中拉斗铲年倒堆作业量,单位为m3;H煤为原煤平均厚度,单位为m;l煤为原煤工作线长度,单位为m;γ为原煤容重,单位为t/m3;M煤为原煤年生产能力,单位为Mt/a;l倒为倒堆工作线长度,单位为m;T’为工作线年推进度,单位为m/a。Among them, M is the annual operation volume of the dumping system, the unit is m 3 ; S is the operation cross-sectional area of the throwing blasting-draw bucket dumping system, the unit is m 2 ; S 2 is the dumping interception of one dragging operation. Area, the unit is m 2 ; S 3 is the cross-sectional area of the secondary dumping of the drag bucket dumping operation, the unit is m 2 ; H throw is the height of the throwing blasting step, the unit is m; b is the width of the excavation belt of the throwing blasting step, the unit is m; λ is the loosening coefficient of throwing blasting; M 2 is the annual amount of dragline dumping operation in throwing blasting-drawback dumping system, the unit is m 3 ; H coal is the average thickness of raw coal, the unit is m; l coal is the length of the raw coal working line, the unit is m; γ is the bulk density of the raw coal, the unit is t/m 3 ; M is the annual production capacity of the raw coal , the unit is Mt/a; l is the stacking working line length, the unit is m; T ' is the annual advancement of the working line, in m/a.
如图1所示,在露天煤矿抛掷爆破-拉斗铲倒堆工艺中,利用拉斗铲2和电铲5将抛掷爆破爆堆6中的爆破物排弃到排土堆1,将产出的煤炭通过运煤通道7运往原煤破碎站。采煤与拉斗铲倒堆工作面采用追踪式开采布置,因此倒堆系统与采煤工作线推进度应保持一致,因此得到公式(5)的倒堆系统年作业量与原煤年生产能力的函数关系,对应拉斗铲倒堆作业截面积得到拉斗铲年倒堆作业量。As shown in FIG. 1 , in the throwing blasting-dragon shovel dumping process in an open-pit coal mine, the dragline shovel 2 and the
需要说明的是,工作线年推进度T’可以由公式(8)限定,It should be noted that the annual advancement degree T' of the working line can be defined by formula (8),
根据公式(5)还可以得到单斗-卡车年辅助作业量M1,According to formula (5), the annual auxiliary work volume M 1 of the single bucket-truck can also be obtained,
具体的,在步骤S10中,建立一元二次回归方程f(H抛)。回归方程f(H抛)为一元二次方程的形式误差较小,能够对不同抛掷爆破台阶高度下的有效抛掷率进行更为有效的分析。Specifically, in step S10, a univariate quadratic regression equation f(H throw ) is established. The regression equation f(H throw ) is a quadratic equation with less formal error, which can more effectively analyze the effective throwing rate under different throwing blasting step heights.
具体的,在步骤S20中,建立一元二次回归方程k(H站)。回归方程k(H站)为一元二次方程的形式误差较小,能够对不同拉斗铲站立平台高度下的拉斗铲倒堆作业量在剥离作业总量中的占比进行更为有效的分析。Specifically, in step S20, a quadratic regression equation k(H station ) is established. The regression equation k(H station ) is a one-dimensional quadratic equation, and the formal error is small, which can be more effective for the proportion of the dragline dumping work volume in the total stripping work under different dragline standing platform heights. analyze.
具体的,在步骤S20中,建立一元二次回归方程g(H站)。回归方程g(H站)为一元二次方程的形式误差较小,能够对不同拉斗铲站立平台高度下的拉斗铲二次倒堆量在倒堆作业总量中的占比进行更为有效的分析。Specifically, in step S20, a quadratic regression equation g(H station ) is established. The regression equation g(H station ) is a one-dimensional quadratic equation, and the formal error is small, which can be used to calculate the proportion of the secondary dumping amount of the dragline shovel in the total dumping operation at different heights of the standing platform of the dragline shovel. effective analysis.
以某一大型露天煤矿为例,设计原煤生产能力12.0Mt/a。矿田开采境界底部走向平均7.8km,倾向宽度平均5.09km,面积40.25km2,平均深度140m,境界内可采煤层13厚度平均为28.8m,可采原煤储量14亿吨。Taking a large open-pit coal mine as an example, the designed raw coal production capacity is 12.0Mt/a. The bottom of the mining boundary has an average strike of 7.8km, an average dip width of 5.09km, an area of 40.25km 2 and an average depth of 140m. The average thickness of the
如图4所示,该大型露天煤矿采用综合开采工艺,黄土层10与上部岩层11剥离采用单斗-卡车工艺,形成卡车排弃黄土8和卡车排弃岩石9,煤层顶板4以上约45m厚的下部岩层12剥离采用拉斗铲倒堆工艺,煤层13开采采用单斗-卡车-地表半固定破碎站半连续开采工艺。图4说明了抛掷爆破-拉斗铲倒堆剥离台阶与采煤台阶之间的制约关系。As shown in Figure 4, the large open-pit coal mine adopts a comprehensive mining process. The
在本实施例中,拉斗铲站立平台高度的确定过程如下:In this embodiment, the process of determining the height of the dragline standing platform is as follows:
1)建立抛掷爆破台阶高度与有效抛掷率的回归方程。如图5至图8所示,选取该大型露天煤矿抛掷爆破爆堆6的形态典型横剖面图,统计不同抛掷爆破台阶高度下的有效抛掷率。基于抛掷爆破爆堆6的典型剖面数据,建立有效抛掷率与抛掷爆破台阶高度之间的回归函数关系如图9所示,得到公式(10),1) Establish a regression equation between the throwing blasting step height and the effective throwing rate. As shown in Fig. 5 to Fig. 8, the typical cross-sectional view of the throwing
2)绘制抛掷爆破-拉斗铲倒堆系统各环节作业量剖面图。参照抛掷爆破台阶高度为45m时的典型抛掷爆破爆堆6曲线,绘制抛掷爆破台阶高度45m、拉斗铲站立水平高度为18m时,抛掷爆破-拉斗铲倒堆工艺系统内各环节作业量剖面图,如图10所示。按面积相等原理,图中S1与S3、S4截面积之间的关系为:2) Draw a cross-sectional view of the workload of each link of the throwing blasting-draw bucket dumping system. Referring to the typical
S1=ky·(S3+S4) 公式(6);S 1 = ky ·(S 3 +S 4 ) formula (6);
式中,ky为压实系数,取0.8。In the formula, ky is the compaction coefficient, which is taken as 0.8.
参照图10,分别绘制抛掷爆破台阶高度为40m、45m、50m时,拉斗铲站立平台高度11m至18m条件下的抛掷爆破-拉斗铲倒堆工艺系统内各环节作业量剖面图。Referring to Figure 10, when the height of the throwing blasting step is 40m, 45m and 50m, and the height of the standing platform of the dragline bucket is 11m to 18m, the sectional views of the work volume of each link in the throwing blasting-drawbine dumping process system are drawn.
3)拉斗铲站立平台高度与作业截面积分析。基于所绘制的拉斗铲不同站立平台高度时各环节作业量剖面图,能够直接从图中量取各环节作业部分对应的截面积,统计拉斗铲不同站立平台高度条件下各环节的作业截面积,如表1至表3所示。3) Analysis of the height of the standing platform of the dragline bucket and the operation cross-sectional area. Based on the drawn profile diagram of the work volume of each link at different standing platform heights of the dragline, it is possible to directly measure the cross-sectional area corresponding to the working part of each link from the figure, and count the work section of each link under the condition of different standing platform heights of the dragline. area, as shown in Tables 1 to 3.
在抛掷爆破台阶高度40m条件下,松散系数为1.36,有效抛掷率为0.365,压实率为0.8。不同拉斗铲站立水平高度下的拉斗铲作业截面积、二次倒堆作业截面积和单斗-卡车作业截面积如表1所示。Under the condition of throwing blasting step height of 40m, the loosening coefficient is 1.36, the effective throwing rate is 0.365, and the compaction rate is 0.8. Table 1 shows the cross-sectional area of dragline operation, the cross-sectional area of secondary dumping operation and the cross-sectional area of single bucket-truck operation under different standing levels of the dragline.
表1Table 1
在抛掷爆破台阶高度45m条件下,松散系数为1.45,有效抛掷率为0.378,压实率为0.8。不同拉斗铲站立水平高度下的拉斗铲作业截面积、二次倒堆作业截面积和单斗-卡车作业截面积如表2所示。Under the condition of throwing blasting step height of 45m, the loosening coefficient is 1.45, the effective throwing rate is 0.378, and the compaction rate is 0.8. Table 2 shows the cross-sectional area of the dragline shovel, the cross-sectional area of the secondary dumping operation, and the single-bucket-truck operating cross-sectional area at different standing levels of the dragline shovel.
表2Table 2
在抛掷爆破台阶高度50m条件下,松散系数为1.52,有效抛掷率为0.39,压实率为0.8。不同拉斗铲站立水平高度下的拉斗铲作业截面积、二次倒堆作业截面积和单斗-卡车作业截面积如表3所示。Under the condition of throwing blasting step height of 50m, the loosening coefficient is 1.52, the effective throwing rate is 0.39, and the compaction rate is 0.8. Table 3 shows the cross-sectional area of the dragline shovel, the cross-sectional area of the secondary dumping operation, and the single-bucket-truck operating cross-sectional area at different standing levels of the dragline shovel.
表3table 3
4)建立抛掷爆破-拉斗铲倒堆系统各环节作业量与拉斗铲站立平台高度的回归函数。基于表1至表3中的数据,建立抛掷爆破-拉斗铲倒堆系统各环节作业量在倒堆作业总量中的占比与拉斗铲站立平台高度回归函数关系,如图11至图13所示。4) Establish a regression function between the workload of each link of the throwing blasting-drawback dumping system and the height of the dragline standing platform. Based on the data in Tables 1 to 3, the relationship between the proportion of the work volume of each link of the throwing blasting-drawback dumping system in the total dumping operation and the height of the dragline standing platform is established, as shown in Figures 11 and 11. 13 shown.
不同抛掷爆破台阶高度条件下,拉斗铲倒堆作业量、二次倒堆作业量在倒堆作业总量中的占比与拉斗铲站立平台高度之间的回归函数如下。Under the conditions of different throwing and blasting step heights, the regression function between the proportion of the dragline dumping amount and the secondary dumping amount in the total dumping operation and the height of the dragline standing platform is as follows.
当抛掷爆破台阶高度40m时,拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度回归函数关系为:When the height of the throwing blasting step is 40m, the proportion of the dragline dumping operation in the total stripping operation is related to the regression function of the height of the dragline standing platform:
拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度回归函数关系为:The relationship between the proportion of the secondary dumping amount of the dragline in the total dumping operation and the regression function of the height of the standing platform of the dragline is:
当抛掷爆破台阶高度45m时,拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度回归函数关系为:When the height of the throwing blasting step is 45m, the proportion of the dragline dumping operation in the total stripping operation is related to the regression function of the height of the dragline standing platform:
拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度回归函数关系为:The relationship between the proportion of the secondary dumping amount of the dragline in the total dumping operation and the regression function of the height of the standing platform of the dragline is:
当抛掷爆破台阶高度50m时,拉斗铲倒堆作业量在剥离作业总量中的占比与拉斗铲站立平台高度回归函数关系为:When the height of the throwing blasting step is 50m, the proportion of the dragline dumping operation in the total stripping operation is related to the regression function of the height of the dragline standing platform:
拉斗铲二次倒堆量在倒堆作业总量中的占比与拉斗铲站立平台高度回归函数关系为:The relationship between the proportion of the secondary dumping amount of the dragline in the total dumping operation and the regression function of the height of the standing platform of the dragline is:
5)确定拉斗铲站立平台高度。该大型露天煤矿拉斗铲每年倒堆剥离生产能力1600万m3/a,原煤计划产量3400万t/a,抛掷爆破台阶采掘带宽度85m,倒堆工作线长度1550m,采煤工作线长度2300m,原煤平均容重1.47t/m3,基于以上参数,求解公式(1),即可确定出各采掘带合理的拉斗铲站立平台高度,如表4所示。5) Determine the height of the standing platform of the dragline. The large open-pit coal mine has a dragline production capacity of 16 million m 3 /a per year for dumping and stripping, a planned raw coal output of 34 million t/a, a throwing and blasting step mining belt width of 85 m, a stacking working line length of 1550 m, and a coal mining working line length of 2300 m. , the average bulk density of raw coal is 1.47t/m 3 . Based on the above parameters, formula (1) can be solved to determine the reasonable standing platform height of each mining belt, as shown in Table 4.
表4Table 4
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments of the present invention achieve the following technical effects:
1、基于抛掷爆破爆堆6的形态历史数据,建立抛掷爆破台阶高度与有效抛掷率、拉斗铲站立平台高度与拉斗铲二次倒堆量在倒堆作业总量中的占比、拉斗铲倒堆作业量在剥离作业总量中的占比之间的回归函数关系,建立拉斗铲站立平台高度数学模型,确定合理的拉斗铲站立平台高度,以充分发挥拉斗铲生产能力。1. Based on the historical data of the shape of the
2、在合理的拉斗铲站立平台高度条件下,能够充分发挥拉斗铲生产能力,降低抛掷爆破-拉斗铲倒堆工艺系统剥离成本,确保原煤生产持续稳定。2. Under the condition of a reasonable height of the standing platform of the dragline shovel, the production capacity of the dragline shovel can be fully utilized, the stripping cost of the throwing blasting-drawback shovel dumping process system can be reduced, and the continuous and stable production of raw coal can be ensured.
显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。Obviously, the above-described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, acts, devices, components, and/or combinations thereof.
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。It should be noted that the terms "first", "second", etc. in the description and claims of the present application and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that data so used may be interchanged under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210795124.8A CN115095326B (en) | 2022-07-07 | 2022-07-07 | Method for determining the height of the dragline standing platform in the dump blasting-dragline dumping process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210795124.8A CN115095326B (en) | 2022-07-07 | 2022-07-07 | Method for determining the height of the dragline standing platform in the dump blasting-dragline dumping process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115095326A true CN115095326A (en) | 2022-09-23 |
CN115095326B CN115095326B (en) | 2025-05-30 |
Family
ID=83296616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210795124.8A Active CN115095326B (en) | 2022-07-07 | 2022-07-07 | Method for determining the height of the dragline standing platform in the dump blasting-dragline dumping process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115095326B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115977642A (en) * | 2022-10-28 | 2023-04-18 | 国能经济技术研究院有限责任公司 | Double working face reciprocating walking and reverse piling operation method for dragline |
CN116025357A (en) * | 2022-10-28 | 2023-04-28 | 国能经济技术研究院有限责任公司 | Operation method of temporary connection channel of dragline mining process |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU709808B1 (en) * | 1999-03-10 | 1999-09-09 | Thiess Contractors Pty Limited | Strip mining overburden removal method |
RU2204720C2 (en) * | 2001-07-23 | 2003-05-20 | Институт горного дела - Научно-исследовательское учреждение РАН | Method of opencast mining of mineral deposits and excavator-hopper transfer point for method embodiment |
CN103184870A (en) * | 2013-03-05 | 2013-07-03 | 安徽金日盛矿业有限责任公司 | Open backfilling mining method during borehole drilling period |
RU2559262C1 (en) * | 2014-06-26 | 2015-08-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Method of open development of deposits with use of combined transport |
CN105626076A (en) * | 2016-04-11 | 2016-06-01 | 中国矿业大学(北京) | High-efficiency mining method of dragline saw-tooth type working bench |
CN105781554A (en) * | 2016-04-11 | 2016-07-20 | 中国矿业大学(北京) | Mining method for open coal mine through dragline non-transportation casting technology |
CN107542464A (en) * | 2017-09-28 | 2018-01-05 | 西安科技大学 | A kind of pinpoint blasting method under the conditions of open coal mine shovel and truck technology |
CN109931065A (en) * | 2019-04-03 | 2019-06-25 | 华北科技学院 | A kind of open coal mine pinpoint blasting-standing block mining method |
CN109944592A (en) * | 2019-03-28 | 2019-06-28 | 辽宁工程技术大学 | Design method of step height for throwing blasting in dumping process of dragline shovel |
-
2022
- 2022-07-07 CN CN202210795124.8A patent/CN115095326B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU709808B1 (en) * | 1999-03-10 | 1999-09-09 | Thiess Contractors Pty Limited | Strip mining overburden removal method |
RU2204720C2 (en) * | 2001-07-23 | 2003-05-20 | Институт горного дела - Научно-исследовательское учреждение РАН | Method of opencast mining of mineral deposits and excavator-hopper transfer point for method embodiment |
CN103184870A (en) * | 2013-03-05 | 2013-07-03 | 安徽金日盛矿业有限责任公司 | Open backfilling mining method during borehole drilling period |
RU2559262C1 (en) * | 2014-06-26 | 2015-08-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Method of open development of deposits with use of combined transport |
CN105626076A (en) * | 2016-04-11 | 2016-06-01 | 中国矿业大学(北京) | High-efficiency mining method of dragline saw-tooth type working bench |
CN105781554A (en) * | 2016-04-11 | 2016-07-20 | 中国矿业大学(北京) | Mining method for open coal mine through dragline non-transportation casting technology |
CN107542464A (en) * | 2017-09-28 | 2018-01-05 | 西安科技大学 | A kind of pinpoint blasting method under the conditions of open coal mine shovel and truck technology |
CN109944592A (en) * | 2019-03-28 | 2019-06-28 | 辽宁工程技术大学 | Design method of step height for throwing blasting in dumping process of dragline shovel |
CN109931065A (en) * | 2019-04-03 | 2019-06-25 | 华北科技学院 | A kind of open coal mine pinpoint blasting-standing block mining method |
Non-Patent Citations (2)
Title |
---|
肖双双等: "基于非线性规划的拉斗铲作业平台参数优化", 煤炭学报, vol. 44, no. 10, 31 October 2019 (2019-10-31), pages 3076 - 3084 * |
马力等: "基于抛掷爆破-拉斗铲倒堆工艺的露天矿生产能力研究", 煤炭工程, vol. 48, no. 10, 31 October 2016 (2016-10-31), pages 11 - 14 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115977642A (en) * | 2022-10-28 | 2023-04-18 | 国能经济技术研究院有限责任公司 | Double working face reciprocating walking and reverse piling operation method for dragline |
CN116025357A (en) * | 2022-10-28 | 2023-04-28 | 国能经济技术研究院有限责任公司 | Operation method of temporary connection channel of dragline mining process |
CN115977642B (en) * | 2022-10-28 | 2023-08-29 | 国能经济技术研究院有限责任公司 | Double working surface back and forth moving and pile-reversing operation method of bucket-pulling shovel |
CN116025357B (en) * | 2022-10-28 | 2023-09-05 | 国能经济技术研究院有限责任公司 | Operation method of temporary connection channel of dragline mining process |
Also Published As
Publication number | Publication date |
---|---|
CN115095326B (en) | 2025-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103216238B (en) | A kind of Opencut coal mine mining technique | |
CN115095326A (en) | Method for determining height of dragline standing platform in throwing blasting-dragline reverse piling process | |
CN206571487U (en) | A kind of barren rock and cementing layering wedging mining with stowing structure | |
CN110905512B (en) | Open stope mining method for gently inclined medium-thickness ore body | |
CN109931095B (en) | Coal gangue underground separation and in-situ filling engineering design method | |
Tyulenev et al. | The Model of Direct Dumping Technology Implementation for Open Pit Coal Mining by High Benches. | |
CN110080774A (en) | Mine Dry-placed fill mining is fallen based on the vertical medium-length hole retrusive of high-dipping ore block | |
Zhang et al. | Integrated green mining technology of “coal mining-gangue washing-backfilling-strata control-system monitoring”—Taking Tangshan Mine as a case study | |
CN109944592B (en) | Design method of step height for throwing blasting in dumping process of dragline shovel | |
CN109931065A (en) | A kind of open coal mine pinpoint blasting-standing block mining method | |
CN114109485B (en) | Ore discharge and crushing system next to the unloading station underground | |
CN112855162A (en) | Mining method for upper coal seam of composite coal seam strip mine near extraction end slope | |
CN1047428C (en) | Mining and backfilling method suitable for inclined gentle-inclined medium-thickness ore body | |
CN105626076B (en) | It is a kind of to draw bucket shovel zigzag working berm high-efficiency mining method | |
CN113931630B (en) | Mechanized non-waste mining method for deep metal deposit | |
Adamchuk et al. | Research of land-saving schemes of mining the horizontal sedimentary mineral deposits | |
CN113565510A (en) | A fully mechanized caving and filling mining method for extra-thick coal seam based on underground gangue pile | |
CN108343438B (en) | A mining method for inclined ore body with variable angle cutting trench | |
CN107654232A (en) | The moat ditch collection ore deposit mining methods of inclined orebody | |
CN216617574U (en) | Ore chute and crushing system of underground adjacent unloading station | |
CN110397439A (en) | Retreating ore-falling dry-filling mining method based on steeply inclined ore body with vertical middle and deep holes | |
CN109630116B (en) | Mining method for inclined medium-thickness blind ore body | |
Chebanov et al. | Rationale of effective technological scheme for granite quarry mining | |
CN108592719A (en) | Permanent ramp forming method for end slope main road of strip mine | |
RU2488693C1 (en) | Method for in-line production of work at non-benching version of extraction of chambers along strike on chamber-and-pillar system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |