CN115084237B - Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same - Google Patents

Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same Download PDF

Info

Publication number
CN115084237B
CN115084237B CN202211010354.5A CN202211010354A CN115084237B CN 115084237 B CN115084237 B CN 115084237B CN 202211010354 A CN202211010354 A CN 202211010354A CN 115084237 B CN115084237 B CN 115084237B
Authority
CN
China
Prior art keywords
doped region
silicon carbide
doping
doping type
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211010354.5A
Other languages
Chinese (zh)
Other versions
CN115084237A (en
Inventor
崔京京
章剑锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ruineng Weilan Semiconductor Technology Co.,Ltd.
Original Assignee
Ruineng Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruineng Semiconductor Technology Co ltd filed Critical Ruineng Semiconductor Technology Co ltd
Priority to CN202211010354.5A priority Critical patent/CN115084237B/en
Publication of CN115084237A publication Critical patent/CN115084237A/en
Application granted granted Critical
Publication of CN115084237B publication Critical patent/CN115084237B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/63Vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • H10D12/031Manufacture or treatment of IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • H10D62/126Top-view geometrical layouts of the regions or the junctions
    • H10D62/127Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

本申请公开了一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法,涉及半导体器件技术领域。碳化硅沟槽型MOSFET晶体管包括:第一掺杂类型的碳化硅衬底,碳化硅衬底包括第一表面,第一表面上设置有第一掺杂类型的外延层;设置在外延层内的多个元胞结构,元胞结构包括栅极沟槽结构;每个元胞结构的外围区域设置有钳位保护结构,钳位保护结构用于保护栅极沟槽结构的角部处的栅极氧化层。根据本申请能够将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。

Figure 202211010354

The present application discloses a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof, and relates to the technical field of semiconductor devices. The silicon carbide trench type MOSFET transistor includes: a silicon carbide substrate of a first doping type, the silicon carbide substrate includes a first surface, and an epitaxial layer of the first doping type is provided on the first surface; A plurality of cell structures, the cell structure includes a gate trench structure; a clamping protection structure is provided in the peripheral area of each cell structure, and the clamping protection structure is used to protect the gate at the corner of the gate trench structure oxide layer. According to the present application, the electric field strength of the gate oxide layer at the corner of the gate trench structure can be clamped below a safe value, thereby protecting the corner of the gate trench structure and improving the reliability of the transistor.

Figure 202211010354

Description

具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法Silicon carbide trench MOSFET transistor with dense cells and its manufacturing method

技术领域technical field

本申请属于半导体器件技术领域,尤其涉及一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法。The present application belongs to the technical field of semiconductor devices, and in particular relates to a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof.

背景技术Background technique

金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field EffectTransistor,MOSFET)为电压型控制器件,驱动电路简单,驱动的功率小,而且开关速度快,具有高的工作频率。Metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET) is a voltage type control device, the driving circuit is simple, the driving power is small, and the switching speed is fast, and it has a high operating frequency.

根据不同的栅极布局方向,碳化硅MOSFET可分为平面型结构和沟槽型结构。而沟槽型结构由于更高的元胞密度,在导通性能方面具有更明显的优势。但对于沟槽型碳化硅晶体管而言,最大的挑战是沟槽角部处的栅极氧化层极易承受巨大的电场强度,影响器件的可靠性。According to different gate layout directions, silicon carbide MOSFETs can be divided into planar structure and trench structure. The trench structure has a more obvious advantage in conduction performance due to the higher cell density. But for trench silicon carbide transistors, the biggest challenge is that the gate oxide layer at the corner of the trench is extremely easy to withstand huge electric field strength, which affects the reliability of the device.

发明内容Contents of the invention

本申请实施例提供一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法,能够降低栅极沟槽结构的角部处的电场强度,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。Embodiments of the present application provide a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof, which can reduce the electric field intensity at the corners of the gate trench structure, thereby protecting the corners of the gate trench structure , improve the reliability of the transistor.

第一方面,本申请实施例提供一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,包括:In the first aspect, the embodiment of the present application provides a silicon carbide trench MOSFET transistor with dense cells, including:

第一掺杂类型的碳化硅衬底,所述碳化硅衬底包括第一表面,所述第一表面上设置有第一掺杂类型的外延层;A silicon carbide substrate of a first doping type, the silicon carbide substrate comprising a first surface on which an epitaxial layer of the first doping type is disposed;

设置在所述外延层内的多个元胞结构,所述元胞结构包括栅极沟槽结构;a plurality of cellular structures disposed within the epitaxial layer, the cellular structures including gate trench structures;

每个所述元胞结构的外围区域设置有钳位保护结构,所述钳位保护结构用于将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下。在一些可选的实施方式中,所述元胞结构包括至少两个并行排列的子元胞结构;The peripheral area of each of the cell structures is provided with a clamping protection structure, and the clamping protection structure is used for clamping the electric field intensity borne by the gate oxide layer at the corner of the gate trench structure below a safe value . In some optional embodiments, the cellular structure includes at least two subcellular structures arranged in parallel;

所述子元胞结构包括:The subcellular structure includes:

设置在所述外延层内的栅极沟槽结构;a gate trench structure disposed in the epitaxial layer;

设置在所述外延层远离所述第一表面的表面上的源极金属结构;a source metal structure disposed on a surface of the epitaxial layer away from the first surface;

设置在所述栅极沟槽结构靠近顶部的侧面外围区域的所述第一掺杂类型的第一掺杂区;a first doped region of the first doping type disposed on a side peripheral region of the gate trench structure near the top;

设置在所述第一掺杂区的外围区域,且与所述栅极沟槽结构间隔设置的第二掺杂类型的阱区;所述第一掺杂类型与所述第二掺杂类型相反。a well region of a second doping type disposed in the peripheral region of the first doping region and spaced from the gate trench structure; the first doping type is opposite to the second doping type .

在一些可选的实施方式中,所述钳位保护结构,包括:In some optional implementation manners, the clamp protection structure includes:

设置在所述外延层内的第二掺杂类型的第二掺杂区,所述第二掺杂区的深度大于所述栅极沟槽结构的深度;a second doped region of a second doping type disposed in the epitaxial layer, the depth of the second doped region being greater than the depth of the gate trench structure;

设置在所述第二掺杂区的表面上的第一金属结构;a first metal structure disposed on the surface of the second doped region;

设置在所述第二掺杂区内,且与所述第一金属结构接触的第三掺杂区。A third doped region disposed in the second doped region and in contact with the first metal structure.

在一些可选的实施方式中,所述第三掺杂区为所述第二掺杂类型。In some optional implementation manners, the third doped region is of the second doped type.

在一些可选的实施方式中,所述第三掺杂区为所述第一掺杂类型。In some optional implementation manners, the third doped region is of the first doped type.

在一些可选的实施方式中,所述钳位保护结构,还包括:In some optional implementation manners, the clamp protection structure further includes:

设置在所述第二掺杂区靠近所述第一表面一侧的至少一个所述第二掺杂类型的第四掺杂区;at least one fourth doped region of the second doped type disposed on a side of the second doped region close to the first surface;

设置在所述第二掺杂区的底部的所述第一掺杂类型的第五掺杂区。A fifth doped region of the first doped type is disposed at the bottom of the second doped region.

在一些可选的实施方式中,所述钳位保护结构,包括:In some optional implementation manners, the clamp protection structure includes:

设置在所述外延层内的第二掺杂类型的第六掺杂区,所述第六掺杂区的深度大于所述栅极沟槽结构的深度;a sixth doped region of the second doping type disposed in the epitaxial layer, the depth of the sixth doped region is greater than the depth of the gate trench structure;

设置在所述第六掺杂区的表面上的第二金属结构;a second metal structure disposed on the surface of the sixth doped region;

设置在所述第六掺杂区内,且靠近所述第二金属结构一侧的PN结结构;a PN junction structure disposed in the sixth doped region and close to one side of the second metal structure;

设置在所述PN结结构靠近所述第一表面一侧的第三金属结构;a third metal structure disposed on a side of the PN junction structure close to the first surface;

设置在所述第三金属结构靠近所述第一表面一侧的所述第一掺杂类型的第七掺杂区。A seventh doping region of the first doping type disposed on a side of the third metal structure close to the first surface.

在一些可选的实施方式中,所述PN结结构,包括:In some optional implementation manners, the PN junction structure includes:

设置在所述第二金属结构与所述第三金属结构之间的第一掺杂结构和第二掺杂结构,所述第一掺杂结构为所述第一掺杂类型,所述第二掺杂结构为所述第二掺杂类型;a first doping structure and a second doping structure disposed between the second metal structure and the third metal structure, the first doping structure is the first doping type, the second the doping structure is the second doping type;

所述第一掺杂结构和所述第二掺杂结构之间的接触面平行于所述第一表面,且所述第一掺杂结构设置在靠近所述第三金属结构的一侧,所述第二掺杂结构设置在靠近所述第二金属结构的一侧。The contact surface between the first doped structure and the second doped structure is parallel to the first surface, and the first doped structure is disposed on a side close to the third metal structure, so The second doping structure is arranged on a side close to the second metal structure.

第二方面,本申请实施例提供了一种具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法,包括:In the second aspect, the embodiment of the present application provides a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells, including:

提供第一掺杂类型的碳化硅衬底,所述碳化硅衬底包括第一表面,所述第一表面上设置有第一掺杂类型的外延层;providing a silicon carbide substrate of a first doping type, the silicon carbide substrate comprising a first surface on which an epitaxial layer of the first doping type is disposed;

在所述外延层内形成元胞结构,所述元胞结构包括栅极沟槽结构;forming a cellular structure in the epitaxial layer, the cellular structure including a gate trench structure;

在每个所述元胞结构的外围区域形成钳位保护结构,所述钳位保护结构用于将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下。A clamping protection structure is formed in the peripheral region of each of the cell structures, and the clamping protection structure is used for clamping the electric field intensity borne by the gate oxide layer at the corner of the gate trench structure below a safe value .

在一些可选的实施方式中,所述在所述外延层内形成元胞结构,包括:In some optional implementation manners, the forming a cellular structure in the epitaxial layer includes:

在所述外延层远离所述第一表面的表面上形成所述第一掺杂类型的第一掺杂区;forming a first doped region of the first doping type on a surface of the epitaxial layer away from the first surface;

在所述第一掺杂区的外围区域形成与所述栅极沟槽结构间隔设置的第二掺杂类型的阱区;forming a well region of a second doping type spaced apart from the gate trench structure in a peripheral region of the first doped region;

在所述外延层内形成第一沟槽结构;forming a first trench structure in the epitaxial layer;

在所述第一沟槽结构内形成栅极沟槽结构;forming a gate trench structure within the first trench structure;

在所述外延层远离所述第一表面的表面上形成源极金属结构。A source metal structure is formed on a surface of the epitaxial layer away from the first surface.

本申请实施例提供的一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,该晶体管可以包括:内置于外延层的多个元胞结构和设置在元胞结构外围区域的钳位保护结构。栅极沟槽结构的角部处的栅极氧化层承受的电场强度会随着晶体管承受的阻断电压的增加而快速增大,阻断电压越高,栅极沟槽结构的角部处的栅极氧化层越容易发生击穿失效。但是当晶体管承受的阻断电压达到较低的钳位保护结构的击穿电压时,钳位保护结构被击穿,晶体管因此提前发生击穿,能够将栅极沟槽结构的角部处的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处的栅极氧化层,提高晶体管的可靠性。An embodiment of the present application provides a silicon carbide trench MOSFET transistor with dense cells, the transistor may include: a plurality of cell structures embedded in the epitaxial layer and a clamping protection structure arranged in the peripheral region of the cell structure. The electric field strength of the gate oxide layer at the corner of the gate trench structure will increase rapidly with the increase of the blocking voltage of the transistor. The gate oxide layer is more prone to breakdown failure. However, when the blocking voltage of the transistor reaches the lower breakdown voltage of the clamping protection structure, the clamping protection structure is broken down, and the transistor breaks down in advance, which can reduce the electric field at the corner of the gate trench structure The strength is clamped below a safe value, thereby protecting the gate oxide layer at the corner of the gate trench structure and improving the reliability of the transistor.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the following will briefly introduce the accompanying drawings that need to be used in the embodiments of the present application. Additional figures can be derived from these figures.

图1是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的一种结构示意图;Figure 1 is a schematic structural view of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;

图2是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的另一种结构示意图;FIG. 2 is another schematic structural view of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;

图3是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的又一种结构示意图;FIG. 3 is another structural schematic diagram of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;

图4是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的再一种结构示意图;FIG. 4 is another structural schematic diagram of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;

图5是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法的实施例的流程示意图;5 is a schematic flow diagram of an embodiment of a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells provided by the present application;

图6是本申请提供的碳化硅衬底的截面结构示意图;Fig. 6 is a schematic cross-sectional structure diagram of a silicon carbide substrate provided by the present application;

图7是本申请提供的形成第一掺杂区的截面结构示意图;FIG. 7 is a schematic diagram of a cross-sectional structure for forming a first doped region provided by the present application;

图8是本申请提供的形成阱区的截面结构示意图;FIG. 8 is a schematic diagram of a cross-sectional structure for forming a well region provided by the present application;

图9是本申请提供的形成第一沟槽结构的截面结构示意图;FIG. 9 is a schematic diagram of a cross-sectional structure for forming a first trench structure provided by the present application;

图10是本申请提供的形成栅极沟槽结构的截面结构示意图;FIG. 10 is a schematic diagram of a cross-sectional structure for forming a gate trench structure provided by the present application;

图11是本申请提供的形成源极金属结构的截面结构示意图;FIG. 11 is a schematic cross-sectional structure diagram of the source metal structure provided by the present application;

图12是本申请提供的形成第二掺杂区和第三掺杂区的截面结构示意图;Fig. 12 is a schematic cross-sectional structure diagram for forming the second doped region and the third doped region provided by the present application;

图13是本申请提供的形成第一金属结构的截面结构示意图;Fig. 13 is a schematic cross-sectional structure diagram of forming the first metal structure provided by the present application;

图14是本申请提供的形成第四掺杂区的截面结构示意图;FIG. 14 is a schematic cross-sectional structure diagram for forming a fourth doped region provided by the present application;

图15是本申请提供的形成第五掺杂区的截面结构示意图;Fig. 15 is a schematic cross-sectional structure diagram for forming a fifth doped region provided by the present application;

图16是本申请提供的形成第二沟槽结构的截面结构示意图;FIG. 16 is a schematic cross-sectional structure diagram of forming a second trench structure provided by the present application;

图17是本申请提供的形成第六掺杂区的截面结构示意图;Fig. 17 is a schematic cross-sectional structure diagram for forming the sixth doped region provided by the present application;

图18是本申请提供的形成第七掺杂区的截面结构示意图;Fig. 18 is a schematic cross-sectional structure diagram for forming the seventh doped region provided by the present application;

图19是本申请提供的形成第三沟槽结构的截面结构示意图;Fig. 19 is a schematic cross-sectional structure diagram of forming a third trench structure provided by the present application;

图20是本申请提供的形成第三金属结构的截面结构示意图;Fig. 20 is a schematic cross-sectional structure diagram of forming a third metal structure provided by the present application;

图21是本申请提供的形成PN结结构的截面结构示意图;Fig. 21 is a schematic cross-sectional structure diagram of forming a PN junction structure provided by the present application;

图22是本申请提供的形成第二金属结构的截面结构示意图。FIG. 22 is a schematic cross-sectional structure diagram of forming a second metal structure provided by the present application.

附图标记说明:Explanation of reference signs:

1:碳化硅衬底;11:第一表面;12:第二表面。1: silicon carbide substrate; 11: first surface; 12: second surface.

2:外延层;21:元胞结构;211:子元胞结构;2111:栅极沟槽结构;21111:栅极结构;21112:栅极氧化层;2112:源极金属结构;2113:第一掺杂区;2114:阱区;22:钳位保护结构;221:第二掺杂区;2211:第一金属结构;2212:第三掺杂区;2213:第四掺杂区;2214:第五掺杂区;222:第六掺杂区;2221:第二金属结构;2222:PN结结构;22221:第一掺杂结构;22222:第二掺杂结构;2223:第三金属结构;2224:第七掺杂区;23:第一沟槽结构;25:第二沟槽结构;26:第三沟槽结构。2: epitaxial layer; 21: cellular structure; 211: subcellular structure; 2111: gate trench structure; 21111: gate structure; 21112: gate oxide layer; 2112: source metal structure; 2113: first doped region; 2114: well region; 22: clamp protection structure; 221: second doped region; 2211: first metal structure; 2212: third doped region; 2213: fourth doped region; 2214: first Five doping regions; 222: sixth doping region; 2221: second metal structure; 2222: PN junction structure; 22221: first doping structure; 22222: second doping structure; 2223: third metal structure; 2224 : the seventh doped region; 23: the first trench structure; 25: the second trench structure; 26: the third trench structure.

3:漏极结构。3: Drain structure.

在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。In the figures, the same parts are given the same reference numerals. The figures are not drawn to scale.

具体实施方式Detailed ways

下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。The characteristics and exemplary embodiments of various aspects of the application will be described in detail below. In order to make the purpose, technical solution and advantages of the application clearer, the application will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are only intended to explain the present application rather than limit the present application. It will be apparent to one skilled in the art that the present application may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present application by showing examples of the present application.

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. any such actual relationship or order exists between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the statement "comprising..." does not exclude the presence of additional same elements in the process, method, article or device comprising said element.

为了解决现有技术问题,本申请实施例提供了一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法。下面首先对本申请实施例所提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管进行介绍。In order to solve the problems of the prior art, embodiments of the present application provide a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof. The silicon carbide trench MOSFET transistor with dense cells provided by the embodiment of the present application will be firstly introduced below.

图1示出了本申请一个实施例提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的一种结构示意图。FIG. 1 shows a schematic structural diagram of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by an embodiment of the present application.

如图1所示,本申请实施例提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管,可以包括:As shown in Figure 1, the silicon carbide trench MOSFET transistor with dense cells provided in the embodiment of the present application may include:

第一掺杂类型的碳化硅衬底1,碳化硅衬底1包括第一表面11,第一表面11上设置有第一掺杂类型的外延层2;A silicon carbide substrate 1 of the first doping type. The silicon carbide substrate 1 includes a first surface 11 on which an epitaxial layer 2 of the first doping type is disposed;

设置在外延层2内的多个元胞结构21,元胞结构21包括栅极沟槽结构2111;A plurality of cellular structures 21 disposed in the epitaxial layer 2, the cellular structures 21 include a gate trench structure 2111;

每个元胞结构21的外围区域设置有钳位保护结构22,钳位保护结构22用于确保晶体管提前发生击穿,进而将栅极沟槽结构2111的角部处的栅极氧化层21112承受的电场强度钳位在安全值以下。The peripheral area of each cell structure 21 is provided with a clamp protection structure 22, and the clamp protection structure 22 is used to ensure that the breakdown of the transistor occurs in advance, so as to withstand the gate oxide layer 21112 at the corner of the gate trench structure 2111. The electric field strength clamped below the safe value.

本申请实施例提供的一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,该晶体管可以包括:内置于外延层的多个元胞结构和设置在元胞结构外围区域的钳位保护结构。栅极沟槽结构的角部处的栅极氧化层承受的电场强度会随着晶体管承受的阻断电压的增加而快速增大,阻断电压越高,栅极沟槽结构的角部处的栅极氧化层越容易发生击穿失效。但是当晶体管承受的阻断电压达到较低的钳位保护结构的击穿电压时,钳位保护结构被击穿,晶体管因此提前发生击穿,能够将栅极沟槽结构的角部处的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。An embodiment of the present application provides a silicon carbide trench MOSFET transistor with dense cells, the transistor may include: a plurality of cell structures embedded in the epitaxial layer and a clamping protection structure arranged in the peripheral region of the cell structure. The electric field strength of the gate oxide layer at the corner of the gate trench structure will increase rapidly with the increase of the blocking voltage of the transistor. The gate oxide layer is more prone to breakdown failure. However, when the blocking voltage of the transistor reaches the lower breakdown voltage of the clamping protection structure, the clamping protection structure is broken down, and the transistor breaks down in advance, which can reduce the electric field at the corner of the gate trench structure The strength is clamped below a safe value, thereby protecting the corners of the gate trench structure and improving the reliability of the transistor.

在本实施例中,第一掺杂类型可以为N型,第二掺杂类型可以为P型。第一掺杂类型的碳化硅衬底1可以为N型的碳化硅衬底;第一掺杂类型的外延层2可以为N型的外延层。In this embodiment, the first doping type may be N type, and the second doping type may be P type. The silicon carbide substrate 1 of the first doping type may be an N-type silicon carbide substrate; the epitaxial layer 2 of the first doping type may be an N-type epitaxial layer.

外延层2内包括的元胞结构21的数量可以根据实际需求设定,在此不做限定。例如,元胞结构21的数量可以为100个。The number of cellular structures 21 included in the epitaxial layer 2 can be set according to actual needs, and is not limited here. For example, the number of cellular structures 21 may be 100.

钳位保护结构22可以为能够将栅极沟槽结构2111的角部处的栅极氧化层21112承受的电场强度钳位在安全值以下的结构。The clamping protection structure 22 may be a structure capable of clamping the electric field intensity borne by the gate oxide layer 21112 at the corner of the gate trench structure 2111 below a safe value.

在一些可选的实施方式中,碳化硅衬底1还可以包括与第一表面11相对的第二表面12,第二表面12设置有漏极结构3。In some optional implementation manners, silicon carbide substrate 1 may further include a second surface 12 opposite to first surface 11 , and second surface 12 is provided with drain structure 3 .

在一些可选的实施方式中,元胞结构21可以包括至少两个并行排列的子元胞结构211;In some optional embodiments, the cellular structure 21 may include at least two sub-cellular structures 211 arranged in parallel;

子元胞结构211可以包括:Subcellular structure 211 may include:

设置在外延层2内的栅极沟槽结构2111;a gate trench structure 2111 disposed in the epitaxial layer 2;

设置在外延层2远离第一表面11的表面上的源极金属结构2112;a source metal structure 2112 disposed on the surface of the epitaxial layer 2 away from the first surface 11;

设置在栅极沟槽结构2111靠近顶部的侧面外围区域的第一掺杂类型的第一掺杂区2113;A first doped region 2113 of the first doping type disposed on the peripheral region of the side of the gate trench structure 2111 near the top;

设置在第一掺杂区2113的外围区域,且与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114;第一掺杂类型与第二掺杂类型相反。The well region 2114 of the second doping type is disposed in the peripheral region of the first doping region 2113 and spaced apart from the gate trench structure 2111 ; the first doping type is opposite to the second doping type.

在本实施例中,元胞结构21可以包括至少两个并行排列的子元胞结构211,可以理解为,元胞结构21在平行于第一表面11方向上可以包括至少两个子元胞结构211。In this embodiment, the cellular structure 21 may include at least two sub-cellular structures 211 arranged in parallel, it can be understood that the cellular structure 21 may include at least two sub-cellular structures 211 in a direction parallel to the first surface 11 .

每个元胞结构21中的子元胞结构211的数量可以根据实际情况设置,在此不做限定。可选的,每个元胞结构21可以包括四个并行排列的子元胞结构211。The number of sub-cellular structures 211 in each cellular structure 21 can be set according to actual conditions, and is not limited here. Optionally, each cellular structure 21 may include four sub-cellular structures 211 arranged in parallel.

在本实施例中,第一掺杂类型的第一掺杂区2113可以是N型的第一掺区,第二掺杂类型的阱区2114可以是P型的阱区2114。In this embodiment, the first doped region 2113 of the first doping type may be an N-type first doping region, and the well region 2114 of the second doping type may be a P-type well region 2114 .

第一掺杂区2113的外围区域可以理解为第一掺杂区2113远离栅极沟槽结构2111的一侧的区域。The peripheral region of the first doped region 2113 can be understood as the region of the first doped region 2113 away from the gate trench structure 2111 .

第一掺杂类型与第二掺杂类型相反,可以理解为,第一掺杂类型为N型和P型中的一者,第二掺杂类型为N型和P型中的另一者。例如,第一掺杂类型为N型时,第二掺杂类型为P型。The first doping type is opposite to the second doping type. It can be understood that the first doping type is one of N-type and P-type, and the second doping type is the other of N-type and P-type. For example, when the first doping type is N type, the second doping type is P type.

子元胞结构211、栅极沟槽结构2111、第一掺杂区2113以及阱区2114、的尺寸(pitch)大小可以根据实际情况设定,在此不做限定。The dimensions (pitch) of the subcellular structure 211 , the gate trench structure 2111 , the first doped region 2113 and the well region 2114 can be set according to the actual situation, and are not limited here.

示例性的,子元胞结构211在平行于碳化硅衬底1方向上的长度可以为2.4um;栅极沟槽结构2111在平行于碳化硅衬底1方向上的长度可以为1.0um,栅极沟槽结构2111在垂直于碳化硅衬底1方向上,且内嵌在外延层2内的长度可以为0.9um;第一掺杂区2113在平行于碳化硅衬底1方向上的长度可以为0.4um;阱区2114在平行于碳化硅衬底1方向上的长度可以为0.6um,阱区2114在垂直于碳化硅衬底1方向上的长度可以为1.2um。Exemplarily, the length of the subcellular structure 211 in the direction parallel to the silicon carbide substrate 1 may be 2.4um; the length of the gate trench structure 2111 in the direction parallel to the silicon carbide substrate 1 may be 1.0um, and the gate The length of the pole trench structure 2111 in the direction perpendicular to the silicon carbide substrate 1 and embedded in the epitaxial layer 2 can be 0.9um; the length of the first doped region 2113 in the direction parallel to the silicon carbide substrate 1 can be The length of the well region 2114 in the direction parallel to the silicon carbide substrate 1 may be 0.6 um, and the length of the well region 2114 in the direction perpendicular to the silicon carbide substrate 1 may be 1.2 um.

可选地,在垂直于第一表面11方向上,阱区2114的长度可以大于栅极沟槽结构2111中的栅极结构21111的长度;阱区2114的长度也可以小于或等于栅极沟槽结构2111中的栅极结构21111的长度。即,阱区2114的深度可以大于栅极沟槽结构2111的深度,阱区2114的深度也可以小于栅极沟槽结构2111的深度。Optionally, in the direction perpendicular to the first surface 11, the length of the well region 2114 may be greater than the length of the gate structure 21111 in the gate trench structure 2111; the length of the well region 2114 may also be less than or equal to the gate trench The length of the gate structure 21111 in the structure 2111. That is, the depth of the well region 2114 may be greater than the depth of the gate trench structure 2111 , and the depth of the well region 2114 may also be smaller than the depth of the gate trench structure 2111 .

在本实施方式中,当阻断模式时,在阱区2114在垂直于碳化硅衬底1方向上的长度可以大于栅极沟槽结构2111中的栅极结构21111在垂直于碳化硅衬底1方向上的长度的情况下,阱区2114能够形成耗尽区,耗尽区能够屏蔽栅极沟槽结构2111的角部处的部分电场强度,从而能够提高晶体管的可靠性。In this embodiment, in the blocking mode, the length of the well region 2114 in the direction perpendicular to the silicon carbide substrate 1 may be greater than that of the gate structure 21111 in the gate trench structure 2111 in the direction perpendicular to the silicon carbide substrate 1 In the case of the length in the direction, the well region 2114 can form a depletion region, and the depletion region can shield part of the electric field intensity at the corner of the gate trench structure 2111, thereby improving the reliability of the transistor.

在本实施例中,由于有钳位保护结构22的存在,晶体管无需要设计一定宽度的深P型的阱区2114保护栅极沟槽结构2111的角部处,从而能够减少子元胞结构211的尺寸,因此,形成的碳化硅沟槽型MOSFET晶体管相对于相关技术,能够具有密集元胞。In this embodiment, due to the existence of the clamping protection structure 22, the transistor does not need to design a deep P-type well region 2114 with a certain width to protect the corners of the gate trench structure 2111, thereby reducing the number of sub-cell structures 211 Therefore, the silicon carbide trench MOSFET transistor formed can have dense cells relative to the related technology.

在一些可选的实施方式中,钳位保护结构22,可以包括:In some optional implementation manners, the clamp protection structure 22 may include:

设置在外延层2内的第二掺杂类型的第二掺杂区221,第二掺杂区221的深度大于栅极沟槽结构2111的深度;A second doped region 221 of the second doping type disposed in the epitaxial layer 2, the depth of the second doped region 221 is greater than the depth of the gate trench structure 2111;

设置在第二掺杂区221的表面上的第一金属结构2211;a first metal structure 2211 disposed on the surface of the second doped region 221;

设置在第二掺杂区221内,且与第一金属结构2211接触的第三掺杂区2212。The third doped region 2212 is disposed in the second doped region 221 and in contact with the first metal structure 2211 .

在本实施方式中,第二掺杂类型的第二掺杂区221与第一掺杂类型的外延层2可以构成PN结雪崩二极管,栅极沟槽结构的角部处承受的电场强度会随着晶体管承受的阻断电压的增加而快速增大,阻断电压越高,栅极沟槽结构的角部处的栅极氧化层越容易发生击穿失效。当晶体管承受的阻断电压达到较低的PN结雪崩二极管的击穿电压时,PN结雪崩二极管被击穿,晶体管因此提前发生击穿,能够将栅极沟槽结构的角部处的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。In this embodiment, the second doped region 221 of the second doping type and the epitaxial layer 2 of the first doping type can form a PN junction avalanche diode, and the electric field intensity at the corner of the gate trench structure will vary with As the blocking voltage of the transistor increases rapidly, the higher the blocking voltage is, the more likely the gate oxide layer at the corner of the gate trench structure is to fail due to breakdown. When the blocking voltage of the transistor reaches the breakdown voltage of the lower PN junction avalanche diode, the PN junction avalanche diode is broken down, so the transistor breaks down in advance, and the electric field strength at the corner of the gate trench structure can be reduced The clamping is below a safe value, thereby protecting the corners of the gate trench structure and improving the reliability of the transistor.

第二掺杂类型的第二掺杂区221可以为P型的第二掺杂区221。The second doped region 221 of the second doping type may be a P-type second doped region 221 .

第二掺杂区221的深度大于栅极沟槽结构2111的深度,可以理解为,第二掺杂区221在垂直于第一表面11方向上的长度大于栅极沟槽结构2111在垂直于第一表面11方向上的长度,即,在垂直于第一表面11方向上,第二掺杂区221的长度大于栅极沟槽结构2111的长度。The depth of the second doped region 221 is greater than the depth of the gate trench structure 2111. It can be understood that the length of the second doped region 221 in the direction perpendicular to the first surface 11 is greater than the length of the gate trench structure 2111 in the direction perpendicular to the first surface 11. The length in the direction of a surface 11 , that is, in the direction perpendicular to the first surface 11 , the length of the second doped region 221 is greater than the length of the gate trench structure 2111 .

可选的,第二掺杂区221的深度大于阱区2114的深度。即,在垂直于第一表面11方向上,第二掺杂区221的长度大于阱区2114的长度。Optionally, the depth of the second doped region 221 is greater than the depth of the well region 2114 . That is, in the direction perpendicular to the first surface 11 , the length of the second doped region 221 is greater than the length of the well region 2114 .

在一些可选的实施方式中,第三掺杂区2212可以为第二掺杂类型。例如,第三掺杂区2212可以为P型。In some optional implementation manners, the third doped region 2212 may be of the second doped type. For example, the third doped region 2212 may be P-type.

在本实施方式中,通过在第二掺杂区221内设置与第一金属结构2211接触的第三掺杂区2212,能够与第一金属结构2211形成良好的欧姆接触,减少接触电阻。In this embodiment, by setting the third doped region 2212 in contact with the first metal structure 2211 in the second doped region 221 , a good ohmic contact can be formed with the first metal structure 2211 and contact resistance can be reduced.

如图2所示,在第三掺杂区2212为第二掺杂类型,即,第三掺杂区2212为P型的情况下,钳位保护结构22,还可以包括:As shown in FIG. 2, when the third doped region 2212 is of the second doping type, that is, the third doped region 2212 is of the P type, the clamp protection structure 22 may further include:

设置在第二掺杂区221靠近第一表面11一侧的至少一个第二掺杂类型的第四掺杂区2213;at least one fourth doping region 2213 of the second doping type disposed on the side of the second doping region 221 close to the first surface 11;

设置在第二掺杂区221的底部的第一掺杂类型的第五掺杂区2214。A fifth doped region 2214 of the first doped type is disposed at the bottom of the second doped region 221 .

第二掺杂类型的第四掺杂区2213可以为P型的第四掺杂区2213,第一掺杂类型的第五掺杂区2214可以为N型的第五掺杂区2214。The fourth doped region 2213 of the second doping type may be a fourth doped region 2213 of P type, and the fifth doped region 2214 of the first doping type may be a fifth doped region 2214 of N type.

第五掺杂区2214的掺杂浓度与第二掺杂区221的掺杂浓度相同。第五掺杂区2214可以看作是第二掺杂区221的一部分。The doping concentration of the fifth doped region 2214 is the same as that of the second doped region 221 . The fifth doped region 2214 can be regarded as a part of the second doped region 221 .

第四掺杂区2213与第一表面11的距离小于第二掺杂区221与第一表面11的距离。The distance between the fourth doped region 2213 and the first surface 11 is smaller than the distance between the second doped region 221 and the first surface 11 .

可以理解的是,由于PN结曲率变化最大的地方电场强度最大,因此雪崩击穿一般发生在PN结曲率变化最大的地方,即第二掺杂区221靠近第一表面11的角部处A和F会发生雪崩击穿。雪崩能量Eas是评价器件的抗雪崩能力的主要指标,其中,Eas=1/2×L×I2,I为器件通过的最大电流值,L为线路电感大小。增加器件在发生雪崩击穿时的雪崩电流导通路径,可以显著提高器件的抗雪崩能力。It can be understood that, since the electric field strength is the largest at the place where the curvature of the PN junction changes the most, avalanche breakdown generally occurs at the place where the curvature of the PN junction changes the most, that is, the corners A and A of the second doped region 221 close to the first surface 11 F will have an avalanche breakdown. The avalanche energy Eas is the main index to evaluate the avalanche resistance of the device, where Eas=1/2×L×I 2 , I is the maximum current value passed by the device, and L is the inductance of the line. Increasing the avalanche current conduction path of the device when avalanche breakdown occurs can significantly improve the avalanche resistance of the device.

在本实施方式中,在第二掺杂区221靠近第一表面11一侧设置至少一个第二掺杂类型的第四掺杂区2213,第四掺杂区2213靠近第一表面11的角部处C和D的电场强度会增加,且该处可以和第二掺杂区221靠近第一表面11的角部处同时达到雪崩状态。此外,在第二掺杂区221的底部设置高浓度的第一掺杂类型的第五掺杂区2214,根据泊松方程,可以提高B点和E点的电场强度,进而达到和A、F两点同时击穿的状态。也就是说,在本申请实施例中,通过增加雪崩击穿点(如B点、C点、D点、E点)的数量,增加雪崩电流导通路径,进而提高器件的抗雪崩能力。In this embodiment, at least one fourth doping region 2213 of the second doping type is provided on the side of the second doping region 221 close to the first surface 11, and the fourth doping region 2213 is close to the corner of the first surface 11 The electric field intensity at points C and D will increase, and this point and the corner portion of the second doped region 221 close to the first surface 11 may reach an avalanche state at the same time. In addition, at the bottom of the second doped region 221, a fifth doped region 2214 with a high concentration of the first doped type is provided. According to Poisson's equation, the electric field strength at points B and E can be increased, thereby achieving the same level as A and F. The state of simultaneous breakdown of two points. That is to say, in the embodiment of the present application, by increasing the number of avalanche breakdown points (such as points B, C, D, and E), the conduction path of the avalanche current is increased, thereby improving the avalanche resistance of the device.

可选的,在钳位保护结构22包括设置在第二掺杂区221靠近第一表面11一侧的至少两个第二掺杂类型的第四掺杂区2213的情况下,各第四掺杂区2213间隔设置。Optionally, in the case where the clamping protection structure 22 includes at least two fourth doped regions 2213 of the second doped type disposed on the side of the second doped region 221 close to the first surface 11, each fourth doped region Miscellaneous regions 2213 are arranged at intervals.

如图3所示,图3以钳位保护结构22包括两个个第二掺杂类型的第四掺杂区2213为例,钳位保护结构22还可以包括三个第二掺杂类型的第四掺杂区2213,或四个第二掺杂类型的第四掺杂区2213等,在此不做限定。As shown in FIG. 3 , in FIG. 3 , the clamping protection structure 22 includes two fourth doped regions 2213 of the second doping type as an example, and the clamping protection structure 22 may also include three fourth doping regions 2213 of the second doping type. The four doped regions 2213 , or the four fourth doped regions 2213 of the second doping type are not limited here.

如图1所示,在一些可选的实施方式中,第三掺杂区2212可以为第一掺杂类型。As shown in FIG. 1 , in some optional implementation manners, the third doped region 2212 may be of the first doped type.

第三掺杂区2212可以为高离子掺杂浓度的N型掺杂区。第二掺杂区221的离子掺杂浓度小于第三掺杂区2212的离子掺杂浓度。The third doped region 2212 may be an N-type doped region with high ion doping concentration. The ion doping concentration of the second doping region 221 is smaller than the ion doping concentration of the third doping region 2212 .

在本实施例中,当第三掺杂区2212为N型时,钳位保护结构22为由N型第三掺杂区2212、P型第二掺杂区221以及N型外延层2组成的NPN结构,可以为穿通击穿结构。通过设置第二掺杂区221的离子掺杂浓度与N型外延层2的离子掺杂浓度相接近,在一定阻断电压状态下,电场线可以完全穿过第二掺杂区221,整个第二掺杂区221的电场强度均不为零,因此,电子可以在电场作用下快速贯穿第二掺杂区221。相应的,如果第二掺杂区221的离子掺杂浓度远大于N型外延层2的离子掺杂浓度,电场强度在第二掺杂区221中会快速下降至零。In this embodiment, when the third doped region 2212 is N-type, the clamp protection structure 22 is composed of the N-type third doped region 2212, the P-type second doped region 221 and the N-type epitaxial layer 2. The NPN structure may be a punch-through breakdown structure. By setting the ion doping concentration of the second doping region 221 close to the ion doping concentration of the N-type epitaxial layer 2, under a certain blocking voltage state, the electric field lines can completely pass through the second doping region 221, and the entire second doping region 221 The electric field strengths of the two doped regions 221 are not zero, therefore, electrons can quickly pass through the second doped region 221 under the action of the electric field. Correspondingly, if the ion doping concentration of the second doped region 221 is much higher than the ion doping concentration of the N-type epitaxial layer 2 , the electric field intensity in the second doped region 221 will quickly drop to zero.

相关技术中,穿通击穿的优点是击穿时不生成空穴-电子对,击穿过程不剧烈,不易热损坏器件结构;缺点是穿通电压要小于雪崩击穿电压,在本领域的器件设计中是需要尽量避免的,但在本申请要求的正是钳位保护结构22提前击穿。In related technologies, the advantage of punch-through breakdown is that no hole-electron pairs are generated during breakdown, the breakdown process is not violent, and the device structure is not easily damaged by heat; the disadvantage is that the punch-through voltage is smaller than the avalanche breakdown voltage. It needs to be avoided as much as possible, but what is required in this application is the early breakdown of the clamping protection structure 22 .

此外,通过在第二掺杂区221内设置与第一金属结构2211接触的高浓度N型第三掺杂区2212,可以在穿通击穿时,提供源源不断的电子。此外,对于碳化硅(SiC)材料来说,N型掺杂区上形成欧姆接触的工艺比P型掺杂区上形成欧姆接触更加成熟。在相关技术中,碳化硅N型欧姆接触的接触电阻率一般为10-6Ohm.cm2,而碳化硅P型欧姆接触的接触电阻率一般为10-4Ohm.cm2,可见,N型欧姆接触的接触电阻率远小于P型欧姆接触的接触电阻率,进而降低了击穿发生时电流路径上的电阻。In addition, by disposing the high-concentration N-type third doped region 2212 in the second doped region 221 in contact with the first metal structure 2211 , electrons can be provided continuously during punch-through and breakdown. In addition, for silicon carbide (SiC) materials, the process of forming ohmic contacts on N-type doped regions is more mature than that on P-type doped regions. In the related art, the contact resistivity of silicon carbide N-type ohmic contact is generally 10 -6 Ohm.cm2, while the contact resistivity of silicon carbide P-type ohmic contact is generally 10 -4 Ohm.cm2. It can be seen that the N-type ohmic contact The contact resistivity of the P-type ohmic contact is much smaller than that of the P-type ohmic contact, thereby reducing the resistance on the current path when the breakdown occurs.

如图4所示,在一些可选的实施方式中,钳位保护结构22,还可以包括:As shown in FIG. 4, in some optional implementation manners, the clamp protection structure 22 may further include:

设置在外延层2内的第二掺杂类型的第六掺杂区222,第六掺杂区222的深度大于栅极沟槽结构2111的深度;A sixth doped region 222 of the second doping type disposed in the epitaxial layer 2, the depth of the sixth doped region 222 is greater than the depth of the gate trench structure 2111;

设置在第六掺杂区222的表面上的第二金属结构2221;a second metal structure 2221 disposed on the surface of the sixth doped region 222;

设置在第六掺杂区222内,且靠近第二金属结构2221一侧的PN结结构2222;A PN junction structure 2222 disposed in the sixth doped region 222 and close to the side of the second metal structure 2221;

设置在PN结结构2222靠近第一表面11一侧的第三金属结构2223;A third metal structure 2223 disposed on the side of the PN junction structure 2222 close to the first surface 11;

设置在第三金属结构2223靠近第一表面11一侧的第一掺杂类型的第七掺杂区2224。The seventh doping region 2224 of the first doping type is disposed on the side of the third metal structure 2223 close to the first surface 11 .

第六掺杂区222的深度大于栅极沟槽结构2111的深度,可以理解为,在垂直于第一表面11方向上,第六掺杂区222的长度大于栅极沟槽结构2111的长度。The depth of the sixth doped region 222 is greater than that of the gate trench structure 2111 . It can be understood that, in the direction perpendicular to the first surface 11 , the length of the sixth doped region 222 is greater than the length of the gate trench structure 2111 .

在本实施方式中,第一掺杂类型的第七掺杂区2224、第二掺杂类型的第六掺杂区222和第一掺杂类型的外延层2组成NPN结构。In this embodiment, the seventh doped region 2224 of the first doping type, the sixth doped region 222 of the second doping type and the epitaxial layer 2 of the first doping type form an NPN structure.

可以理解的是,通过设置较低离子掺杂浓度的P型第六掺杂区222,在一定阻断电压状态下,电场线可以完全穿过第六掺杂区222,由于第三金属结构2223连接PN结结构2222和第七掺杂区2224,PN结结构2222的电势与第七掺杂区2224的电势相等,因此第六掺杂区222的电势增加,当第六掺杂区222的电势增加到一定值时(比如从0V增加到30V时),达到PN结结构2222的击穿电压,因此整个PN结结构2222被击穿,整个碳化硅沟槽型MOSFET晶体管的电压被钳位在安全值以下,从而栅极沟槽结构的角部处的电场强度也被钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。It can be understood that, by setting the P-type sixth doped region 222 with a lower ion doping concentration, under a certain blocking voltage state, the electric field lines can completely pass through the sixth doped region 222, because the third metal structure 2223 Connect the PN junction structure 2222 and the seventh doped region 2224, the potential of the PN junction structure 2222 is equal to the potential of the seventh doped region 2224, so the potential of the sixth doped region 222 increases, when the potential of the sixth doped region 222 When it increases to a certain value (for example, when increasing from 0V to 30V), the breakdown voltage of the PN junction structure 2222 is reached, so the entire PN junction structure 2222 is broken down, and the voltage of the entire SiC trench MOSFET transistor is clamped at a safe Therefore, the electric field intensity at the corner of the gate trench structure is also clamped below a safe value, thereby protecting the corner of the gate trench structure and improving the reliability of the transistor.

进一步地,P型的第六掺杂区222和N型的外延层2组成的PN结穿通击穿在发生击穿前就存在比较大的漏电流,击穿曲线比较软。通过在第三金属结构2223远离第一表面11的一侧设置PN结结构2222,可以降低在穿通击穿前的漏电流,减少碳化硅沟槽型MOSFET晶体管在阻断状态下的损耗。Further, the punch-through breakdown of the PN junction composed of the sixth P-type doped region 222 and the N-type epitaxial layer 2 has relatively large leakage current before the breakdown occurs, and the breakdown curve is relatively soft. By arranging the PN junction structure 2222 on the side of the third metal structure 2223 away from the first surface 11, the leakage current before the punch-through breakdown can be reduced, and the loss of the SiC trench MOSFET transistor in the blocking state can be reduced.

可选的,PN结结构2222可以为多晶硅齐纳二极管结构。Optionally, the PN junction structure 2222 may be a polysilicon Zener diode structure.

在一些可选的实施方式中,PN结结构2222,可以包括:In some optional implementation manners, the PN junction structure 2222 may include:

设置在第二金属结构2221与第三金属结构2223之间的第一掺杂结构22221和第二掺杂结构22222,第一掺杂结构22221为第一掺杂类型,第二掺杂结构22222为第二掺杂类型;The first doping structure 22221 and the second doping structure 22222 arranged between the second metal structure 2221 and the third metal structure 2223, the first doping structure 22221 is the first doping type, and the second doping structure 22222 is a second doping type;

第一掺杂结构22221和第二掺杂结构22222之间的接触面平行于第一表面11,且第一掺杂结构22221设置在靠近第三金属结构2223的一侧,第二掺杂结构22222设置在靠近第二金属结构2221的一侧。The contact surface between the first doped structure 22221 and the second doped structure 22222 is parallel to the first surface 11, and the first doped structure 22221 is arranged on a side close to the third metal structure 2223, and the second doped structure 22222 It is arranged on the side close to the second metal structure 2221 .

在本实施例中,第一掺杂类型的第一掺杂结构22221为N型的第一掺杂结构22221;第二掺杂类型的第二掺杂结构22222为P型的第二掺杂结构22222。In this embodiment, the first doping structure 22221 of the first doping type is an N-type first doping structure 22221; the second doping structure 22222 of the second doping type is a P-type second doping structure 22222.

在本申请实施例中,以各个掺杂区的形状为矩形为例,但不以此为限,各个掺杂区的形状可以根据实际情况设定。In the embodiment of the present application, the shape of each doped region is a rectangle as an example, but not limited thereto, and the shape of each doped region can be set according to actual conditions.

值得注意的是,本实施例以第一掺杂类型为N型,第二掺杂类型为P型为例。但在实际实施时,碳化硅衬底1不限于N型,也可以为P型。当碳化硅衬底1为P型时,相应地,外延层2、阱区2114和第一掺杂区2113等结构的导电类型也要发生变化。It should be noted that in this embodiment, the first doping type is N-type and the second doping type is P-type as an example. However, in actual implementation, the silicon carbide substrate 1 is not limited to the N type, and may also be the P type. When the silicon carbide substrate 1 is of P type, correspondingly, the conductivity types of structures such as the epitaxial layer 2 , the well region 2114 and the first doped region 2113 also change.

基于上述实施例提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管,本申请还提供了具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法。以下将对具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法进行说明。Based on the silicon carbide trench MOSFET transistor with dense cells provided in the above embodiments, the present application also provides a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells. A method for manufacturing a silicon carbide trench MOSFET transistor with dense cells will be described below.

图5示出了本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法的实施例的流程示意图。FIG. 5 shows a schematic flowchart of an embodiment of a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells provided by the present application.

如图5所示,具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法可以包括S501至S503。请一并参阅图6至图22,图6至图22是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法一系列制程对应的截面结构示意图。As shown in FIG. 5 , the method for manufacturing a silicon carbide trench MOSFET transistor with dense cells may include S501 to S503 . Please refer to FIG. 6 to FIG. 22 together. FIG. 6 to FIG. 22 are schematic cross-sectional structure diagrams corresponding to a series of manufacturing processes of the silicon carbide trench MOSFET transistor with dense cells provided by the present application.

S501、提供第一掺杂类型的碳化硅衬底1,碳化硅衬底1包括第一表面11,第一表面11上设置有第一掺杂类型的外延层2。S501 , providing a silicon carbide substrate 1 of a first doping type. The silicon carbide substrate 1 includes a first surface 11 , and an epitaxial layer 2 of the first doping type is disposed on the first surface 11 .

在本实施例中,第一掺杂类型的碳化硅衬底1为N型的碳化硅衬底1。In this embodiment, the silicon carbide substrate 1 of the first doping type is an N-type silicon carbide substrate 1 .

如图6所示,在一些可选的实施方式中,首先提供N型的碳化硅衬底1,然后在碳化硅衬底1上进行外延,形成N型的外延层2。As shown in FIG. 6 , in some optional implementation manners, an N-type silicon carbide substrate 1 is provided first, and then epitaxy is performed on the silicon carbide substrate 1 to form an N-type epitaxial layer 2 .

S502、在外延层2内形成元胞结构21,元胞结构21包括栅极沟槽结构2111。S502 , forming a cell structure 21 in the epitaxial layer 2 , where the cell structure 21 includes a gate trench structure 2111 .

在一些可选的实施方式中,在外延层2内形成元胞结构21,可以包括:In some optional implementation manners, forming the cellular structure 21 in the epitaxial layer 2 may include:

在外延层2远离第一表面11的表面上形成第一掺杂类型的第一掺杂区2113;forming a first doped region 2113 of the first doping type on the surface of the epitaxial layer 2 away from the first surface 11;

在第一掺杂区2113的外围区域形成与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114;forming a second doping type well region 2114 spaced apart from the gate trench structure 2111 in the peripheral region of the first doping region 2113;

在外延层2内形成第一沟槽结构23;forming a first trench structure 23 in the epitaxial layer 2;

在第一沟槽结构23内形成栅极沟槽结构2111;forming a gate trench structure 2111 in the first trench structure 23;

在外延层2远离第一表面11的表面上形成源极金属结构2112。A source metal structure 2112 is formed on the surface of the epitaxial layer 2 away from the first surface 11 .

可选的,如图7所示,在外延层2远离第一表面11的表面上形成第一掺杂类型的第一掺杂区2113,可以包括:Optionally, as shown in FIG. 7 , forming the first doped region 2113 of the first doping type on the surface of the epitaxial layer 2 away from the first surface 11 may include:

在外延层2远离第一表面11的表面上进行第一掺杂类型的离子掺杂,形成第一掺杂类型的第一掺杂区2113。Ion doping of the first doping type is performed on the surface of the epitaxial layer 2 away from the first surface 11 to form a first doping region 2113 of the first doping type.

具体的,第一掺杂类型的第一掺杂区2113可以为N型的第一掺杂区2113。Specifically, the first doped region 2113 of the first doping type may be an N-type first doped region 2113 .

示例性地,通过掩膜版和光刻工艺,在外延层2远离第一表面11的表面上注入N型的离子,形成第一掺杂类型的第一掺杂区2113Exemplarily, N-type ions are implanted on the surface of the epitaxial layer 2 away from the first surface 11 through a mask and a photolithography process to form a first doped region 2113 of the first doping type

可选的,如图8所示,在第一掺杂区2113的外围区域形成与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114,可以包括:Optionally, as shown in FIG. 8 , forming a second doping type well region 2114 spaced apart from the gate trench structure 2111 in the peripheral region of the first doping region 2113 may include:

在第一掺杂区2113的外围区域进行第二掺杂类型的离子掺杂,形成与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114。Ion doping of the second doping type is performed on the peripheral region of the first doping region 2113 to form a well region 2114 of the second doping type spaced apart from the gate trench structure 2111 .

具体的,第二掺杂类型的阱区2114可以为P型的阱区2114。Specifically, the well region 2114 of the second doping type may be a P-type well region 2114 .

示例性地,通过掩膜版和光刻工艺,在第一掺杂区2113的外围区域注入P型的离子,形成与栅极沟槽结构2111间隔设置的P类型的阱区2114。Exemplarily, P-type ions are implanted into the peripheral region of the first doped region 2113 through a mask and photolithography process to form a P-type well region 2114 spaced apart from the gate trench structure 2111 .

可选的,如图9所示,在外延层2内形成第一沟槽结构23,可以包括:Optionally, as shown in FIG. 9, forming the first trench structure 23 in the epitaxial layer 2 may include:

在外延层2远离第一表面11的表面往下进行沟槽刻蚀,以使外延层2内形成第一沟槽结构23。Groove etching is performed on the surface of the epitaxial layer 2 away from the first surface 11 , so that a first trench structure 23 is formed in the epitaxial layer 2 .

具体的,可以利用掩模板在外延层2远离第一表面11的表面往下进行沟槽刻蚀,以使外延层2内形成第一沟槽结构23。Specifically, trench etching can be performed on the surface of the epitaxial layer 2 away from the first surface 11 by using a mask, so that the first trench structure 23 is formed in the epitaxial layer 2 .

可选的,如图10所示,在第一沟槽结构23内形成栅极沟槽结构2111,可以包括:Optionally, as shown in FIG. 10 , forming a gate trench structure 2111 in the first trench structure 23 may include:

在所述第一沟槽结构23的表面进行氧化,形成栅极氧化层21112;performing oxidation on the surface of the first trench structure 23 to form a gate oxide layer 21112;

在栅极氧化层21112的表面形成栅极结构21111。A gate structure 21111 is formed on the surface of the gate oxide layer 21112 .

示例性地,通过氧化或淀积工艺在第一沟槽结构23的表面形成栅极氧化层21112。Exemplarily, a gate oxide layer 21112 is formed on the surface of the first trench structure 23 by an oxidation or deposition process.

可选的,如图11所示,在外延层2远离第一表面11的表面上形成源极金属结构2112,可以包括:Optionally, as shown in FIG. 11 , forming the source metal structure 2112 on the surface of the epitaxial layer 2 away from the first surface 11 may include:

在外延层2远离第一表面11的表面上沉积金属,以形成源极金属结构2112。Metal is deposited on the surface of the epitaxial layer 2 away from the first surface 11 to form a source metal structure 2112 .

示例性地,通过光刻和金属化,在外延层2远离第一表面11的表面上形成源极金属结构2112。Exemplarily, by photolithography and metallization, the source metal structure 2112 is formed on the surface of the epitaxial layer 2 away from the first surface 11 .

S503、在每个元胞结构21的外围区域形成钳位保护结构22,钳位保护结构22用于将栅极沟槽结构2111的角部处的栅极氧化层21112承受的电场强度钳位在安全值以下。S503, forming a clamping protection structure 22 in the peripheral region of each cell structure 21, the clamping protection structure 22 is used to clamp the electric field intensity borne by the gate oxide layer 21112 at the corner of the gate trench structure 2111 at below the safe value.

在一些可选的实施方式中,如图12和图13所示,在每个元胞结构21的外围区域形成钳位保护结构22,可以包括:In some optional implementation manners, as shown in FIG. 12 and FIG. 13 , forming a clamping protection structure 22 in the peripheral region of each cellular structure 21 may include:

在外延层2内形成第二掺杂类型的第二掺杂区221;forming a second doped region 221 of the second doping type in the epitaxial layer 2;

在第二掺杂区221内形成第三掺杂区2212;forming a third doped region 2212 in the second doped region 221;

在第三掺杂区2212的表面形成第一金属结构2211。A first metal structure 2211 is formed on the surface of the third doped region 2212 .

示例性地,可以通过掩膜版和光刻工艺,利用更高注入机能量形成P型的第二掺杂区221,以及高剂量注入,以在第二掺杂区221内形成第三掺杂区2212,在第三掺杂区2212的表面沉积金属,以形成第一金属结构2211。Exemplarily, a P-type second doped region 221 can be formed by using a higher implanter energy through a mask and a photolithography process, and high-dose implantation can be used to form a third doped region 221 in the second doped region 221. In the region 2212 , metal is deposited on the surface of the third doped region 2212 to form the first metal structure 2211 .

在一些可选的实施方式中,第三掺杂区2212可以为第二掺杂类型,即,第三掺杂区2212可以为P型。In some optional implementation manners, the third doping region 2212 may be of the second doping type, that is, the third doping region 2212 may be of the P type.

如图14至图15所示,在一些可选的实施方式中,在每个元胞结构21的外围区域形成钳位保护结构22,可以包括:As shown in FIGS. 14 to 15 , in some optional implementation manners, a clamping protection structure 22 is formed in the peripheral region of each cellular structure 21, which may include:

在第二掺杂区221靠近第一表面11一侧形成至少一个第二掺杂类型的第四掺杂区2213;forming at least one fourth doping region 2213 of the second doping type on the side of the second doping region 221 close to the first surface 11;

在第二掺杂区221的底部形成第一掺杂类型的第五掺杂区2214。A fifth doped region 2214 of the first doping type is formed at the bottom of the second doped region 221 .

作为一个示例,在第二掺杂区221靠近第一表面11一侧进行P型离子掺杂,以形成P型的第四掺杂区2213;在第二掺杂区221的底部进行N型离子掺杂,以形成N型的第五掺杂区2214。As an example, P-type ion doping is performed on the side of the second doped region 221 close to the first surface 11 to form a P-type fourth doped region 2213; N-type ion doping is performed on the bottom of the second doped region 221. doped to form an N-type fifth doped region 2214 .

作为另一个示例,如图14至图16所示,在第二掺杂区221靠近第一表面11一侧形成至少一个第二掺杂类型的第四掺杂区2213,还可以为,在外延层2内形成第二沟槽结构25;利用第二沟槽结构25,在第二掺杂区221靠近第一表面11一侧进行P型离子掺杂,以形成P型的第四掺杂区2213;在第二沟槽结构25进行N型离子掺杂,以形成N型的第五掺杂区2214。As another example, as shown in FIGS. 14 to 16, at least one fourth doped region 2213 of the second doping type is formed on the side of the second doped region 221 close to the first surface 11. A second trench structure 25 is formed in the layer 2; using the second trench structure 25, the side of the second doped region 221 close to the first surface 11 is doped with P-type ions to form a P-type fourth doped region 2213 : Do N-type ion doping in the second trench structure 25 to form an N-type fifth doped region 2214 .

在另一些可选的实施方式中,第三掺杂区2212可以为第一掺杂类型,即,第三掺杂区2212可以为N型。In other optional implementation manners, the third doping region 2212 may be of the first doping type, that is, the third doping region 2212 may be of N type.

在一些可选的实施方式中,如图17至图22所示,在每个元胞结构21的外围区域形成钳位保护结构22,可以包括:In some optional implementation manners, as shown in FIG. 17 to FIG. 22 , forming a clamping protection structure 22 in the peripheral region of each cellular structure 21 may include:

在外延层2内形成第二掺杂类型的第六掺杂区222,第六掺杂区222的深度大于栅极沟槽结构2111的深度;A sixth doped region 222 of the second doping type is formed in the epitaxial layer 2, and the depth of the sixth doped region 222 is greater than the depth of the gate trench structure 2111;

在第六掺杂区222内形成第一掺杂类型的第七掺杂区2224;forming a seventh doped region 2224 of the first doping type in the sixth doped region 222;

在第六掺杂区222内形成第三沟槽结构26;forming a third trench structure 26 in the sixth doped region 222;

在第三沟槽结构26的底部形成第三金属结构2223;forming a third metal structure 2223 at the bottom of the third trench structure 26;

在第三金属结构2223远离第一表面11的一侧形成PN结结构2222;Forming a PN junction structure 2222 on a side of the third metal structure 2223 away from the first surface 11;

在PN结结构2222远离第一表面11的一侧形成第二金属结构2221。A second metal structure 2221 is formed on a side of the PN junction structure 2222 away from the first surface 11 .

示例性地,在第六掺杂区222内进行P型离子掺杂,以形成P型的第六掺杂区222;在第六掺杂区222内进行N型离子掺杂,以形成N型的第七掺杂区2224;在第六掺杂区222内进行刻蚀,以形成第三沟槽结构26;在第三沟槽结构26的底部沉积金属,以形成第三金属结构2223;在第三沟槽结构26内沉积多晶硅材料,在第三金属结构2223远离第一表面11的一侧形成PN结结构2222;在PN结结构2222远离第一表面11的一侧沉积金属,以形成第二金属结构2221。Exemplarily, P-type ion doping is performed in the sixth doped region 222 to form a P-type sixth doped region 222; N-type ion doping is performed in the sixth doped region 222 to form an N-type the seventh doped region 2224; etch in the sixth doped region 222 to form a third trench structure 26; deposit metal at the bottom of the third trench structure 26 to form a third metal structure 2223; Polysilicon material is deposited in the third trench structure 26, and a PN junction structure 2222 is formed on the side of the third metal structure 2223 away from the first surface 11; metal is deposited on the side of the PN junction structure 2222 away from the first surface 11 to form the first surface 11. Two metal structures 2221.

进一步地,在第三金属结构2223远离第一表面11的一侧形成PN结结构2222,可以包括:Further, forming the PN junction structure 2222 on the side of the third metal structure 2223 away from the first surface 11 may include:

在第三金属结构2223远离第一表面11的一侧形成第一掺杂类型的第一掺杂结构22221;forming a first doping structure 22221 of the first doping type on the side of the third metal structure 2223 away from the first surface 11;

在第一掺杂结构22221远离第一表面11的一侧形成第二掺杂类型的第二掺杂结构22222。A second doping structure 22222 of the second doping type is formed on the side of the first doping structure 22221 away from the first surface 11 .

示例性地,在第三金属结构2223远离第一表面11的一侧进行N型离子掺杂,以形成N型的第一掺杂结构22221;Exemplarily, N-type ion doping is performed on the side of the third metal structure 2223 away from the first surface 11 to form an N-type first doped structure 22221;

在第一掺杂结构22221远离第一表面11的一侧进行P型离子掺杂,以形成P型的第二掺杂结构22222。如图1所示,碳化硅衬底1还可以包括与第一表面11相对的第二表面12,在第二表面12形成漏极结构3。P-type ion doping is performed on the side of the first doped structure 22221 away from the first surface 11 to form a P-type second doped structure 22222 . As shown in FIG. 1 , silicon carbide substrate 1 may further include a second surface 12 opposite to first surface 11 , and drain structure 3 is formed on second surface 12 .

值得注意的是,本实施例以第一掺杂类型为N型,第二掺杂类型为P型为例。但在实际实施时,碳化硅衬底1不限于N型,也可以为P型。当碳化硅衬底1为P型时,相应地,外延层2、阱区2114和第一掺杂区2113等结构的导电类型也要发生变化。It should be noted that in this embodiment, the first doping type is N-type and the second doping type is P-type as an example. However, in actual implementation, the silicon carbide substrate 1 is not limited to the N type, and may also be the P type. When the silicon carbide substrate 1 is of P type, correspondingly, the conductivity types of structures such as the epitaxial layer 2 , the well region 2114 and the first doped region 2113 also change.

关于上述实施例中的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法,其中各个结构以及有益效果已经在有关该具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例中进行了详细描述,此处将不做详细阐述说明。Regarding the manufacturing method of the silicon carbide trench MOSFET transistor with dense cells in the above embodiment, the various structures and beneficial effects have been detailed in the embodiment of the silicon carbide trench MOSFET transistor with dense cells description, and will not be elaborated here.

以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。The above is only a specific implementation of the present application, and those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described systems, modules and units can refer to the foregoing method embodiments The corresponding process in , will not be repeated here. It should be understood that the protection scope of the present application is not limited thereto, and any person familiar with the technical field can easily think of various equivalent modifications or replacements within the technical scope disclosed in the application, and these modifications or replacements should cover all Within the protection scope of this application.

Claims (6)

1.一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,其特征在于,包括:1. A silicon carbide trench MOSFET transistor with dense cells, characterized in that it comprises: 第一掺杂类型的碳化硅衬底,所述碳化硅衬底包括第一表面,所述第一表面上设置有第一掺杂类型的外延层;A silicon carbide substrate of a first doping type, the silicon carbide substrate comprising a first surface on which an epitaxial layer of the first doping type is disposed; 设置在所述外延层内的多个元胞结构,所述元胞结构包括栅极沟槽结构;a plurality of cellular structures disposed within the epitaxial layer, the cellular structures including gate trench structures; 每个所述元胞结构的外围区域设置有钳位保护结构,所述钳位保护结构用于将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下;The peripheral area of each of the cell structures is provided with a clamping protection structure, and the clamping protection structure is used for clamping the electric field intensity borne by the gate oxide layer at the corner of the gate trench structure below a safe value ; 所述钳位保护结构,包括:The clamp protection structure includes: 设置在所述外延层内的第二掺杂类型的第六掺杂区,所述第六掺杂区的深度大于所述栅极沟槽结构的深度;a sixth doped region of the second doping type disposed in the epitaxial layer, the depth of the sixth doped region is greater than the depth of the gate trench structure; 设置在所述第六掺杂区的表面上的第二金属结构;a second metal structure disposed on the surface of the sixth doped region; 设置在所述第六掺杂区内,且靠近所述第二金属结构一侧的PN结结构;a PN junction structure disposed in the sixth doped region and close to one side of the second metal structure; 设置在所述PN结结构靠近所述第一表面一侧的第三金属结构;a third metal structure disposed on a side of the PN junction structure close to the first surface; 设置在所述第三金属结构靠近所述第一表面一侧的所述第一掺杂类型的第七掺杂区;a seventh doped region of the first doping type disposed on a side of the third metal structure close to the first surface; 其中,所述第三金属结构与所述PN结结构、所述第七掺杂区均直接接触。Wherein, the third metal structure is in direct contact with the PN junction structure and the seventh doped region. 2.根据权利要求1所述的具有密集元胞的碳化硅沟槽型MOSFET晶体管,其特征在于,所述元胞结构包括至少两个并行排列的子元胞结构;2. The silicon carbide trench MOSFET transistor with dense cells according to claim 1, wherein the cell structure comprises at least two sub-cell structures arranged in parallel; 所述子元胞结构包括:The subcellular structure includes: 设置在所述外延层内的栅极沟槽结构;a gate trench structure disposed in the epitaxial layer; 设置在所述外延层远离所述第一表面的表面上的源极金属结构;a source metal structure disposed on a surface of the epitaxial layer away from the first surface; 设置在所述栅极沟槽结构靠近顶部的侧面外围区域的所述第一掺杂类型的第一掺杂区;a first doped region of the first doping type disposed on a side peripheral region of the gate trench structure near the top; 设置在所述第一掺杂区的外围区域,且与所述栅极沟槽结构间隔设置的第二掺杂类型的阱区;a well region of a second doping type disposed in a peripheral region of the first doped region and spaced from the gate trench structure; 所述第一掺杂类型与所述第二掺杂类型相反。The first doping type is opposite to the second doping type. 3.根据权利要求1所述的具有密集元胞的碳化硅沟槽型MOSFET晶体管,其特征在于,所述PN结结构,包括:3. The silicon carbide trench MOSFET transistor with dense cells according to claim 1, wherein the PN junction structure comprises: 设置在所述第二金属结构与所述第三金属结构之间的第一掺杂结构和第二掺杂结构,所述第一掺杂结构为所述第一掺杂类型,所述第二掺杂结构为所述第二掺杂类型;a first doping structure and a second doping structure disposed between the second metal structure and the third metal structure, the first doping structure is the first doping type, the second the doping structure is the second doping type; 所述第一掺杂结构和所述第二掺杂结构之间的接触面平行于所述第一表面,且所述第一掺杂结构设置在靠近所述第三金属结构的一侧,所述第二掺杂结构设置在靠近所述第二金属结构的一侧。The contact surface between the first doped structure and the second doped structure is parallel to the first surface, and the first doped structure is arranged on a side close to the third metal structure, so The second doping structure is arranged on a side close to the second metal structure. 4.一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,其特征在于,包括:4. A silicon carbide trench MOSFET transistor with dense cells, characterized in that it comprises: 第一掺杂类型的碳化硅衬底,所述碳化硅衬底包括第一表面,所述第一表面上设置有第一掺杂类型的外延层;A silicon carbide substrate of a first doping type, the silicon carbide substrate comprising a first surface on which an epitaxial layer of the first doping type is disposed; 设置在所述外延层内的多个元胞结构,所述元胞结构包括栅极沟槽结构;a plurality of cellular structures disposed within the epitaxial layer, the cellular structures including gate trench structures; 每个所述元胞结构的外围区域设置有钳位保护结构,所述钳位保护结构用于将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下;The peripheral area of each of the cell structures is provided with a clamping protection structure, and the clamping protection structure is used for clamping the electric field intensity borne by the gate oxide layer at the corner of the gate trench structure below a safe value ; 所述钳位保护结构,包括:The clamp protection structure includes: 设置在所述外延层内的第二掺杂类型的第二掺杂区,所述第二掺杂区的深度大于所述栅极沟槽结构的深度;a second doped region of a second doping type disposed in the epitaxial layer, the depth of the second doped region being greater than the depth of the gate trench structure; 设置在所述第二掺杂区的表面上的第一金属结构;a first metal structure disposed on the surface of the second doped region; 设置在所述第二掺杂区内,且与所述第一金属结构接触的第三掺杂区;a third doped region disposed within the second doped region and in contact with the first metal structure; 所述第三掺杂区为所述第二掺杂类型;the third doped region is of the second doping type; 所述钳位保护结构,还包括:The clamp protection structure also includes: 设置在所述第二掺杂区靠近所述第一表面一侧的至少一个所述第二掺杂类型的第四掺杂区;at least one fourth doped region of the second doped type disposed on a side of the second doped region close to the first surface; 设置在所述第二掺杂区的底部的所述第一掺杂类型的第五掺杂区。A fifth doped region of the first doped type is disposed at the bottom of the second doped region. 5.一种具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法,其特征在于,包括:5. A method for manufacturing a silicon carbide trench MOSFET transistor with dense cells, characterized in that it comprises: 提供第一掺杂类型的碳化硅衬底,所述碳化硅衬底包括第一表面,所述第一表面上设置有第一掺杂类型的外延层;providing a silicon carbide substrate of a first doping type, the silicon carbide substrate comprising a first surface on which an epitaxial layer of the first doping type is disposed; 在所述外延层内形成元胞结构,所述元胞结构包括栅极沟槽结构;forming a cellular structure in the epitaxial layer, the cellular structure including a gate trench structure; 在每个所述元胞结构的外围区域形成钳位保护结构,所述钳位保护结构用于将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下;A clamping protection structure is formed in the peripheral region of each of the cell structures, and the clamping protection structure is used to clamp the electric field strength borne by the gate oxide layer at the corner of the gate trench structure below a safe value ; 在每个所述元胞结构的外围区域形成钳位保护结构,包括:A clamping protection structure is formed in the peripheral region of each of the cellular structures, including: 在外延层内形成第二掺杂类型的第六掺杂区,所述第六掺杂区的深度大于所述栅极沟槽结构的深度;forming a sixth doped region of the second doping type in the epitaxial layer, the depth of the sixth doped region is greater than the depth of the gate trench structure; 在所述第六掺杂区内形成所述第一掺杂类型的第七掺杂区;forming a seventh doped region of the first doping type within the sixth doped region; 在所述第六掺杂区内形成第三沟槽结构;forming a third trench structure in the sixth doped region; 在所述第三沟槽结构的底部形成第三金属结构;forming a third metal structure at the bottom of the third trench structure; 在所述第三金属结构远离所述第一表面的一侧形成PN结结构;forming a PN junction structure on a side of the third metal structure away from the first surface; 在所述PN结结构远离所述第一表面的一侧形成第二金属结构;forming a second metal structure on a side of the PN junction structure away from the first surface; 其中,所述第三金属结构与所述PN结结构、所述第七掺杂区均直接接触。Wherein, the third metal structure is in direct contact with the PN junction structure and the seventh doped region. 6.根据权利要求5所述的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法,其特征在于,所述在所述外延层内形成元胞结构,包括:6. The method for manufacturing a silicon carbide trench MOSFET transistor with dense cells according to claim 5, wherein said forming a cell structure in said epitaxial layer comprises: 在所述外延层远离所述第一表面的表面上形成所述第一掺杂类型的第一掺杂区;forming a first doped region of the first doping type on a surface of the epitaxial layer away from the first surface; 在所述第一掺杂区的外围区域形成与所述栅极沟槽结构间隔设置的第二掺杂类型的阱区;forming a well region of a second doping type spaced apart from the gate trench structure in a peripheral region of the first doped region; 在所述外延层内形成第一沟槽结构;forming a first trench structure in the epitaxial layer; 在所述第一沟槽结构内形成栅极沟槽结构;forming a gate trench structure within the first trench structure; 在所述外延层远离所述第一表面的表面上形成源极金属结构。A source metal structure is formed on a surface of the epitaxial layer away from the first surface.
CN202211010354.5A 2022-08-23 2022-08-23 Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same Active CN115084237B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211010354.5A CN115084237B (en) 2022-08-23 2022-08-23 Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211010354.5A CN115084237B (en) 2022-08-23 2022-08-23 Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same

Publications (2)

Publication Number Publication Date
CN115084237A CN115084237A (en) 2022-09-20
CN115084237B true CN115084237B (en) 2022-11-04

Family

ID=83245352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211010354.5A Active CN115084237B (en) 2022-08-23 2022-08-23 Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same

Country Status (1)

Country Link
CN (1) CN115084237B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251594A (en) * 1997-12-31 1999-09-17 Siliconix Inc Power MOSFET with voltage clamped gate
US20120126317A1 (en) * 2010-11-18 2012-05-24 Alpha And Omega Semiconductor Incorporated Accufet with integrated clamping circuit
JP6551156B2 (en) * 2015-10-29 2019-07-31 富士電機株式会社 Super junction MOSFET device and semiconductor chip
CN111769156B (en) * 2020-07-02 2024-07-12 瑞能半导体科技股份有限公司 Silicon carbide trench gate transistor and method of making same

Also Published As

Publication number Publication date
CN115084237A (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP2988871B2 (en) Trench gate power MOSFET
CN109585529B (en) Semiconductor device and method of manufacturing the same
JP3417013B2 (en) Insulated gate bipolar transistor
EP2667418B1 (en) Semiconductor device
CN117525157B (en) A dual-channel trench device and its manufacturing method
EP2517249B1 (en) Integrated gate commutated power thyristor
US20220216331A1 (en) Semiconductor device and method for designing thereof
JP2018152426A (en) Semiconductor device
CN117410344A (en) Pi-type trench gate silicon carbide MOSFET device and preparation method thereof
CN115799344A (en) Silicon carbide JFET cellular structure and manufacturing method thereof
CN110518058A (en) A kind of lateral trench type insulated gate bipolar transistor and preparation method thereof
CN114725219B (en) Silicon carbide trench gate transistor and method of manufacturing the same
CN114823910B (en) Short channel trench type silicon carbide transistor and method of manufacturing the same
CN116093152A (en) Semiconductor device
US20220238698A1 (en) Mos-gated trench device using low mask count and simplified processing
CN108155230B (en) Transverse RC-IGBT device and preparation method thereof
CN209804661U (en) MOSFET device with silicon carbide double-side deep L-shaped base region structure
CN115084237B (en) Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same
CN216250740U (en) Power semiconductor device
CN116364762A (en) Double trench type MOSFET device and manufacturing method thereof
CN213752716U (en) Metal oxide field effect transistor device and electronic equipment
KR101534104B1 (en) Semiconductor device
JP2023544308A (en) Power device termination structure and its manufacturing method, and power device
CN113097305A (en) Field-effect tube and preparation method thereof
CN116454116B (en) Trench MOSFET device and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240829

Address after: 200032 area a, 2nd floor, 420 Fenglin Road, Xuhui District, Shanghai

Patentee after: Shanghai Ruineng Weilan Semiconductor Technology Co.,Ltd.

Country or region after: China

Address before: 330052 North first floor, building 16, No. 346, xiaolanzhong Avenue, Xiaolan Economic Development Zone, Nanchang County, Nanchang City, Jiangxi Province

Patentee before: Ruineng Semiconductor Technology Co.,Ltd.

Country or region before: China