CN115072679B - 一种超疏水黑磷纳米片的制备和应用 - Google Patents

一种超疏水黑磷纳米片的制备和应用 Download PDF

Info

Publication number
CN115072679B
CN115072679B CN202210720371.1A CN202210720371A CN115072679B CN 115072679 B CN115072679 B CN 115072679B CN 202210720371 A CN202210720371 A CN 202210720371A CN 115072679 B CN115072679 B CN 115072679B
Authority
CN
China
Prior art keywords
black phosphorus
super
sheet
hydrophobic
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210720371.1A
Other languages
English (en)
Other versions
CN115072679A (zh
Inventor
喻学锋
吴列
杨帆
康翼鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Zhongke Advanced Material Technology Co Ltd
Original Assignee
Wuhan Zhongke Advanced Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Zhongke Advanced Material Technology Co Ltd filed Critical Wuhan Zhongke Advanced Material Technology Co Ltd
Priority to CN202210720371.1A priority Critical patent/CN115072679B/zh
Publication of CN115072679A publication Critical patent/CN115072679A/zh
Application granted granted Critical
Publication of CN115072679B publication Critical patent/CN115072679B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/02Preparation of phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本发明公开了一种超疏水黑磷纳米片的制备和应用。所述超疏水黑磷纳米片,为黑磷晶体边球磨剥离的同时边通过亲电试剂修饰得到的超疏水黑磷纳米材料。本发明采用卤代烃修饰黑磷纳米片,一方面提高了黑磷纳米片的抗氧化能力,另一方面也赋予了黑磷纳米片防水、自清洁、油水分离等新功能,使其能应用于更多领域。

Description

一种超疏水黑磷纳米片的制备和应用
技术领域
本发明属于材料领域,具体涉及一种超疏水黑磷纳米片的制备和应用。
背景技术
近年来,与石墨烯一样拥有二维层状结构的黑磷展现出卓越的电学和光学特性,同时具有良好的生物活性和生物相容性。然而,黑磷的不稳定性以及其亲水性在一定程度上限制了其深入的研究和应用。
亲水性在材料表面为水分所润湿的性质。是一种界面现象,润湿过程的实质是物质界面发生性质和能量的变化。当水分子之间的内聚力小于水分子与固体材料分子间的相互吸引力时,材料被水润湿,此种材料为亲水性的,称为亲水性材料;而水分子之间的内聚力大于水分子与材料分子间的吸引力时,则材料表面不能被水所润湿,此种材料是疏水性的(或称憎水性),称为疏水性材料。黑磷的亲水性对其本身的性能有重大影响。
黑磷之所以稳定性差,是因为在其蜂窝状结构中,磷原子与其他3个磷原子成键之后,仍有一对孤对电子,该孤对电子易被氧分子夺走,从而造成外层黑磷的氧化。为实现黑磷的稳定性强化和性能优化,研究人员发展了系列界面调控技术,如有机包覆、化学配位、共价修饰、离子掺杂、缺陷修复等。专利CN201610729312.5提出了一种聚合物包裹黑磷的方法,实现黑磷的稳定性。该方法为黑磷外层包覆一层有机物以隔绝水氧,减缓黑磷的降解,然而制备保护层的方法虽然通过隔绝空气和水起到了保护的作用,但磷原子的孤对电子仍然存在,依然存在被氧化的可能。通过表面化学修饰的方法,将黑磷的孤对电子形成配位键或共价键,阻断其与氧气的反应,可以从根本上解决黑磷稳定性的问题。专利201510956724.8设计了一种钛的苯磺酸酯配体(TiL4),利用钛原子的空轨道和苯磺酸酯的强吸电子效应,钛配体可以和黑磷的孤对电子进行配位;形成配位键后磷原子的孤对电子被占据,从而不会再与氧气发生反应,然而这些方法未能实现黑磷润湿性的改变。
目前对于黑磷的疏水改性研究较少,本发明通过对黑磷进行疏水改性,在提高其在水氧环境中的稳定性的同时改善了其表面润湿性,拓展了其防水、油水分离和自清洁等特性。
发明内容
本发明的目的是针对现有技术的不足,提供一种超疏水黑磷纳米片的制备方法和应用,表现卓越的稳定性,且制备工艺简单,价格低廉。
为实现上述目的,本发明采用的技术方案如下:
本发明首先提供一种超疏水黑磷纳米片,为黑磷晶体边球磨剥离的同时边通过亲电试剂修饰得到的超疏水黑磷纳米材料。
具体的,所述亲电试剂为卤代烃,所述卤代烃结构为苯基或C1~6的烷基被1~14个独立卤素原子取代物,卤素原子包括氟、氯、溴、碘中的一种或多种。
具体的,所述黑磷纳米片厚度20~100nm,所述黑磷纳米片厚度10~20nm,长100~300nm,宽20~30nm。
本发明其二提供一种超疏水黑磷纳米片的制备方法,取黑磷晶体,在研钵中加入N-甲基吡咯烷酮,研磨后将其分散在N-甲基吡咯烷酮中,随后加入亲电试剂,冰浴下用探头超声处理得到超疏水黑磷纳米片。
具体的,所述黑磷纳米片与亲电试剂的摩尔比为10:1~1:2。
具体的,所述研磨的时间8-15min。
具体的,所述黑磷晶体和N-甲基吡咯烷酮的摩尔体积比为1:1-1:100mol/L。
具体的,所述超声处理为40-80kHz探头处理6-10h。
本发明还提供上述超疏水黑磷纳米片或上述任一项所述制备方法制得的超疏水黑磷纳米片在制备晶体管材料、电池的负极材料、柔性显示材料、LED材料、生物传感器材料中的应用。
所述“晶体管材料”是指用于晶体管半导体层的材料;
所述“电池的负极材料”是指电池中构成负极的材料;
所述“柔性显示材料”是指用于制备柔性显示装置的柔软的、可变型可弯曲的材料;
所述“LED材料”是指用于构造发光二极管基本结构的半导体材料;
所述“生物传感器材料”是指对生物物质敏感并可将其浓度转换为电或者光信号进行检测的材料;
本发明的设计思路在于:由于黑磷每一个磷原子上有孤对电子,为亲核性物质,卤代烃为亲电性物质,容易与黑磷发生亲电取代反应,卤素原子离去后成功地将烃链段修饰到黑磷表面,实现亲水性到疏水性的转变。反应机理如下:
上述X为卤素原子。
与现有技术相比,本发明具有如下突出效果:
1、本发明通过卤代烃修饰黑磷纳米片,将烃链修饰到黑磷上,将黑磷的孤对电子形成共价键,阻断其与氧气的反应,可以从根本上解决黑磷稳定性的问题;且技术方案为表面修饰,不改变黑磷纳米片的固有属性;
2、本发明原料简单易得、生产工艺操作简单、产率高、重现性好,可实现低成本大规模生产;
3、本发明采用卤代烃修饰黑磷纳米片,一方面提高了黑磷纳米片的抗氧化能力,另一方面也赋予了黑磷纳米片防水、自清洁、油水分离等新功能,使其能应用于更多领域。
附图说明
图1为实施例1所得超疏水黑磷纳米片SEM电镜图;
图2为实施例1所得超疏水黑磷纳米片的TEM图;
图3为实施例1所得超疏水黑磷纳米片的XRD图;
图4为实施例1所得超疏水黑磷纳米片制备成涂层的水接触角图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1超疏水黑磷纳米片的制备
称量1mmol的黑磷晶体,在研钵中加入少量N-甲基吡咯烷酮NMP,研磨10min后将其分散于一定量NMP中,随后加入10mmol碘甲烷,冰浴下用40kHz探头超声处理6h得到。
实施例2超疏水黑磷纳米片的制备
称量1mmol的黑磷晶体,在研钵中加入少量N-甲基吡咯烷酮NMP,研磨8min后将其分散于一定量NMP中,随后加入0.5mmol溴化苄,冰浴下用50kHz探头超声处理10h得到。
实施例3超疏水黑磷纳米片的制备
称量1mmol的黑磷晶体,在研钵中加入少量N-甲基吡咯烷酮NMP,研磨15min后将其分散于一定量NMP中,随后加入0.5mmol溴化苄,冰浴下用80kHz探头超声处理7h得到。
结构和性能测试
对实施例1-3制得的超疏水黑磷纳米片进行表征,XRD谱图中的峰分别归属于(020)、(021)、(040)、(111)等黑磷晶面,确定为黑磷结构,SEM、TEM等其表面黑磷纳米片形貌为二维纳米片,实施例1的形貌特征如图1、图2和图3所示。
将上述黑磷纳米片分散在乙醇中,涂覆在基材上形成涂层,通过水接触角测试仪测试水接触角。对实施例1-3制得超疏水黑磷纳米片制备的涂层结果显示均在水接触角在150°~165°之间,实施例1中测得水接触角如图4所示。
对实施例1-3制得超疏水黑磷纳米片进行稳定性测试:观测超疏水黑磷纳米片在水溶液中的降解情况来检测其稳定性,经检测,疏水黑磷纳米片在水溶液中7天未降解;观测超疏水黑磷纳米片在水溶液中的降解情况来检测其稳定性,经检测,超疏水黑磷纳米片在空气中7天形貌未变化,即未发生明显的氧化。
黑磷纳米片是一种新型纳米材料,它拥有可调节的带隙宽度、高度各向异性、高载流子迁移率、广谱光吸收性和良好生物相容性等诸多特性,在电子、光电、电化学、环保和生物医学等领域表现出巨大的应用潜力。
实施例4
将实施例1-3制得超疏水黑磷纳米片滴加到硅晶片上,并在此基础上制备出场效应晶体管。超疏水黑磷具有可靠的晶体管性能,其漏电流调制幅度在105量级上,I-V特征曲线展现出良好的电流饱和效应。晶体管的电荷载流子迁移率值~1,000cm2 V-1s-1。这些性能表明超疏水黑磷纳米片场效应晶体管具有极高的应用潜力。
实施例5
将实施例1-3制得超疏水黑磷纳米片作为锂电池以及钠电池负极材料,均具有良好电化学性能,是石墨作为锂离子电池负极材料的理论比容量的近7倍。在循环过程中体积变化小,未产生结构膨胀/收缩疲劳,容量稳定。
实施例6
超疏水黑磷薄膜晶体管是通过对柔性聚酰亚胺基板施加预拉力,然后在基板表面沉积超疏水黑磷纳米薄膜,并形成氮化硼保护层,再缓慢释放预拉力,使超疏水黑磷纳米薄膜形成波形,进一步蒸镀电极而制得。制得的晶体管具有一定柔性,能配合柔性显示器的形变而不断裂。
实施例7
超疏水黑磷纳米片制作LED器件、光探测器,能够非常简单的对器件弯折调控红外光响应区间。通过黑磷材料能带的应力变化规律,能带区间可以在0.22-0.53eV区间内变化。通过这种能带随应力变化的特征,将其应用于红外光探测器、红外光LED、红外气体传感器等红外光电器件。
实施例8
超疏水黑磷纳米片具有光电催化的性能,可应用于电化学生物传感器、酶基生物传感器、免疫生物传感器、核酸生物传感器、光学生物传感器等等方向,对生物物质敏感并可将其浓度转换为电或者光信号进行检测。

Claims (7)

1.一种超疏水黑磷纳米片的制备方法,其特征在于,取黑磷晶体,在研钵中加入N-甲基吡咯烷酮,研磨后将其分散在N-甲基吡咯烷酮中,随后加入亲电试剂,冰浴下用探头超声处理得到超疏水黑磷纳米片;所述亲电试剂为卤代烃,所述卤代烃结构为苯基或C1~6的烷基被1~14个独立卤素原子取代物,卤素原子包括氟、氯、溴、碘中的一种或多种;所述黑磷纳米片与亲电试剂的摩尔比为10:1~1:2。
2.根据权利要求1所述超疏水黑磷纳米片的制备方法,其特征在于,所述研磨的时间8-15min。
3.根据权利要求1所述超疏水黑磷纳米片的制备方法,其特征在于,所述黑磷晶体和N-甲基吡咯烷酮的摩尔体积比为1:1-1:100mol/L。
4.根据权利要求1所述超疏水黑磷纳米片的制备方法,其特征在于,所述超声处理为40~80kHz探头处理6~10h。
5.根据权利要求1所述超疏水黑磷纳米片的制备方法,其特征在于,所述黑磷纳米片厚度10~20nm,长100~300nm,宽20~30nm。
6.一种权利要求1~5中任一项所述的制备方法制得的超疏水黑磷纳米片。
7.权利要求1~5中任一项所述的制备方法制得的超疏水黑磷纳米片在制备薄膜晶体管材料、电池的负极材料、柔性显示材料、LED材料、光开关材料、生物传感器材料。
CN202210720371.1A 2022-06-23 2022-06-23 一种超疏水黑磷纳米片的制备和应用 Active CN115072679B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210720371.1A CN115072679B (zh) 2022-06-23 2022-06-23 一种超疏水黑磷纳米片的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210720371.1A CN115072679B (zh) 2022-06-23 2022-06-23 一种超疏水黑磷纳米片的制备和应用

Publications (2)

Publication Number Publication Date
CN115072679A CN115072679A (zh) 2022-09-20
CN115072679B true CN115072679B (zh) 2023-12-22

Family

ID=83255605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210720371.1A Active CN115072679B (zh) 2022-06-23 2022-06-23 一种超疏水黑磷纳米片的制备和应用

Country Status (1)

Country Link
CN (1) CN115072679B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586520A (zh) * 2018-06-05 2018-09-28 中国科学院深圳先进技术研究院 一种使用黑磷合成有机膦化合物的方法
CN110499044A (zh) * 2019-09-12 2019-11-26 中国科学技术大学 一种有机改性黑磷纳米片的制备及其在聚合物复合材料中的应用
CN113401884A (zh) * 2021-06-29 2021-09-17 厦门大学 一种非对称结构的表面功能化二维黑磷纳米片的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586520A (zh) * 2018-06-05 2018-09-28 中国科学院深圳先进技术研究院 一种使用黑磷合成有机膦化合物的方法
CN110499044A (zh) * 2019-09-12 2019-11-26 中国科学技术大学 一种有机改性黑磷纳米片的制备及其在聚合物复合材料中的应用
CN113401884A (zh) * 2021-06-29 2021-09-17 厦门大学 一种非对称结构的表面功能化二维黑磷纳米片的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Self-floating black phosphorous nanosheets as a carry-on solar vapor generator;Zhaoxin Li et al.;《Journal of Colloid and Interface Science》;第582卷;第496-505页 *

Also Published As

Publication number Publication date
CN115072679A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Yang et al. Three-dimensional gold nanoparticles/prussian blue-poly (3, 4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen
Rahmanian et al. Development of sensitive impedimetric urea biosensor using DC sputtered Nano-ZnO on TiO2 thin film as a novel hierarchical nanostructure transducer
Gopalan et al. A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances
Yang et al. ZnO nanotube arrays as biosensors for glucose
Du et al. Single-walled carbon nanotubes functionalized with poly (nile blue A) and their application to dehydrogenase-based biosensors
Du et al. One-step electrochemical deposition of Prussian Blue–multiwalled carbon nanotube nanocomposite thin-film: preparation, characterization and evaluation for H 2 O 2 sensing
Zhang et al. Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor
Zeng et al. Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential
Zhang et al. An acetylcholinesterase biosensor with high stability and sensitivity based on silver nanowire–graphene–TiO 2 for the detection of organophosphate pesticides
CN103336043B (zh) 一种过氧化氢生物传感器的制备方法
Mazar et al. Development of novel glucose oxidase immobilization on graphene/gold nanoparticles/poly neutral red modified electrode
Thivya et al. Poly (3, 4-ethylenedioxythiophene)/taurine biocomposite on screen printed electrode: Non-enzymatic cholesterol biosensor
Hasanzadeh et al. Non-enzymatic determination of L-Proline amino acid in unprocessed human plasma sample using hybrid of graphene quantum dots decorated with gold nanoparticles and poly cysteine: a novel signal amplification strategy
Selvarani et al. 2D MoSe 2 sheets embedded over a high surface graphene hybrid for the amperometric detection of NADH
Lei et al. Surface engineering AgNW transparent conductive films for triboelectric nanogenerator and self-powered pressure sensor
Ramachandran et al. An overview of fabricating nanostructured electrode materials for biosensor applications
Prasannakumar et al. Graphene-carbon nanotubes modified graphite electrode for the determination of nicotinamide adenine dinucleotide and fabrication of alcohol biosensor
Roman et al. Monocrystalline silicon/polyaniline/horseradish peroxidase enzyme electrode obtained by the electrodeposition method for the electrochemical detection of glyphosate
Heredia-Rivera et al. Cold atmospheric plasma-assisted direct deposition of polypyrrole-Ag nanocomposites for flexible electronic sensors
CN115072679B (zh) 一种超疏水黑磷纳米片的制备和应用
Navamani et al. Development of nanoprobe for the determination of blood cholesterol
Zaïbi et al. Effect of etching parameters on the electrochemical response of silicon nanowires
Karazehir et al. Gold nanoparticle/nickel oxide/poly (pyrrole-N-propionic acid) hybrid multilayer film: Electrochemical study and its application in biosensing
Song et al. Template‐Synthesized Protein Macroporous Biofilms: Conformational Related Direct Electron Transfer
CN113109400B (zh) 一种基于石墨烯/聚吡咯的氨气传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant