CN115084237B - Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same - Google Patents
Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same Download PDFInfo
- Publication number
- CN115084237B CN115084237B CN202211010354.5A CN202211010354A CN115084237B CN 115084237 B CN115084237 B CN 115084237B CN 202211010354 A CN202211010354 A CN 202211010354A CN 115084237 B CN115084237 B CN 115084237B
- Authority
- CN
- China
- Prior art keywords
- doped region
- silicon carbide
- doping
- doping type
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 230000005684 electric field Effects 0.000 claims abstract description 27
- 230000002093 peripheral effect Effects 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims description 72
- 210000004027 cell Anatomy 0.000 claims description 46
- 210000003850 cellular structure Anatomy 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 23
- 210000004895 subcellular structure Anatomy 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 22
- 150000002500 ions Chemical class 0.000 description 20
- 230000000903 blocking effect Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000000206 photolithography Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
- H10D62/127—Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
本申请公开了一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法,涉及半导体器件技术领域。碳化硅沟槽型MOSFET晶体管包括:第一掺杂类型的碳化硅衬底,碳化硅衬底包括第一表面,第一表面上设置有第一掺杂类型的外延层;设置在外延层内的多个元胞结构,元胞结构包括栅极沟槽结构;每个元胞结构的外围区域设置有钳位保护结构,钳位保护结构用于保护栅极沟槽结构的角部处的栅极氧化层。根据本申请能够将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。
The present application discloses a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof, and relates to the technical field of semiconductor devices. The silicon carbide trench type MOSFET transistor includes: a silicon carbide substrate of a first doping type, the silicon carbide substrate includes a first surface, and an epitaxial layer of the first doping type is provided on the first surface; A plurality of cell structures, the cell structure includes a gate trench structure; a clamping protection structure is provided in the peripheral area of each cell structure, and the clamping protection structure is used to protect the gate at the corner of the gate trench structure oxide layer. According to the present application, the electric field strength of the gate oxide layer at the corner of the gate trench structure can be clamped below a safe value, thereby protecting the corner of the gate trench structure and improving the reliability of the transistor.
Description
技术领域technical field
本申请属于半导体器件技术领域,尤其涉及一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法。The present application belongs to the technical field of semiconductor devices, and in particular relates to a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof.
背景技术Background technique
金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field EffectTransistor,MOSFET)为电压型控制器件,驱动电路简单,驱动的功率小,而且开关速度快,具有高的工作频率。Metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET) is a voltage type control device, the driving circuit is simple, the driving power is small, and the switching speed is fast, and it has a high operating frequency.
根据不同的栅极布局方向,碳化硅MOSFET可分为平面型结构和沟槽型结构。而沟槽型结构由于更高的元胞密度,在导通性能方面具有更明显的优势。但对于沟槽型碳化硅晶体管而言,最大的挑战是沟槽角部处的栅极氧化层极易承受巨大的电场强度,影响器件的可靠性。According to different gate layout directions, silicon carbide MOSFETs can be divided into planar structure and trench structure. The trench structure has a more obvious advantage in conduction performance due to the higher cell density. But for trench silicon carbide transistors, the biggest challenge is that the gate oxide layer at the corner of the trench is extremely easy to withstand huge electric field strength, which affects the reliability of the device.
发明内容Contents of the invention
本申请实施例提供一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法,能够降低栅极沟槽结构的角部处的电场强度,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。Embodiments of the present application provide a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof, which can reduce the electric field intensity at the corners of the gate trench structure, thereby protecting the corners of the gate trench structure , improve the reliability of the transistor.
第一方面,本申请实施例提供一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,包括:In the first aspect, the embodiment of the present application provides a silicon carbide trench MOSFET transistor with dense cells, including:
第一掺杂类型的碳化硅衬底,所述碳化硅衬底包括第一表面,所述第一表面上设置有第一掺杂类型的外延层;A silicon carbide substrate of a first doping type, the silicon carbide substrate comprising a first surface on which an epitaxial layer of the first doping type is disposed;
设置在所述外延层内的多个元胞结构,所述元胞结构包括栅极沟槽结构;a plurality of cellular structures disposed within the epitaxial layer, the cellular structures including gate trench structures;
每个所述元胞结构的外围区域设置有钳位保护结构,所述钳位保护结构用于将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下。在一些可选的实施方式中,所述元胞结构包括至少两个并行排列的子元胞结构;The peripheral area of each of the cell structures is provided with a clamping protection structure, and the clamping protection structure is used for clamping the electric field intensity borne by the gate oxide layer at the corner of the gate trench structure below a safe value . In some optional embodiments, the cellular structure includes at least two subcellular structures arranged in parallel;
所述子元胞结构包括:The subcellular structure includes:
设置在所述外延层内的栅极沟槽结构;a gate trench structure disposed in the epitaxial layer;
设置在所述外延层远离所述第一表面的表面上的源极金属结构;a source metal structure disposed on a surface of the epitaxial layer away from the first surface;
设置在所述栅极沟槽结构靠近顶部的侧面外围区域的所述第一掺杂类型的第一掺杂区;a first doped region of the first doping type disposed on a side peripheral region of the gate trench structure near the top;
设置在所述第一掺杂区的外围区域,且与所述栅极沟槽结构间隔设置的第二掺杂类型的阱区;所述第一掺杂类型与所述第二掺杂类型相反。a well region of a second doping type disposed in the peripheral region of the first doping region and spaced from the gate trench structure; the first doping type is opposite to the second doping type .
在一些可选的实施方式中,所述钳位保护结构,包括:In some optional implementation manners, the clamp protection structure includes:
设置在所述外延层内的第二掺杂类型的第二掺杂区,所述第二掺杂区的深度大于所述栅极沟槽结构的深度;a second doped region of a second doping type disposed in the epitaxial layer, the depth of the second doped region being greater than the depth of the gate trench structure;
设置在所述第二掺杂区的表面上的第一金属结构;a first metal structure disposed on the surface of the second doped region;
设置在所述第二掺杂区内,且与所述第一金属结构接触的第三掺杂区。A third doped region disposed in the second doped region and in contact with the first metal structure.
在一些可选的实施方式中,所述第三掺杂区为所述第二掺杂类型。In some optional implementation manners, the third doped region is of the second doped type.
在一些可选的实施方式中,所述第三掺杂区为所述第一掺杂类型。In some optional implementation manners, the third doped region is of the first doped type.
在一些可选的实施方式中,所述钳位保护结构,还包括:In some optional implementation manners, the clamp protection structure further includes:
设置在所述第二掺杂区靠近所述第一表面一侧的至少一个所述第二掺杂类型的第四掺杂区;at least one fourth doped region of the second doped type disposed on a side of the second doped region close to the first surface;
设置在所述第二掺杂区的底部的所述第一掺杂类型的第五掺杂区。A fifth doped region of the first doped type is disposed at the bottom of the second doped region.
在一些可选的实施方式中,所述钳位保护结构,包括:In some optional implementation manners, the clamp protection structure includes:
设置在所述外延层内的第二掺杂类型的第六掺杂区,所述第六掺杂区的深度大于所述栅极沟槽结构的深度;a sixth doped region of the second doping type disposed in the epitaxial layer, the depth of the sixth doped region is greater than the depth of the gate trench structure;
设置在所述第六掺杂区的表面上的第二金属结构;a second metal structure disposed on the surface of the sixth doped region;
设置在所述第六掺杂区内,且靠近所述第二金属结构一侧的PN结结构;a PN junction structure disposed in the sixth doped region and close to one side of the second metal structure;
设置在所述PN结结构靠近所述第一表面一侧的第三金属结构;a third metal structure disposed on a side of the PN junction structure close to the first surface;
设置在所述第三金属结构靠近所述第一表面一侧的所述第一掺杂类型的第七掺杂区。A seventh doping region of the first doping type disposed on a side of the third metal structure close to the first surface.
在一些可选的实施方式中,所述PN结结构,包括:In some optional implementation manners, the PN junction structure includes:
设置在所述第二金属结构与所述第三金属结构之间的第一掺杂结构和第二掺杂结构,所述第一掺杂结构为所述第一掺杂类型,所述第二掺杂结构为所述第二掺杂类型;a first doping structure and a second doping structure disposed between the second metal structure and the third metal structure, the first doping structure is the first doping type, the second the doping structure is the second doping type;
所述第一掺杂结构和所述第二掺杂结构之间的接触面平行于所述第一表面,且所述第一掺杂结构设置在靠近所述第三金属结构的一侧,所述第二掺杂结构设置在靠近所述第二金属结构的一侧。The contact surface between the first doped structure and the second doped structure is parallel to the first surface, and the first doped structure is disposed on a side close to the third metal structure, so The second doping structure is arranged on a side close to the second metal structure.
第二方面,本申请实施例提供了一种具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法,包括:In the second aspect, the embodiment of the present application provides a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells, including:
提供第一掺杂类型的碳化硅衬底,所述碳化硅衬底包括第一表面,所述第一表面上设置有第一掺杂类型的外延层;providing a silicon carbide substrate of a first doping type, the silicon carbide substrate comprising a first surface on which an epitaxial layer of the first doping type is disposed;
在所述外延层内形成元胞结构,所述元胞结构包括栅极沟槽结构;forming a cellular structure in the epitaxial layer, the cellular structure including a gate trench structure;
在每个所述元胞结构的外围区域形成钳位保护结构,所述钳位保护结构用于将栅极沟槽结构的角部处的栅极氧化层承受的电场强度钳位在安全值以下。A clamping protection structure is formed in the peripheral region of each of the cell structures, and the clamping protection structure is used for clamping the electric field intensity borne by the gate oxide layer at the corner of the gate trench structure below a safe value .
在一些可选的实施方式中,所述在所述外延层内形成元胞结构,包括:In some optional implementation manners, the forming a cellular structure in the epitaxial layer includes:
在所述外延层远离所述第一表面的表面上形成所述第一掺杂类型的第一掺杂区;forming a first doped region of the first doping type on a surface of the epitaxial layer away from the first surface;
在所述第一掺杂区的外围区域形成与所述栅极沟槽结构间隔设置的第二掺杂类型的阱区;forming a well region of a second doping type spaced apart from the gate trench structure in a peripheral region of the first doped region;
在所述外延层内形成第一沟槽结构;forming a first trench structure in the epitaxial layer;
在所述第一沟槽结构内形成栅极沟槽结构;forming a gate trench structure within the first trench structure;
在所述外延层远离所述第一表面的表面上形成源极金属结构。A source metal structure is formed on a surface of the epitaxial layer away from the first surface.
本申请实施例提供的一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,该晶体管可以包括:内置于外延层的多个元胞结构和设置在元胞结构外围区域的钳位保护结构。栅极沟槽结构的角部处的栅极氧化层承受的电场强度会随着晶体管承受的阻断电压的增加而快速增大,阻断电压越高,栅极沟槽结构的角部处的栅极氧化层越容易发生击穿失效。但是当晶体管承受的阻断电压达到较低的钳位保护结构的击穿电压时,钳位保护结构被击穿,晶体管因此提前发生击穿,能够将栅极沟槽结构的角部处的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处的栅极氧化层,提高晶体管的可靠性。An embodiment of the present application provides a silicon carbide trench MOSFET transistor with dense cells, the transistor may include: a plurality of cell structures embedded in the epitaxial layer and a clamping protection structure arranged in the peripheral region of the cell structure. The electric field strength of the gate oxide layer at the corner of the gate trench structure will increase rapidly with the increase of the blocking voltage of the transistor. The gate oxide layer is more prone to breakdown failure. However, when the blocking voltage of the transistor reaches the lower breakdown voltage of the clamping protection structure, the clamping protection structure is broken down, and the transistor breaks down in advance, which can reduce the electric field at the corner of the gate trench structure The strength is clamped below a safe value, thereby protecting the gate oxide layer at the corner of the gate trench structure and improving the reliability of the transistor.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the following will briefly introduce the accompanying drawings that need to be used in the embodiments of the present application. Additional figures can be derived from these figures.
图1是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的一种结构示意图;Figure 1 is a schematic structural view of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;
图2是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的另一种结构示意图;FIG. 2 is another schematic structural view of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;
图3是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的又一种结构示意图;FIG. 3 is another structural schematic diagram of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;
图4是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的再一种结构示意图;FIG. 4 is another structural schematic diagram of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by the present application;
图5是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法的实施例的流程示意图;5 is a schematic flow diagram of an embodiment of a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells provided by the present application;
图6是本申请提供的碳化硅衬底的截面结构示意图;Fig. 6 is a schematic cross-sectional structure diagram of a silicon carbide substrate provided by the present application;
图7是本申请提供的形成第一掺杂区的截面结构示意图;FIG. 7 is a schematic diagram of a cross-sectional structure for forming a first doped region provided by the present application;
图8是本申请提供的形成阱区的截面结构示意图;FIG. 8 is a schematic diagram of a cross-sectional structure for forming a well region provided by the present application;
图9是本申请提供的形成第一沟槽结构的截面结构示意图;FIG. 9 is a schematic diagram of a cross-sectional structure for forming a first trench structure provided by the present application;
图10是本申请提供的形成栅极沟槽结构的截面结构示意图;FIG. 10 is a schematic diagram of a cross-sectional structure for forming a gate trench structure provided by the present application;
图11是本申请提供的形成源极金属结构的截面结构示意图;FIG. 11 is a schematic cross-sectional structure diagram of the source metal structure provided by the present application;
图12是本申请提供的形成第二掺杂区和第三掺杂区的截面结构示意图;Fig. 12 is a schematic cross-sectional structure diagram for forming the second doped region and the third doped region provided by the present application;
图13是本申请提供的形成第一金属结构的截面结构示意图;Fig. 13 is a schematic cross-sectional structure diagram of forming the first metal structure provided by the present application;
图14是本申请提供的形成第四掺杂区的截面结构示意图;FIG. 14 is a schematic cross-sectional structure diagram for forming a fourth doped region provided by the present application;
图15是本申请提供的形成第五掺杂区的截面结构示意图;Fig. 15 is a schematic cross-sectional structure diagram for forming a fifth doped region provided by the present application;
图16是本申请提供的形成第二沟槽结构的截面结构示意图;FIG. 16 is a schematic cross-sectional structure diagram of forming a second trench structure provided by the present application;
图17是本申请提供的形成第六掺杂区的截面结构示意图;Fig. 17 is a schematic cross-sectional structure diagram for forming the sixth doped region provided by the present application;
图18是本申请提供的形成第七掺杂区的截面结构示意图;Fig. 18 is a schematic cross-sectional structure diagram for forming the seventh doped region provided by the present application;
图19是本申请提供的形成第三沟槽结构的截面结构示意图;Fig. 19 is a schematic cross-sectional structure diagram of forming a third trench structure provided by the present application;
图20是本申请提供的形成第三金属结构的截面结构示意图;Fig. 20 is a schematic cross-sectional structure diagram of forming a third metal structure provided by the present application;
图21是本申请提供的形成PN结结构的截面结构示意图;Fig. 21 is a schematic cross-sectional structure diagram of forming a PN junction structure provided by the present application;
图22是本申请提供的形成第二金属结构的截面结构示意图。FIG. 22 is a schematic cross-sectional structure diagram of forming a second metal structure provided by the present application.
附图标记说明:Explanation of reference signs:
1:碳化硅衬底;11:第一表面;12:第二表面。1: silicon carbide substrate; 11: first surface; 12: second surface.
2:外延层;21:元胞结构;211:子元胞结构;2111:栅极沟槽结构;21111:栅极结构;21112:栅极氧化层;2112:源极金属结构;2113:第一掺杂区;2114:阱区;22:钳位保护结构;221:第二掺杂区;2211:第一金属结构;2212:第三掺杂区;2213:第四掺杂区;2214:第五掺杂区;222:第六掺杂区;2221:第二金属结构;2222:PN结结构;22221:第一掺杂结构;22222:第二掺杂结构;2223:第三金属结构;2224:第七掺杂区;23:第一沟槽结构;25:第二沟槽结构;26:第三沟槽结构。2: epitaxial layer; 21: cellular structure; 211: subcellular structure; 2111: gate trench structure; 21111: gate structure; 21112: gate oxide layer; 2112: source metal structure; 2113: first doped region; 2114: well region; 22: clamp protection structure; 221: second doped region; 2211: first metal structure; 2212: third doped region; 2213: fourth doped region; 2214: first Five doping regions; 222: sixth doping region; 2221: second metal structure; 2222: PN junction structure; 22221: first doping structure; 22222: second doping structure; 2223: third metal structure; 2224 : the seventh doped region; 23: the first trench structure; 25: the second trench structure; 26: the third trench structure.
3:漏极结构。3: Drain structure.
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。In the figures, the same parts are given the same reference numerals. The figures are not drawn to scale.
具体实施方式Detailed ways
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。The characteristics and exemplary embodiments of various aspects of the application will be described in detail below. In order to make the purpose, technical solution and advantages of the application clearer, the application will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are only intended to explain the present application rather than limit the present application. It will be apparent to one skilled in the art that the present application may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present application by showing examples of the present application.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. any such actual relationship or order exists between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the statement "comprising..." does not exclude the presence of additional same elements in the process, method, article or device comprising said element.
为了解决现有技术问题,本申请实施例提供了一种具有密集元胞的碳化硅沟槽型MOSFET晶体管及其制造方法。下面首先对本申请实施例所提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管进行介绍。In order to solve the problems of the prior art, embodiments of the present application provide a silicon carbide trench MOSFET transistor with dense cells and a manufacturing method thereof. The silicon carbide trench MOSFET transistor with dense cells provided by the embodiment of the present application will be firstly introduced below.
图1示出了本申请一个实施例提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例的一种结构示意图。FIG. 1 shows a schematic structural diagram of an embodiment of a silicon carbide trench MOSFET transistor with dense cells provided by an embodiment of the present application.
如图1所示,本申请实施例提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管,可以包括:As shown in Figure 1, the silicon carbide trench MOSFET transistor with dense cells provided in the embodiment of the present application may include:
第一掺杂类型的碳化硅衬底1,碳化硅衬底1包括第一表面11,第一表面11上设置有第一掺杂类型的外延层2;A silicon carbide substrate 1 of the first doping type. The silicon carbide substrate 1 includes a
设置在外延层2内的多个元胞结构21,元胞结构21包括栅极沟槽结构2111;A plurality of
每个元胞结构21的外围区域设置有钳位保护结构22,钳位保护结构22用于确保晶体管提前发生击穿,进而将栅极沟槽结构2111的角部处的栅极氧化层21112承受的电场强度钳位在安全值以下。The peripheral area of each
本申请实施例提供的一种具有密集元胞的碳化硅沟槽型MOSFET晶体管,该晶体管可以包括:内置于外延层的多个元胞结构和设置在元胞结构外围区域的钳位保护结构。栅极沟槽结构的角部处的栅极氧化层承受的电场强度会随着晶体管承受的阻断电压的增加而快速增大,阻断电压越高,栅极沟槽结构的角部处的栅极氧化层越容易发生击穿失效。但是当晶体管承受的阻断电压达到较低的钳位保护结构的击穿电压时,钳位保护结构被击穿,晶体管因此提前发生击穿,能够将栅极沟槽结构的角部处的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。An embodiment of the present application provides a silicon carbide trench MOSFET transistor with dense cells, the transistor may include: a plurality of cell structures embedded in the epitaxial layer and a clamping protection structure arranged in the peripheral region of the cell structure. The electric field strength of the gate oxide layer at the corner of the gate trench structure will increase rapidly with the increase of the blocking voltage of the transistor. The gate oxide layer is more prone to breakdown failure. However, when the blocking voltage of the transistor reaches the lower breakdown voltage of the clamping protection structure, the clamping protection structure is broken down, and the transistor breaks down in advance, which can reduce the electric field at the corner of the gate trench structure The strength is clamped below a safe value, thereby protecting the corners of the gate trench structure and improving the reliability of the transistor.
在本实施例中,第一掺杂类型可以为N型,第二掺杂类型可以为P型。第一掺杂类型的碳化硅衬底1可以为N型的碳化硅衬底;第一掺杂类型的外延层2可以为N型的外延层。In this embodiment, the first doping type may be N type, and the second doping type may be P type. The silicon carbide substrate 1 of the first doping type may be an N-type silicon carbide substrate; the
外延层2内包括的元胞结构21的数量可以根据实际需求设定,在此不做限定。例如,元胞结构21的数量可以为100个。The number of
钳位保护结构22可以为能够将栅极沟槽结构2111的角部处的栅极氧化层21112承受的电场强度钳位在安全值以下的结构。The clamping
在一些可选的实施方式中,碳化硅衬底1还可以包括与第一表面11相对的第二表面12,第二表面12设置有漏极结构3。In some optional implementation manners, silicon carbide substrate 1 may further include a
在一些可选的实施方式中,元胞结构21可以包括至少两个并行排列的子元胞结构211;In some optional embodiments, the
子元胞结构211可以包括:
设置在外延层2内的栅极沟槽结构2111;a
设置在外延层2远离第一表面11的表面上的源极金属结构2112;a
设置在栅极沟槽结构2111靠近顶部的侧面外围区域的第一掺杂类型的第一掺杂区2113;A first doped
设置在第一掺杂区2113的外围区域,且与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114;第一掺杂类型与第二掺杂类型相反。The
在本实施例中,元胞结构21可以包括至少两个并行排列的子元胞结构211,可以理解为,元胞结构21在平行于第一表面11方向上可以包括至少两个子元胞结构211。In this embodiment, the
每个元胞结构21中的子元胞结构211的数量可以根据实际情况设置,在此不做限定。可选的,每个元胞结构21可以包括四个并行排列的子元胞结构211。The number of
在本实施例中,第一掺杂类型的第一掺杂区2113可以是N型的第一掺区,第二掺杂类型的阱区2114可以是P型的阱区2114。In this embodiment, the first
第一掺杂区2113的外围区域可以理解为第一掺杂区2113远离栅极沟槽结构2111的一侧的区域。The peripheral region of the first
第一掺杂类型与第二掺杂类型相反,可以理解为,第一掺杂类型为N型和P型中的一者,第二掺杂类型为N型和P型中的另一者。例如,第一掺杂类型为N型时,第二掺杂类型为P型。The first doping type is opposite to the second doping type. It can be understood that the first doping type is one of N-type and P-type, and the second doping type is the other of N-type and P-type. For example, when the first doping type is N type, the second doping type is P type.
子元胞结构211、栅极沟槽结构2111、第一掺杂区2113以及阱区2114、的尺寸(pitch)大小可以根据实际情况设定,在此不做限定。The dimensions (pitch) of the
示例性的,子元胞结构211在平行于碳化硅衬底1方向上的长度可以为2.4um;栅极沟槽结构2111在平行于碳化硅衬底1方向上的长度可以为1.0um,栅极沟槽结构2111在垂直于碳化硅衬底1方向上,且内嵌在外延层2内的长度可以为0.9um;第一掺杂区2113在平行于碳化硅衬底1方向上的长度可以为0.4um;阱区2114在平行于碳化硅衬底1方向上的长度可以为0.6um,阱区2114在垂直于碳化硅衬底1方向上的长度可以为1.2um。Exemplarily, the length of the
可选地,在垂直于第一表面11方向上,阱区2114的长度可以大于栅极沟槽结构2111中的栅极结构21111的长度;阱区2114的长度也可以小于或等于栅极沟槽结构2111中的栅极结构21111的长度。即,阱区2114的深度可以大于栅极沟槽结构2111的深度,阱区2114的深度也可以小于栅极沟槽结构2111的深度。Optionally, in the direction perpendicular to the
在本实施方式中,当阻断模式时,在阱区2114在垂直于碳化硅衬底1方向上的长度可以大于栅极沟槽结构2111中的栅极结构21111在垂直于碳化硅衬底1方向上的长度的情况下,阱区2114能够形成耗尽区,耗尽区能够屏蔽栅极沟槽结构2111的角部处的部分电场强度,从而能够提高晶体管的可靠性。In this embodiment, in the blocking mode, the length of the
在本实施例中,由于有钳位保护结构22的存在,晶体管无需要设计一定宽度的深P型的阱区2114保护栅极沟槽结构2111的角部处,从而能够减少子元胞结构211的尺寸,因此,形成的碳化硅沟槽型MOSFET晶体管相对于相关技术,能够具有密集元胞。In this embodiment, due to the existence of the clamping
在一些可选的实施方式中,钳位保护结构22,可以包括:In some optional implementation manners, the
设置在外延层2内的第二掺杂类型的第二掺杂区221,第二掺杂区221的深度大于栅极沟槽结构2111的深度;A second
设置在第二掺杂区221的表面上的第一金属结构2211;a
设置在第二掺杂区221内,且与第一金属结构2211接触的第三掺杂区2212。The third
在本实施方式中,第二掺杂类型的第二掺杂区221与第一掺杂类型的外延层2可以构成PN结雪崩二极管,栅极沟槽结构的角部处承受的电场强度会随着晶体管承受的阻断电压的增加而快速增大,阻断电压越高,栅极沟槽结构的角部处的栅极氧化层越容易发生击穿失效。当晶体管承受的阻断电压达到较低的PN结雪崩二极管的击穿电压时,PN结雪崩二极管被击穿,晶体管因此提前发生击穿,能够将栅极沟槽结构的角部处的电场强度钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。In this embodiment, the second
第二掺杂类型的第二掺杂区221可以为P型的第二掺杂区221。The second
第二掺杂区221的深度大于栅极沟槽结构2111的深度,可以理解为,第二掺杂区221在垂直于第一表面11方向上的长度大于栅极沟槽结构2111在垂直于第一表面11方向上的长度,即,在垂直于第一表面11方向上,第二掺杂区221的长度大于栅极沟槽结构2111的长度。The depth of the second
可选的,第二掺杂区221的深度大于阱区2114的深度。即,在垂直于第一表面11方向上,第二掺杂区221的长度大于阱区2114的长度。Optionally, the depth of the second
在一些可选的实施方式中,第三掺杂区2212可以为第二掺杂类型。例如,第三掺杂区2212可以为P型。In some optional implementation manners, the third
在本实施方式中,通过在第二掺杂区221内设置与第一金属结构2211接触的第三掺杂区2212,能够与第一金属结构2211形成良好的欧姆接触,减少接触电阻。In this embodiment, by setting the third
如图2所示,在第三掺杂区2212为第二掺杂类型,即,第三掺杂区2212为P型的情况下,钳位保护结构22,还可以包括:As shown in FIG. 2, when the third
设置在第二掺杂区221靠近第一表面11一侧的至少一个第二掺杂类型的第四掺杂区2213;at least one
设置在第二掺杂区221的底部的第一掺杂类型的第五掺杂区2214。A fifth doped
第二掺杂类型的第四掺杂区2213可以为P型的第四掺杂区2213,第一掺杂类型的第五掺杂区2214可以为N型的第五掺杂区2214。The fourth
第五掺杂区2214的掺杂浓度与第二掺杂区221的掺杂浓度相同。第五掺杂区2214可以看作是第二掺杂区221的一部分。The doping concentration of the fifth
第四掺杂区2213与第一表面11的距离小于第二掺杂区221与第一表面11的距离。The distance between the fourth
可以理解的是,由于PN结曲率变化最大的地方电场强度最大,因此雪崩击穿一般发生在PN结曲率变化最大的地方,即第二掺杂区221靠近第一表面11的角部处A和F会发生雪崩击穿。雪崩能量Eas是评价器件的抗雪崩能力的主要指标,其中,Eas=1/2×L×I2,I为器件通过的最大电流值,L为线路电感大小。增加器件在发生雪崩击穿时的雪崩电流导通路径,可以显著提高器件的抗雪崩能力。It can be understood that, since the electric field strength is the largest at the place where the curvature of the PN junction changes the most, avalanche breakdown generally occurs at the place where the curvature of the PN junction changes the most, that is, the corners A and A of the second
在本实施方式中,在第二掺杂区221靠近第一表面11一侧设置至少一个第二掺杂类型的第四掺杂区2213,第四掺杂区2213靠近第一表面11的角部处C和D的电场强度会增加,且该处可以和第二掺杂区221靠近第一表面11的角部处同时达到雪崩状态。此外,在第二掺杂区221的底部设置高浓度的第一掺杂类型的第五掺杂区2214,根据泊松方程,可以提高B点和E点的电场强度,进而达到和A、F两点同时击穿的状态。也就是说,在本申请实施例中,通过增加雪崩击穿点(如B点、C点、D点、E点)的数量,增加雪崩电流导通路径,进而提高器件的抗雪崩能力。In this embodiment, at least one
可选的,在钳位保护结构22包括设置在第二掺杂区221靠近第一表面11一侧的至少两个第二掺杂类型的第四掺杂区2213的情况下,各第四掺杂区2213间隔设置。Optionally, in the case where the clamping
如图3所示,图3以钳位保护结构22包括两个个第二掺杂类型的第四掺杂区2213为例,钳位保护结构22还可以包括三个第二掺杂类型的第四掺杂区2213,或四个第二掺杂类型的第四掺杂区2213等,在此不做限定。As shown in FIG. 3 , in FIG. 3 , the clamping
如图1所示,在一些可选的实施方式中,第三掺杂区2212可以为第一掺杂类型。As shown in FIG. 1 , in some optional implementation manners, the third
第三掺杂区2212可以为高离子掺杂浓度的N型掺杂区。第二掺杂区221的离子掺杂浓度小于第三掺杂区2212的离子掺杂浓度。The third
在本实施例中,当第三掺杂区2212为N型时,钳位保护结构22为由N型第三掺杂区2212、P型第二掺杂区221以及N型外延层2组成的NPN结构,可以为穿通击穿结构。通过设置第二掺杂区221的离子掺杂浓度与N型外延层2的离子掺杂浓度相接近,在一定阻断电压状态下,电场线可以完全穿过第二掺杂区221,整个第二掺杂区221的电场强度均不为零,因此,电子可以在电场作用下快速贯穿第二掺杂区221。相应的,如果第二掺杂区221的离子掺杂浓度远大于N型外延层2的离子掺杂浓度,电场强度在第二掺杂区221中会快速下降至零。In this embodiment, when the third
相关技术中,穿通击穿的优点是击穿时不生成空穴-电子对,击穿过程不剧烈,不易热损坏器件结构;缺点是穿通电压要小于雪崩击穿电压,在本领域的器件设计中是需要尽量避免的,但在本申请要求的正是钳位保护结构22提前击穿。In related technologies, the advantage of punch-through breakdown is that no hole-electron pairs are generated during breakdown, the breakdown process is not violent, and the device structure is not easily damaged by heat; the disadvantage is that the punch-through voltage is smaller than the avalanche breakdown voltage. It needs to be avoided as much as possible, but what is required in this application is the early breakdown of the clamping
此外,通过在第二掺杂区221内设置与第一金属结构2211接触的高浓度N型第三掺杂区2212,可以在穿通击穿时,提供源源不断的电子。此外,对于碳化硅(SiC)材料来说,N型掺杂区上形成欧姆接触的工艺比P型掺杂区上形成欧姆接触更加成熟。在相关技术中,碳化硅N型欧姆接触的接触电阻率一般为10-6Ohm.cm2,而碳化硅P型欧姆接触的接触电阻率一般为10-4Ohm.cm2,可见,N型欧姆接触的接触电阻率远小于P型欧姆接触的接触电阻率,进而降低了击穿发生时电流路径上的电阻。In addition, by disposing the high-concentration N-type third
如图4所示,在一些可选的实施方式中,钳位保护结构22,还可以包括:As shown in FIG. 4, in some optional implementation manners, the
设置在外延层2内的第二掺杂类型的第六掺杂区222,第六掺杂区222的深度大于栅极沟槽结构2111的深度;A sixth
设置在第六掺杂区222的表面上的第二金属结构2221;a
设置在第六掺杂区222内,且靠近第二金属结构2221一侧的PN结结构2222;A
设置在PN结结构2222靠近第一表面11一侧的第三金属结构2223;A
设置在第三金属结构2223靠近第一表面11一侧的第一掺杂类型的第七掺杂区2224。The
第六掺杂区222的深度大于栅极沟槽结构2111的深度,可以理解为,在垂直于第一表面11方向上,第六掺杂区222的长度大于栅极沟槽结构2111的长度。The depth of the sixth
在本实施方式中,第一掺杂类型的第七掺杂区2224、第二掺杂类型的第六掺杂区222和第一掺杂类型的外延层2组成NPN结构。In this embodiment, the seventh
可以理解的是,通过设置较低离子掺杂浓度的P型第六掺杂区222,在一定阻断电压状态下,电场线可以完全穿过第六掺杂区222,由于第三金属结构2223连接PN结结构2222和第七掺杂区2224,PN结结构2222的电势与第七掺杂区2224的电势相等,因此第六掺杂区222的电势增加,当第六掺杂区222的电势增加到一定值时(比如从0V增加到30V时),达到PN结结构2222的击穿电压,因此整个PN结结构2222被击穿,整个碳化硅沟槽型MOSFET晶体管的电压被钳位在安全值以下,从而栅极沟槽结构的角部处的电场强度也被钳位在安全值以下,进而能够保护栅极沟槽结构的角部处,提高晶体管的可靠性。It can be understood that, by setting the P-type sixth doped
进一步地,P型的第六掺杂区222和N型的外延层2组成的PN结穿通击穿在发生击穿前就存在比较大的漏电流,击穿曲线比较软。通过在第三金属结构2223远离第一表面11的一侧设置PN结结构2222,可以降低在穿通击穿前的漏电流,减少碳化硅沟槽型MOSFET晶体管在阻断状态下的损耗。Further, the punch-through breakdown of the PN junction composed of the sixth P-type doped
可选的,PN结结构2222可以为多晶硅齐纳二极管结构。Optionally, the
在一些可选的实施方式中,PN结结构2222,可以包括:In some optional implementation manners, the
设置在第二金属结构2221与第三金属结构2223之间的第一掺杂结构22221和第二掺杂结构22222,第一掺杂结构22221为第一掺杂类型,第二掺杂结构22222为第二掺杂类型;The
第一掺杂结构22221和第二掺杂结构22222之间的接触面平行于第一表面11,且第一掺杂结构22221设置在靠近第三金属结构2223的一侧,第二掺杂结构22222设置在靠近第二金属结构2221的一侧。The contact surface between the first
在本实施例中,第一掺杂类型的第一掺杂结构22221为N型的第一掺杂结构22221;第二掺杂类型的第二掺杂结构22222为P型的第二掺杂结构22222。In this embodiment, the
在本申请实施例中,以各个掺杂区的形状为矩形为例,但不以此为限,各个掺杂区的形状可以根据实际情况设定。In the embodiment of the present application, the shape of each doped region is a rectangle as an example, but not limited thereto, and the shape of each doped region can be set according to actual conditions.
值得注意的是,本实施例以第一掺杂类型为N型,第二掺杂类型为P型为例。但在实际实施时,碳化硅衬底1不限于N型,也可以为P型。当碳化硅衬底1为P型时,相应地,外延层2、阱区2114和第一掺杂区2113等结构的导电类型也要发生变化。It should be noted that in this embodiment, the first doping type is N-type and the second doping type is P-type as an example. However, in actual implementation, the silicon carbide substrate 1 is not limited to the N type, and may also be the P type. When the silicon carbide substrate 1 is of P type, correspondingly, the conductivity types of structures such as the
基于上述实施例提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管,本申请还提供了具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法。以下将对具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法进行说明。Based on the silicon carbide trench MOSFET transistor with dense cells provided in the above embodiments, the present application also provides a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells. A method for manufacturing a silicon carbide trench MOSFET transistor with dense cells will be described below.
图5示出了本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法的实施例的流程示意图。FIG. 5 shows a schematic flowchart of an embodiment of a method for manufacturing a silicon carbide trench MOSFET transistor with dense cells provided by the present application.
如图5所示,具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法可以包括S501至S503。请一并参阅图6至图22,图6至图22是本申请提供的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法一系列制程对应的截面结构示意图。As shown in FIG. 5 , the method for manufacturing a silicon carbide trench MOSFET transistor with dense cells may include S501 to S503 . Please refer to FIG. 6 to FIG. 22 together. FIG. 6 to FIG. 22 are schematic cross-sectional structure diagrams corresponding to a series of manufacturing processes of the silicon carbide trench MOSFET transistor with dense cells provided by the present application.
S501、提供第一掺杂类型的碳化硅衬底1,碳化硅衬底1包括第一表面11,第一表面11上设置有第一掺杂类型的外延层2。S501 , providing a silicon carbide substrate 1 of a first doping type. The silicon carbide substrate 1 includes a
在本实施例中,第一掺杂类型的碳化硅衬底1为N型的碳化硅衬底1。In this embodiment, the silicon carbide substrate 1 of the first doping type is an N-type silicon carbide substrate 1 .
如图6所示,在一些可选的实施方式中,首先提供N型的碳化硅衬底1,然后在碳化硅衬底1上进行外延,形成N型的外延层2。As shown in FIG. 6 , in some optional implementation manners, an N-type silicon carbide substrate 1 is provided first, and then epitaxy is performed on the silicon carbide substrate 1 to form an N-
S502、在外延层2内形成元胞结构21,元胞结构21包括栅极沟槽结构2111。S502 , forming a
在一些可选的实施方式中,在外延层2内形成元胞结构21,可以包括:In some optional implementation manners, forming the
在外延层2远离第一表面11的表面上形成第一掺杂类型的第一掺杂区2113;forming a first
在第一掺杂区2113的外围区域形成与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114;forming a second doping
在外延层2内形成第一沟槽结构23;forming a
在第一沟槽结构23内形成栅极沟槽结构2111;forming a
在外延层2远离第一表面11的表面上形成源极金属结构2112。A
可选的,如图7所示,在外延层2远离第一表面11的表面上形成第一掺杂类型的第一掺杂区2113,可以包括:Optionally, as shown in FIG. 7 , forming the first
在外延层2远离第一表面11的表面上进行第一掺杂类型的离子掺杂,形成第一掺杂类型的第一掺杂区2113。Ion doping of the first doping type is performed on the surface of the
具体的,第一掺杂类型的第一掺杂区2113可以为N型的第一掺杂区2113。Specifically, the first
示例性地,通过掩膜版和光刻工艺,在外延层2远离第一表面11的表面上注入N型的离子,形成第一掺杂类型的第一掺杂区2113Exemplarily, N-type ions are implanted on the surface of the
可选的,如图8所示,在第一掺杂区2113的外围区域形成与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114,可以包括:Optionally, as shown in FIG. 8 , forming a second doping
在第一掺杂区2113的外围区域进行第二掺杂类型的离子掺杂,形成与栅极沟槽结构2111间隔设置的第二掺杂类型的阱区2114。Ion doping of the second doping type is performed on the peripheral region of the
具体的,第二掺杂类型的阱区2114可以为P型的阱区2114。Specifically, the
示例性地,通过掩膜版和光刻工艺,在第一掺杂区2113的外围区域注入P型的离子,形成与栅极沟槽结构2111间隔设置的P类型的阱区2114。Exemplarily, P-type ions are implanted into the peripheral region of the first
可选的,如图9所示,在外延层2内形成第一沟槽结构23,可以包括:Optionally, as shown in FIG. 9, forming the
在外延层2远离第一表面11的表面往下进行沟槽刻蚀,以使外延层2内形成第一沟槽结构23。Groove etching is performed on the surface of the
具体的,可以利用掩模板在外延层2远离第一表面11的表面往下进行沟槽刻蚀,以使外延层2内形成第一沟槽结构23。Specifically, trench etching can be performed on the surface of the
可选的,如图10所示,在第一沟槽结构23内形成栅极沟槽结构2111,可以包括:Optionally, as shown in FIG. 10 , forming a
在所述第一沟槽结构23的表面进行氧化,形成栅极氧化层21112;performing oxidation on the surface of the
在栅极氧化层21112的表面形成栅极结构21111。A
示例性地,通过氧化或淀积工艺在第一沟槽结构23的表面形成栅极氧化层21112。Exemplarily, a
可选的,如图11所示,在外延层2远离第一表面11的表面上形成源极金属结构2112,可以包括:Optionally, as shown in FIG. 11 , forming the
在外延层2远离第一表面11的表面上沉积金属,以形成源极金属结构2112。Metal is deposited on the surface of the
示例性地,通过光刻和金属化,在外延层2远离第一表面11的表面上形成源极金属结构2112。Exemplarily, by photolithography and metallization, the
S503、在每个元胞结构21的外围区域形成钳位保护结构22,钳位保护结构22用于将栅极沟槽结构2111的角部处的栅极氧化层21112承受的电场强度钳位在安全值以下。S503, forming a clamping
在一些可选的实施方式中,如图12和图13所示,在每个元胞结构21的外围区域形成钳位保护结构22,可以包括:In some optional implementation manners, as shown in FIG. 12 and FIG. 13 , forming a clamping
在外延层2内形成第二掺杂类型的第二掺杂区221;forming a second
在第二掺杂区221内形成第三掺杂区2212;forming a third
在第三掺杂区2212的表面形成第一金属结构2211。A
示例性地,可以通过掩膜版和光刻工艺,利用更高注入机能量形成P型的第二掺杂区221,以及高剂量注入,以在第二掺杂区221内形成第三掺杂区2212,在第三掺杂区2212的表面沉积金属,以形成第一金属结构2211。Exemplarily, a P-type second doped
在一些可选的实施方式中,第三掺杂区2212可以为第二掺杂类型,即,第三掺杂区2212可以为P型。In some optional implementation manners, the
如图14至图15所示,在一些可选的实施方式中,在每个元胞结构21的外围区域形成钳位保护结构22,可以包括:As shown in FIGS. 14 to 15 , in some optional implementation manners, a clamping
在第二掺杂区221靠近第一表面11一侧形成至少一个第二掺杂类型的第四掺杂区2213;forming at least one
在第二掺杂区221的底部形成第一掺杂类型的第五掺杂区2214。A fifth doped
作为一个示例,在第二掺杂区221靠近第一表面11一侧进行P型离子掺杂,以形成P型的第四掺杂区2213;在第二掺杂区221的底部进行N型离子掺杂,以形成N型的第五掺杂区2214。As an example, P-type ion doping is performed on the side of the second
作为另一个示例,如图14至图16所示,在第二掺杂区221靠近第一表面11一侧形成至少一个第二掺杂类型的第四掺杂区2213,还可以为,在外延层2内形成第二沟槽结构25;利用第二沟槽结构25,在第二掺杂区221靠近第一表面11一侧进行P型离子掺杂,以形成P型的第四掺杂区2213;在第二沟槽结构25进行N型离子掺杂,以形成N型的第五掺杂区2214。As another example, as shown in FIGS. 14 to 16, at least one fourth
在另一些可选的实施方式中,第三掺杂区2212可以为第一掺杂类型,即,第三掺杂区2212可以为N型。In other optional implementation manners, the
在一些可选的实施方式中,如图17至图22所示,在每个元胞结构21的外围区域形成钳位保护结构22,可以包括:In some optional implementation manners, as shown in FIG. 17 to FIG. 22 , forming a clamping
在外延层2内形成第二掺杂类型的第六掺杂区222,第六掺杂区222的深度大于栅极沟槽结构2111的深度;A sixth
在第六掺杂区222内形成第一掺杂类型的第七掺杂区2224;forming a seventh
在第六掺杂区222内形成第三沟槽结构26;forming a
在第三沟槽结构26的底部形成第三金属结构2223;forming a
在第三金属结构2223远离第一表面11的一侧形成PN结结构2222;Forming a
在PN结结构2222远离第一表面11的一侧形成第二金属结构2221。A
示例性地,在第六掺杂区222内进行P型离子掺杂,以形成P型的第六掺杂区222;在第六掺杂区222内进行N型离子掺杂,以形成N型的第七掺杂区2224;在第六掺杂区222内进行刻蚀,以形成第三沟槽结构26;在第三沟槽结构26的底部沉积金属,以形成第三金属结构2223;在第三沟槽结构26内沉积多晶硅材料,在第三金属结构2223远离第一表面11的一侧形成PN结结构2222;在PN结结构2222远离第一表面11的一侧沉积金属,以形成第二金属结构2221。Exemplarily, P-type ion doping is performed in the sixth
进一步地,在第三金属结构2223远离第一表面11的一侧形成PN结结构2222,可以包括:Further, forming the
在第三金属结构2223远离第一表面11的一侧形成第一掺杂类型的第一掺杂结构22221;forming a
在第一掺杂结构22221远离第一表面11的一侧形成第二掺杂类型的第二掺杂结构22222。A
示例性地,在第三金属结构2223远离第一表面11的一侧进行N型离子掺杂,以形成N型的第一掺杂结构22221;Exemplarily, N-type ion doping is performed on the side of the
在第一掺杂结构22221远离第一表面11的一侧进行P型离子掺杂,以形成P型的第二掺杂结构22222。如图1所示,碳化硅衬底1还可以包括与第一表面11相对的第二表面12,在第二表面12形成漏极结构3。P-type ion doping is performed on the side of the first
值得注意的是,本实施例以第一掺杂类型为N型,第二掺杂类型为P型为例。但在实际实施时,碳化硅衬底1不限于N型,也可以为P型。当碳化硅衬底1为P型时,相应地,外延层2、阱区2114和第一掺杂区2113等结构的导电类型也要发生变化。It should be noted that in this embodiment, the first doping type is N-type and the second doping type is P-type as an example. However, in actual implementation, the silicon carbide substrate 1 is not limited to the N type, and may also be the P type. When the silicon carbide substrate 1 is of P type, correspondingly, the conductivity types of structures such as the
关于上述实施例中的具有密集元胞的碳化硅沟槽型MOSFET晶体管制造方法,其中各个结构以及有益效果已经在有关该具有密集元胞的碳化硅沟槽型MOSFET晶体管的实施例中进行了详细描述,此处将不做详细阐述说明。Regarding the manufacturing method of the silicon carbide trench MOSFET transistor with dense cells in the above embodiment, the various structures and beneficial effects have been detailed in the embodiment of the silicon carbide trench MOSFET transistor with dense cells description, and will not be elaborated here.
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。The above is only a specific implementation of the present application, and those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described systems, modules and units can refer to the foregoing method embodiments The corresponding process in , will not be repeated here. It should be understood that the protection scope of the present application is not limited thereto, and any person familiar with the technical field can easily think of various equivalent modifications or replacements within the technical scope disclosed in the application, and these modifications or replacements should cover all Within the protection scope of this application.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211010354.5A CN115084237B (en) | 2022-08-23 | 2022-08-23 | Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211010354.5A CN115084237B (en) | 2022-08-23 | 2022-08-23 | Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115084237A CN115084237A (en) | 2022-09-20 |
CN115084237B true CN115084237B (en) | 2022-11-04 |
Family
ID=83245352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211010354.5A Active CN115084237B (en) | 2022-08-23 | 2022-08-23 | Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115084237B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11251594A (en) * | 1997-12-31 | 1999-09-17 | Siliconix Inc | Power MOSFET with voltage clamped gate |
US20120126317A1 (en) * | 2010-11-18 | 2012-05-24 | Alpha And Omega Semiconductor Incorporated | Accufet with integrated clamping circuit |
JP6551156B2 (en) * | 2015-10-29 | 2019-07-31 | 富士電機株式会社 | Super junction MOSFET device and semiconductor chip |
CN111769156B (en) * | 2020-07-02 | 2024-07-12 | 瑞能半导体科技股份有限公司 | Silicon carbide trench gate transistor and method of making same |
-
2022
- 2022-08-23 CN CN202211010354.5A patent/CN115084237B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115084237A (en) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2988871B2 (en) | Trench gate power MOSFET | |
CN109585529B (en) | Semiconductor device and method of manufacturing the same | |
JP3417013B2 (en) | Insulated gate bipolar transistor | |
EP2667418B1 (en) | Semiconductor device | |
CN117525157B (en) | A dual-channel trench device and its manufacturing method | |
EP2517249B1 (en) | Integrated gate commutated power thyristor | |
US20220216331A1 (en) | Semiconductor device and method for designing thereof | |
JP2018152426A (en) | Semiconductor device | |
CN117410344A (en) | Pi-type trench gate silicon carbide MOSFET device and preparation method thereof | |
CN115799344A (en) | Silicon carbide JFET cellular structure and manufacturing method thereof | |
CN110518058A (en) | A kind of lateral trench type insulated gate bipolar transistor and preparation method thereof | |
CN114725219B (en) | Silicon carbide trench gate transistor and method of manufacturing the same | |
CN114823910B (en) | Short channel trench type silicon carbide transistor and method of manufacturing the same | |
CN116093152A (en) | Semiconductor device | |
US20220238698A1 (en) | Mos-gated trench device using low mask count and simplified processing | |
CN108155230B (en) | Transverse RC-IGBT device and preparation method thereof | |
CN209804661U (en) | MOSFET device with silicon carbide double-side deep L-shaped base region structure | |
CN115084237B (en) | Silicon carbide trench MOSFET transistor with dense cells and method of fabricating the same | |
CN216250740U (en) | Power semiconductor device | |
CN116364762A (en) | Double trench type MOSFET device and manufacturing method thereof | |
CN213752716U (en) | Metal oxide field effect transistor device and electronic equipment | |
KR101534104B1 (en) | Semiconductor device | |
JP2023544308A (en) | Power device termination structure and its manufacturing method, and power device | |
CN113097305A (en) | Field-effect tube and preparation method thereof | |
CN116454116B (en) | Trench MOSFET device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240829 Address after: 200032 area a, 2nd floor, 420 Fenglin Road, Xuhui District, Shanghai Patentee after: Shanghai Ruineng Weilan Semiconductor Technology Co.,Ltd. Country or region after: China Address before: 330052 North first floor, building 16, No. 346, xiaolanzhong Avenue, Xiaolan Economic Development Zone, Nanchang County, Nanchang City, Jiangxi Province Patentee before: Ruineng Semiconductor Technology Co.,Ltd. Country or region before: China |