CN115070601A - 用于浆料质量监测的方法和系统 - Google Patents

用于浆料质量监测的方法和系统 Download PDF

Info

Publication number
CN115070601A
CN115070601A CN202210150216.0A CN202210150216A CN115070601A CN 115070601 A CN115070601 A CN 115070601A CN 202210150216 A CN202210150216 A CN 202210150216A CN 115070601 A CN115070601 A CN 115070601A
Authority
CN
China
Prior art keywords
slurry
capacitance
quality indicator
semiconductor tool
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210150216.0A
Other languages
English (en)
Inventor
曾志江
于淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN115070601A publication Critical patent/CN115070601A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/226Construction of measuring vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

本发明实施例涉及用于浆料质量监测的方法和系统。一种浆料质量监测的方法包含:通过浆料输送系统的管道网络将浆料输送到半导体工具;将电极对耦接管道网络的管路外侧管壁;测量与电极对相关的一或多个电容值,其中浆料是电极对之间的绝缘层;及根据一或多个电容值推导出浆料的质量指标。

Description

用于浆料质量监测的方法和系统
技术领域
本发明实施例涉及用于浆料质量监测的方法和系统。
背景技术
具有更高装置密度的半导体集成电路的制造变得越来越复杂。在各种半导体工艺步骤中,如化学机械研磨(CMP)的平坦化或研磨方式已广泛地用于薄化或研磨半导体装置的处理表面。在浆料的帮助下进行研磨以提高研磨效率和性能。因此,研磨操作的性能与浆料的质量密切相关。
发明内容
根据本发明的一实施例,一种输送浆料的方法,包含:通过浆料输送系统的管道网络将浆料输送到半导体工具;将电极对耦接所述管道网络的管路的外侧管壁;测量与所述电极对相关联的一或多个电容值,其中所述浆料是所述电极对之间的绝缘层;根据所述一或多个电容值导出所述浆料的质量指标;及因应于针对所述浆料的所述质量指标符合规格,而使用所述半导体工具执行化学机械研磨操作。
根据本发明的一实施例,一种接收浆料的方法,包含:从移动式容器接收浆料;通过槽和第一管路将所述浆料从所述移动式容器输送到半导体工具;将第一电容传感器耦接所述第一管路;在通过所述第一管路向所述槽提供所述浆料的同时测量所述第一电容传感器的第一电容值;根据对所述第一电容值的测量导出所述浆料的质量指标;及根据用于所述第一管路的所述浆料的所述质量指标以确定是否使用所述半导体工具执行化学机械研磨操作。
根据本发明的一实施例,一种存储浆料的系统,包含:槽,其经布置以存储浆料;管道网络,其在移动式容器与所述槽之间连接以及在所述槽与半导体工具之间连接;一或多个电容传感器,其耦接所述管道网络的管路并经布置以测量与所述管路中的所述浆料相关联的所述电容传感器的一或多个电容值;及处理器,其耦接所述电容传感器并经布置以:根据所述一或多个电容值导出所述浆料的质量指标;及因应于针对所述浆料的所述质量指标符合规格,而使用所述半导体工具让所述半导体工具执行化学机械研磨操作。
附图说明
从结合附图阅读的以下详细描述最佳理解本揭露的方面。应注意,根据行业标准做法,各种构件未按比例绘制。实际上,为使讨论清楚,可任意增大或减小各种构件的尺寸。
图1是根据本揭露一些实施例的化学机械研磨(CMP)设备示意框图。
图2是根据本揭露一些实施例的浆料输送系统示意框图。
图3A和3B分别示出了根据本揭露各种实施例的电容器结构的透视图和截面图。
图4是根据本揭露一些实施例的电容传感器的示意框图。
图5是示出根据本揭露一些实施例的跨不同浆料取样的CMP性能结果的图表。
图6A和6B示出了根据一些实施例的制造半导体结构的方法流程图。
图7是根据一些实施例的实现浆料质量监测方法的系统示意图。
具体实施方式
以下揭露提供用于实现所提供主题的不同特征的诸多不同实施例或示例。下文将描述组件及布置的特定示例以简化本揭露。当然,这些仅为示例且不意在产生限制。例如,在以下描述中,在第二构件上方或第二构件上形成第一构件可包含其中形成直接接触的第一构件及第二构件的实施例,并且还可包含其中可在第一构件与第二构件之间形成额外构件使得第一构件及第二构件可不直接接触的实施例。另外,本揭露可在各个示例中重复参考符号及/或字母。此重复是为了简单及清楚且其本身不指示所讨论的各种实施例及/或配置之间的关系。
此外,为便于描述,例如“下面”、“下方”、“下”、“上方”、“上”及其类似者的空间相对术语在本文中可用于描述一元件或构件与另一(些)元件或构件的关系,如图中所绘示出。除了图中所描绘的方向之外,空间相对术语还意欲涵盖装置在使用或操作中的不同方向。设备可依其它方式方向(旋转90度或依其它方向)且还可因此解释本文中所使用的空间相对描述词。
尽管阐述本揭露的广泛范围的数值范围及参数是近似值,但要尽可能精确报告具体实例中所阐述的数值。然而,任何数值固有地含有由各自测试测量中常见的偏差必然所致的某些误差。而且,如本文中所使用,术语“约”、“大体”及“大体上”一般意指在给定值或范围的10%、5%、1%或0.5%内。或者,如由所属领域的一般技术人员所考量,术语“约”、“大体”及“大体上”意指在平均值的可接受标准误差内。除在操作/工作实例中之外,或除非另有明确说明,否则本文中所揭露的所有数值范围、数量、值及百分比,例如材料数量、持续时间、温度、操作条件、数量比及其类似者的数值范围、数量、值及百分比,应被理解为在所有例子中由术语“约”、“大体”及“大体上”修饰。因此,除非有相反的指示,否则本揭露及所附权利要求书中所阐述的数值参数是可根据需要变动的近似值。至少,应该根据报告有效数位数及通过应用一般舍入技术来解释各数值参数。范围在本文中可表示为从一端点到另一端点或在两个端点之间。除非另有说明,否则本文中所揭露的所有范围均包含端点。
贯穿本揭露使用的术语“连接”、“耦合”和“耦接”描述了两个或更多个装置或元件之间的直接或间接连接。在一些情况下,至少两个装置或元件之间的耦合是指它们之间的电气连接或导电连接,并且在耦合的装置和元件之间可以存在干扰特征。在一些其它情况下,至少两个装置或元件之间的耦合可能包含物理接触及/或电气连接。
本揭露整体来说与监测CMP浆料质量的系统和方法有关。CMP浆料在CMP操作中有重要的作用。然而,没有可靠且通用的浆料质量监测度量来确定浆料质量是否在不同批次或同一批次的运输浆料内发生变化。因此,通过建议的监测方案,半导体制造商可以在没有组成成分的专用信息及其浆料中的各自百分比的情况下存取浆料质量。因此,可以在将浆料分配到CMP工具之前针对每个批次进行浆料质量监测。这可以提高CMP操作的性能,并且可以相应地提高生产良率。
图1是根据本揭露一些实施例的化学机械研磨(CMP)设备示意框图。如图1所示,CMP设备100包含研磨轮组件110和晶片载体组件120。研磨轮组件110包含研磨平台112和研磨垫114。研磨平台112连接到转轴(或轴)116。在一些实施例中,转轴116由任何合适的电机或驱动机构旋转。研磨垫114附接在研磨平台112上,因此能够随着研磨平台112旋转。晶片载体组件120包含经布置以固持或夹住晶片W的晶片载体122。晶片载体122耦接另一个转轴(或轴)126。在一些实施例中,转轴126由合适的电机或驱动机构旋转。晶片载体122的旋转和研磨平台112的旋转可以独立控制。晶片载体122的旋转方向或研磨平台112的旋转方向可为顺时针或逆时针。在一些实施例中,晶片载体122还包含用于固定待研磨的晶片W的固定环124。固定环124经布置以防止晶片W随着晶片载体122移动而从晶片载体122下方滑出。在一些实施例中,固定环124具有环形结构。
在CMP操作期间,耦接研磨平台112的研磨垫114和由固定环124固定的晶片W都以适当的速率旋转。同时,转轴126经布置以支撑向下的力,所述向下的力施加在晶片载体122上,因而施加在晶片W上,从而使晶片W与研磨垫114接触。因此,晶片W或晶片W上的覆盖膜(本文未示出)被研磨。在CMP操作期间,浆料导入装置128在研磨垫114上导入浆料201。浆料201的组成成分可以根据晶片W的材料或要研磨的覆盖膜的材料来选择。例如,根据待研磨对象的类型,浆料201的类型可以大致分为氧化物浆料、金属浆料和多晶硅浆料。
浆料201的组成成分可以包含液体载体,例如去离子晶片,具有固体磨料以提供机械研磨力。浆料201的组成成分还可以包含氧化剂等化学物质与待研磨材料发生反应,以帮助待研磨材料的去除。在一些实施例中,浆料201包含经布置以调节浆料201的pH值的pH调节剂。在一些实施例中,浆料201包含一或多种腐蚀抑制剂,经布置以在CMP操作期间防止不需要的腐蚀或蚀刻。在一些实施例中,浆料201包含重量百分比在大约0.01%和5%之间或在大约0.1%和大约4%之间,例如大约1%的化学物质混合物。
浆料201的质量或性能的特性在于一或多种性质。例如,关于待研磨材料根据平均移除率来存取浆料201的性能。在其它示例中,关于待研磨材料根据移除率的变化来存取浆料201的性能。在一些实施例中,当与浆料201相关的移除率不能达到平均移除率或移除率变化的要求时,则认为浆料201不合格或不符合规格。在一些实施例中,浆料201的性能除了磨料之外,还由浆料201中的组成成分和其百分比来决定,即使这些组成成分的百分比相对较小。因此,为确保以所需的性能进行CMP操作,浆料201的质量应保持在可接受且稳定的范围内。
在一些实施例中,浆料规格包含关于目标浆料的预定最高移除率、预定最低移除率和预定移除率变化阈值中的至少一种。在一些实施例中,如果与目标浆料相关联的移除率在最高移除率和最低移除率之间,那么认为目标浆料符合规格。在一些实施例中,如果与目标浆料相关联的移除率的变化低于移除率变化阈值,那么认为目标浆料符合规格。由于不同类型的浆料的组成成分和百分比不同,因此不同类型的浆料的浆料规格可能不同。
在一些实施例中,预定的最高移除率在每分钟大约500埃与每分钟大约5000埃之间的范围内。在一些实施例中,预定的最低移除率在每分钟大约50埃与每分钟大约3000埃之间的范围内。在一些实施例中,预定移除率变化阈值在每分钟大约20埃与每分钟大约1000埃之间的范围内。
图2是根据本揭露一些实施例的浆料输送系统200的示意框图。浆料输送系统200经布置以由第三方浆料供应商或销售商(本文未示出)接收供应容器202中的浆料201。在一些实施例中,供应容器202是用于容纳浆料201的移动式容器。供应容器202中提供的浆料201可被称为原料浆料201。装有原料浆料201的供应容器202可以被运送到半导体制造商的代工厂,在那里部署浆料输送系统200。然后将浆料从供应容器202供给到一或多个半导体工具232、234和236。半导体工具232、234和236可以是CMP工具,例如图1所示的CMP设备100。
浆料输送系统200包含稀释槽204、存储槽206、管道网络208、泵P1和P2、过滤器F1、F2和F3、阀门V1、V2、V3、…V12和一或多个质量传感器210。在一些实施例中,稀释槽204包含入口和出口,其中入口经布置以从由浆料供应商提供或运送的供应容器202接收原料浆料201。出口经布置以将混合或稀释后的浆料201输送到管道网络中。稀释槽204可以包含另一个入口(未单独示出),其经布置以接收稀释溶液,例如去离子水,用于在输送浆料201用于CMP操作之前将原料浆料201稀释成混合浆料201。在一些实施例中,稀释槽204还包含混合刀片(未单独示出),其经布置以将原料浆201与稀释溶液混合。在一些实施例中,省略了稀释槽204,并且将原料浆料201直接送到管道网络208。
在一些实施例中,存储槽206经布置以存储稀释后的浆料201并且通过管道网络208输送浆料201。在一些实施例中,存储槽206包含经布置为存储槽206的入口和出口的存取端口207。浆料201通过管道网络208的第一部分从稀释槽204输送到存储槽206。浆料201通过管道网络208的第二部分进一步提供给半导体工具232、234或236。
在一些实施例中,管路用于构建管道网络208,通过所述管道网络输送浆料201。管路的外径可以在大约1/8英寸和大约1英寸之间。管路可以由物理和化学稳定材料形成,例如全氟烷氧基烷烃(PFA),以减少管路与浆料201发生化学反应的可能性。在一些其它实施例中,不锈钢(SS)或聚乙烯(PE)可用于管道网络208的管路中。在一些实施例中,管道网络208包含将稀释槽204连接到存储槽206的第一部分,以及将存储槽206连接到半导体工具232、234或236的第二部分。通过存储槽206将第一部分连接到第二部分。
在一些实施例中,阀门Vl到Vl2经布置以控制管道网络208中浆料201的流动方向。在一些实施例中,阀门V1到V12中的每一个包含逆止阀,所述逆止阀经布置以防止浆料201沿着相反方向流动。在一些实施例中,根据需要将阀门V1到V12打开或关闭,并且阀门V1到V12经布置以将浆料201的一部分与浆料201的其它部分隔离并且防止所述部分暂时在管道网络208中流动。在一些实施例中,关闭阀门V1到V12中的一或多个以在质量感测操作中的感测时间段期间使管道网络208中的取样浆料部分静止。例如,可以关闭阀门V6和V7以帮助质量传感器210C进行阀门V6和V7之间的取样浆料部分的质量感测操作。
泵P1和P2设置在管道网络208中以从稀释槽204将浆料201泵送通过存储槽206并送往半导体工具232、234和236。泵P1和P2经布置以通过阀门V2到V12的适当切换开关来泵送浆料201以在管道网络208中流动。在一些实施例中,泵P1或P2可以是离心泵、隔膜泵和蠕动泵。
在一些实施例中,泵Pl设置在稀释槽204和存储槽206之间,并且经布置以通过打开的阀门V2和V4将浆料201从稀释槽204泵送到存储槽206。在这种情况下,可以关闭阀门V3或V6。同样地,在一些实施例中,泵P1经布置以通过打开的阀门V2、V6和V7以及用于半导体工具232、234或236的个别阀门V10、V11或V12,将浆料201从稀释槽204泵送到半导体工具232、234或236。在这种情况下,可以关闭阀门V4。在一些实施例中,泵P2设置在存储槽206和半导体工具232、234或236之间,并且经布置以通过打开的阀门V4、V5、V6、V7以及用于半导体工具232、234或236的个别阀门V10、V11或V12,将浆料201从存储槽206泵送到半导体工具232、234或236。同时,可以关闭阀门V3和V8。在一些实施例中,泵P2设置在存储槽206和半导体工具232、234或236之间,并且经布置以通过打开的阀门V4、V5、V8、V9以及用于半导体工具232、234或236的个别阀门V10、V11或V12,将浆料201从存储槽206泵送到半导体工具232、234或236。同时,可以关闭阀门V3和V6。
过滤器设置在管道网络208中并且经布置以过滤污染物。在一些实施例中,过滤器经布置以去除尺寸过大的颗粒,即尺寸不符合规格的颗粒。在一些实施例中,过滤器包含具有特定孔径的多孔材料薄膜,所述多孔材料用于阻挡尺寸大于孔的颗粒。可以根据系统要求确定浆料输送系统200中使用的过滤器的数量,并且可能有不止一个过滤器部署在管道网络208上的适当位置以保持浆料201的质量。例如,过滤器F1设置在稀释槽204的下游,并且经布置以在稀释槽204的出口处过滤浆料201。过滤器F2设置在泵P1和阀门V6的下游,用于在泵P1的出口处过滤浆料201。同样地,过滤器F3设置在泵P2和阀门V8的下游,并且经布置以在泵P1的出口处过滤浆料201。
质量传感器210经布置以监测浆料201的质量。浆料201在CMP操作中的性能与其物理、化学或电气性质密切相关。浆料201的组成成分的物理、化学和电气性质的轻微偏差可能导致CMP的研磨性能低于研磨规格或在供应容器202的不同浆料批次之间波动。此外,随着半导体制造技术的发展,特征尺寸不断缩小,因而CMP操作的容许度变得更加严格,因为先进技术节点中CMP操作的相同研磨偏差会导致比成熟技术节点更明显的效果。因此,引入质量传感器210以对浆料201进行实时和通用监测,以检测浆料输送系统200内的浆料201的异常状况。
在一些实施例中,质量传感器210包含液体颗粒计数器、粒度分布分析器、pH传感器、过氧化氢传感器、密度传感器、导电度传感器、离子浓度传感器等。在一些实施例中,质量传感器210还包含给料模块、混合模块或分配模块以帮助质量传感器210进行感测操作。在一些实施例中,质量传感器210包含用于监测与浆料201相关的电容值的一或多个电容传感器。
在一些实施例中,浆料输送系统200还包含耦接质量传感器210的处理器240,用于控制质量传感器210的质量感测操作并接收由质量传感器210取得的传感器数据。在一些实施例中,处理器240经布置以传输控制或感测信号以开启质量传感器210以执行感测操作。在一些实施例中,处理器240经布置以处理或分析由质量传感器210(例如,如图2所绘示的质量传感器210A)提供的数据,并确定浆料201的质量是否在规格内。
在一些实施例中,称为210A的质量传感器210的实例设置在泵Pl和存储槽206之间的管道网络208的管道区段中,用于监测泵Pl和存储槽206之间的浆料质量。在一些实施例中,称为210B的质量传感器210的实例设置在存储槽206和泵P2之间的管道网络208的管道区段中,用于监测存储槽206和泵P2之间的浆料质量。在一些实施例中,称为210C的质量传感器210的实例设置在泵P2和半导体工具232、234或236之间的管道网络208的区段中,例如,在过滤器F2下游的位置中,用于监测泵P2和半导体工具232、234或236之间的浆料质量。在一些实施例中,称为210D的质量传感器210的实例设置在泵P2和半导体工具232、234或236之间的管道网络208的管道区段中,例如,在过滤器F3下游的位置中,用于监测泵P2和半导体工具232、234或236之间的浆料质量。
如上文所述,浆料的质量指标可以包含物理度量、化学度量、电度量、其组合等。在一些实施例中,质量指标包含浆料201的pH值。在一些实施例中,质量指标包含浆料201的液体粒度。在一些实施例中,质量指标包含浆料201中的过氧化氢浓度。在一些实施例中,质量指标包含浆料201的密度。在一些实施例中,质量指标包含浆料201的导电度。在一些实施例中,质量指标包含浆料201的一或多种组成成分的离子浓度。
在一些实施例中,尽管已经开发了一些监测浆料201的质量指标,但是这些质量指标可能不足以用作浆料201的实时指标。这些质量指标可能不足的一个原因是由于事实上当输送浆料201时,这些组成成分及其百分比通常是不可用的。半导体制造商可能无法取得关于浆料201的关键组成成分的信息。另一个原因是,在某些情况下,所采用的质量指标可能对浆料201的移除率性能不够敏感。例如,一种广泛使用的称为高性能液相层析法(HPLC)的化学分析方法被用来确认浆料201的组成成分和百分比;然而,在缺乏关于浆料201的组成成分的信息的情况下,浆料201的盲目分析结果可能难以感测浆料201的轻微质量变化。
因此,在本揭露中,通过管道网络208的管路输送的浆料201的介电电容率,或简称为电容率,建议用作浆料201的综合质量指标。电容率,或相当于介电常数,被界定为浆料201的电容率与空气的电容率之间的比率,描述了浆料201保持电荷的能力。在所描绘的实施例中,浆料201的电容率被采用作为有效的质量监控度量,因为它比之前讨论的其它质量指标对浆料质量更敏感,因此更适合实时监控浆料质量。此外,监测浆料201的电容率不需要浆料201的组成成分的先验信息,当这些组成成分信息被浆料供应商作为商业秘密保留时,此特征对半导体制造商更有利。此外,浆料201的电容率不仅是可检测的,而且可以定量地评估。
在一些实施例中,浆料201的电容率是通过作为质量传感器210的电容器结构300的电容值的测量而导出的。图3A和3B分别示出了根据本揭露各种实施例的电容器结构300的透视图和截面图。电容器结构300包含电极对302A和302B,设置在管道网络208的示例性管路或管道区段208A的外侧管壁上。在一些实施例中,电极302A和电极302B彼此相对设置,管道区段208A设置在它们之间。在本实施例中,管道网络208或至少管道网络208的管道区段208A由PFA形成。因此,管道区段208A用作分隔电极对302A和302B的电容器的绝缘层。换句话说,电容器结构300的电容器由电极对302A、302B与管道区段208A所形成的绝缘层所构成。
在一些实施例中,电极302A或302B具有与管道区段208A的外侧管壁共形的弯曲板形状。因此,如图3B所示,电极302A或302B沿着管道区段208A外侧管壁的圆周具有均匀的厚度。在一些其它实施例中,电极302A或302B环绕管道区段208A并且在管道区段208A周围具有不均匀的厚度。例如,电极302A或302B的截面视图为弓形或月牙形。电极302A或302B可具有电极面积A。在一些实施例中,电极302A和302B具有大体上相等的面积。电极302A和电极302B之间的有效距离Deff可以界定为在电极302A和电极302B的中心点测量的距离D,即管道区段208A的直径D。在一些其它实施例中,电极302A和电极302B之间的有效距离Deff以另一种方式界定,例如,有效距离Deff是直径D和电极302A和电极302B的相对边缘之间的最近距离Dm的平均值。在一些实施例中,面积A与直径D之间的比率介于大约2与大约20之间,或介于大约5与大约10之间。
在操作期间,电极对302A、302B分别电气耦接第一感测信号Sl和第二感测信号S2。在一些实施例中,第一感测信号S1是电压源或电流源。在一些实施例中,第一感测信号S1包含交流信号。在一些实施例中,第二感测信号S2耦接地。因此,跨越电极对302A和302B的电压由第一感测信号S1的电压决定。在一些实施例中,第一感测信号S1和第二感测信号S2是通过信号产生器根据处理器240发送的控制信号产生和提供的。
在一些实施例中,电容器结构300经布置以因应于针对第一感测信号Sl和第二感测信号S2以及由电容器结构300实现的电容器的电容Cs来提供感测电压或电流。电容器结构300的电容Cs可以根据以下公式确定:
Figure BDA0003510413040000091
在上式中,符号ε表示电极302A和302B之间的绝缘层,例如管道区段208A的管壁的电容率。符号A表示电极302A或302B的面积,符号Deff表示电极302A和302B之间的有效距离。
在一些实施例中,当电容器结构300在管道区段208A中不包含任何浆料201时,即没有浆料201包含或流过管道区段208A,根据电容率值确定电容率ε管道区段208A的管壁与空气的接触。在这种情况下,电容值Cs的测量值通常随时间保持大体上定值。在一些其它实施例中,当浆料201流过管道区段208A时,电容值Cs的测量值可能因浆料201的变化条件而变化。在一些实施例中,假设与管道区段208A相关的电容由Cp表示,而与浆料201相关的电容由Cy表示。如图3B所示,电容器结构300从截面图来看由电极302A和302B形成,绝缘层由管道区段208A和浆料201形成,其中浆料201串联与管道区段208A的管壁。因此,电容值Cs可用下面公式表示:
1/Cs=1/Cp+1/Cy (2)
在上述公式(2)中,电容Cp由管道区段208A的管壁的介电材料的电容率决定,而电容Cy由浆料201中的组成成分的电容率决定。此外,可以是PFA的管道区段208A的管壁的电容率是预定的并且是定值。综合以上所描述的,根据测定电容Cs和计算电容Cp,可以定量地推导出与浆料201相关的电容Cy或浆料201的电容率。在一些实施例中,与浆料201相关联的电容Cy还可以用作浆料201的等效电容率质量指标,因为在面积A和有效距离Deff的相同设置下它们是成比例的。在一些实施例中,给定相同的电容值Cp和相同的面积A和有效距离Deff的设置,电容Cs还可以用作浆料201的等效电容率质量指标。
图4是根据本揭露一些实施例的电容传感器400的示意框图。电容传感器400用于实现如图2所示的质量传感器201的电容感测功能。在一些实施例中,电容传感器400经布置以测量电容器结构300的电容值Cs。在一些实施例中,电容传感器400包含信号产生器402、放大器404和电气耦接电容器结构300的电阻元件406。电阻元件406可以并联连接到放大器404。电阻元件406可以具有电阻Rx。
在一些实施例中,信号产生器402经布置以产生具有交流波形(例如,正弦波波形)的第一感测信号Sl。在一些实施例中,使用运算放大器来实现放大器404,其包含一对微分输入端子和输出端子Vo,其中微分输入端子包含非反相输入V+和反相输入V-。非反相输入V+可以电气耦接地并且反相端子输入V-通过电阻元件406电气耦接输出端子Vo。在一些实施例中,电阻元件406包含电阻器。在一些其它实施例中,电阻元件406由电阻器和与电阻器并联连接的电容器形成。在一些实施例中,放大器404和电阻元件406可以包含在用于实现电容器结构300或处理器240的装置中。
信号产生器402经由电容器结构300的第一节点Xl电气耦接电容器结构300的一端点,例如电极302A,并且放大器404经由电容器结构300的第二节点X2电气耦接电容器结构300的另一端点,例如电极302B。电阻元件406将电容器结构300的第二节点X2连接到放大器404的输出端子Vo。
在一些实施例中,电容传感器400还包含第一电压计412、第二电压计414和电流计416。第一电压计412经布置以在第一节点X1提供电压读数Vr1,第二电压计414经布置以在输出端子Vo提供电压读数Vr2。电流计416经布置以测量流过电阻元件406的电流电平Ix。
在操作期间,信号产生器402经布置以向电容器结构300提供具有频率fc的交流电流信号。电容器结构300在交流情境中具有容抗Xc的特性,其类似于在直流情境中的电阻器的特性。由于放大器404的非反相端子V+接地,根据放大器404的虚接地原理,反相端子V-也被认为是接地的。因此,电容器结构300的容抗Xc可由下面公式推导出:
Xc=Vr1/Ix=Vr1*Rx/Vr2 (3)
在上述公式(3)中,电压读数Vrl和Vr2可以分别由第一电压计412和第二电压计414提供,并且电阻元件406的电阻Rx是预定的。因此,可以取得容抗Xc。
在一些实施例中,电容器结构300的电容Cs可以通过以下公式导出:
Xc=1/(2π*Cs*fc) (4)
在根据公式(4)导出电容器结构300的电容器的电容Cs之后,可以根据公式(1)和(2)导出浆料201的电容率ε。
在一些实施例中,图2中所示的处理器240可以包含用于实现公式(1)到(4)的硬件。在一些实施例中,电压计412、414和电流计416的读数以数字形式传输到处理器240。在一些实施例中,电容传感器400还包含模拟数字转换器(ADC),经布置以将电压计412、414和电流计416的模拟读数转换为数字格式。替代地或另外,处理器240可以经布置以进行用于执行公式(1)到(4)的计算的指令。
参考图3和图4,电容器结构300和电容传感器400以无接触方式感测浆料201的电容值。这种不用接触浆料201的感测结构可有助于将更多电容器结构300作为质量传感器201部署到管道网络208的任何合适位置。相比之下,现有的浆料监测方法可能需要存取浆料201的物质以执行感测或分析,因此,可能需要变动管道网络208以让现有质量传感器进入浆料201。因此,由于现有质量传感器的部署位置有限,不便于识别管道网络208中的污染源。因此,所建议的电容器结构300有利于在管道网络208的感测位置中提供更大的灵活性。
图5是示出根据本揭露一些实施例的对于不同浆料取样的CMP操作的测量结果的图表。x轴显示例如从不同批次取得的浆料201的不同取样B1、B2、B3…B6。y轴代表在同一浆料取样的不同测量中浆料201的电容值Cs。
在进行电容测量操作之前,已经收集了各个浆料取样B1到B6的CMP性能数据。根据CMP性能数据,前三个取样B1、B2和B3提供了高移除率和不同CMP操作之间的小变化。第四个取样B4提供中等的移除率,并且在不同的CMP操作之间变化很小。第五个取样B5提供了在移除率方面波动的性能结果。第六个取样B6提供了在移除率方面波动的性能结果,尽管波动的程度小于取样B5的波动程度。
从图5所示的电容测量结果可以看出,取样B1到B6的电容值表现出相似的移除率性能趋势。在一些实施例中,当某一部分的浆料201的质量均匀或稳定时,所述部分的浆料201各自的电容值Cs也会稳定或均匀,变化很小。相反地,在一些实施例中,当另一部分浆料201的质量不均匀或不稳定时,所述另一部分浆料201的电容值Cs也会呈现波动或较大变化的趋势,其中取决于所述浆料部分的条件。此外,在一些实施例中,浆料201的高移除率对应浆料201的高电容值,浆料201的低移除率对应浆料201的低电容值。根据以上所描述的,浆料201的电容显示出对浆料201在移除率方面的质量变化足够敏感,因此适合在浆料201给料期间实时用作浆料201的综合质量指标。
图6A和6B示出了根据一些实施例的制造半导体结构的方法600的流程图。方法600可以分别由如图2、图3和图4所示的浆料输送系统200、电容器结构300和电容传感器400执行。应当理解的是,对于方法600的额外实施例,可以在图6A和6B所示的步骤之前、之中和之后提供额外的步骤,并且可以替换或消除下面描述的一些步骤。步骤的顺序可以互换。
参考图6A,在步骤602,从浆料供应商接收浆料。通过输送系统将浆料给料到半导体工具。在一些实施例中,在步骤602接收的浆料是原料浆料。在一些实施例中,在用于CMP操作之前,将原料浆料加工成稀释及/或混合的浆料。在步骤604,使用接收的浆料执行CMP操作的试运行。
在步骤606,确定使用浆料的CMP操作的移除率是否符合规格。在一些实施例中,这个确定包含检查与浆料相关的平均移除率和移除率变化。就移除率来说的浆料规格可以表示为平均移除率和移除率变化的参考数据,这可以从存储在数据库630中的历史数据中取得。
在一些实施例中,在步骤606为试运行执行的确定浆料质量包含二进制通过/失败测试。在一些实施例中,在步骤606为试运行执行的确定浆料质量不包含对浆料的定量检查。
在一些实施例中,二进制通过/失败测试的规格包含关于目标浆料的预定最高移除率、预定最低移除率和预定移除率变化阈值中的至少一种。在一些实施例中,如果与目标浆料相关联的移除率在最高移除率和最低移除率之间,那么认为目标浆料符合规格。在一些实施例中,如果与目标浆料相关联的移除率的变化低于移除率变化阈值,那么目标浆料被认为符合规格。对于不同类型的浆料,预定最高移除率、预定最低移除率和预定移除率变化阈值可以不同。
如果确定与浆料相关的移除率不符合规格,那么在步骤608中用新浆料替换不合格浆料。方法600将返回到步骤606,在所述步骤中,替换的浆料经受另一次试运行和另一次运行质量检查,直到所检查的浆料符合规格。
如果确定浆料通过了步骤606执行的检查,那么所述方法继续进行到步骤610,其中质量传感器耦接输送系统的管道网络的管路处的第一位置,用于对浆料质量执行线上、通用和定量监测。质量传感器经布置以检测浆料的电容值。在一些实施例中,浆料的质量监测可包含使用更多的质量传感器来执行对浆料201的pH值、液体粒度、过氧化氢浓度、密度、导电度、离子浓度等其中至少一项进行检测。
在步骤612,使用合格的浆料执行CMP操作的一次或多次正常运行。
在步骤614,取得与管路中的第一取样浆料部分相关联的质量传感器中的电容器的一或多个电容值。在一些实施例中,在质量监测期间,例如电容感测,关闭浆料输送系统的一或多个阀门以隔离一部分浆料并对静止的浆料部分执行电容感测以改善感测精度。在一些实施例中,在一个感测操作中,例如当浆料继续在管道网络中流动时,通过多次控制阀门切换开关,提供一或多个第一取样浆料部分,以在质量传感器中产生多个电容器的电容值。
在一些实施例中,步骤612和614的顺序可以互换或者可以同时执行。在一些实施例中,多个质量传感器可以同时部署在管道网络的不同位置并耦接管道网络的不同管路。在这种情况下,由不同质量传感器(例如,如图2所示的质量传感器210A到210D)在管道网络的不同位置取得一或多个电容值。
在步骤616,根据对应的电容值导出第一取样浆料部分的一或多个电容率值。在一些实施例中,第一取样浆料部分的一或多个电容值被传输到接收器或处理器以用于导出电容率值。在一些实施例中,根据多个电容率值还导出平均电容率值或电容率变化。
在步骤618,收集移除率和浆料部分的电容率之间的对照数据并将其提供给数据库630。对照数据可以包含一个CMP操作的移除率、平均移除率和移除率变化中的至少一种。
在步骤620,将电容率值、导出的平均电容率值或电容率变化,与电容率值的历史数据进行比较以检查电容率值是否符合规格。在一些实施例中,电容率值的历史数据可从数据库630存取。
在一些实施例中,电容率值的规格包含关于目标浆料的预定最高电容率值、预定最低电容率值和预定电容率变化阈值中的至少一种。在一些实施例中,如果与目标浆料相关联的电容率介于预定最高电容率值和预定最低电容率值之间,那么认为目标浆料符合规格。在一些实施例中,如果与目标浆料相关联的电容率值的变化低于电容率变化阈值,那么认为目标浆料符合规格。对于不同类型的浆料,预定最高电容率值、预定最低电容率值和预定电容率变化阈值可以不同。
如上文所述,可以根据测量的电容Cs和计算的电容Cp根据测量的浆料的电容Cy来确定浆料的电容率值。结果是,可以根据通过质量传感器210取得的测量电容Cs和质量传感器210的参数来确定浆料的电容率的规格,例如电容器结构300的有效距离Deff和电极面积A。
在一些实施例中,电容率值的规格包含预定最高电容值、预定最低电容值和预定电容变化阈值中的至少一种,所有这些值都是通过用于监测目标浆料的电容器结构取得的。在一些实施例中,如果与目标浆料相关联的测量电容值在预定最高电容值和预定最低电容值之间,那么认为目标浆料符合规格。在一些实施例中,如果与目标浆料相关联的电容值的变化低于电容变化阈值,那么认为目标浆料符合规格。对于不同类型的浆料,预定最高电容值、预定最低电容值和预定电容变化阈值可以不同。
在一些实施例中,预定的最高电容值在大约200微微法拉(pF)和大约5000pF之间的范围内。在一些实施例中,预定的最低电容值在大约50pF和大约4000pF之间的范围内。在一些实施例中,预定的电容变化阈值在大约20pF和大约1000pF之间的范围内。
在步骤622,确定第一取样浆料部分的电容率是否符合规格。在一些实施例中,这个确定还包含检查与第一取样浆料部分相关联的平均移除率和移除率变化。平均移除率和移除率变化的参考数据可以从数据库630中取得。
在一些实施例中,在步骤622为试运行执行的确定浆料质量包含增量测试。在一些实施例中,在步骤606为试运行执行的确定浆料质量考虑了浆料检查的定量结果。例如,在一些实施例中,如果第一取样浆料部分的电容率值或电容值接近通过/失败测试的边界,那么对同一批次的同一取样浆料部分或另一取样浆料部分的另一电容感测进行检查,以提高检测精度。
如果确定浆料通过步骤622执行的检查,那么方法600返回到步骤612,使用合格的浆料和执行CMP操作的一次或多次正常运行,并且参考步骤614和616执行一或多个线上电容值感测操作以继续监测浆料质量。同时,参考步骤618,继续向数据库630提供其它取样浆料部分的移除率和电容率特性的对照表,例如平均电容率和电容率变化。对照表可以包含CMP操作的移除率、平均移除率和移除率变化中的至少一种。
如果确定取样的浆料部分的电容率不符合规格,那么在步骤608中用新浆料替换不合格的浆料。方法600将返回到步骤606,在所述步骤中,替换的浆料经受另一次试运行和质量检查,直到检查的浆料符合规格。
参考图6B,在一些实施例中,方法600替代地继续进行步骤624而不是进行步骤608,其中质量传感器耦接输送系统的管道网络的管路处的第二位置。替代地或另外,除了耦接管路的第一位置的原本质量传感器之外,另一个质量传感器耦接管路的第二位置或管道网络的另一个管路。参考图2,第一位置可以是质量传感器210C所在的位置,且第二位置可以是质量传感器210A或210B,或者阀门V6和过滤器F2之间的位置。
如上文所述,所建议的电容感测方法是在不接触监测下的浆料的情况下进行的。因此,不需要改变管道网络的物理结构来部署额外的质量传感器。因此可以提高感测灵活性。
在步骤626,取得与管路中的第二取样浆料部分相关联的另一个质量传感器中的电容器的一或多个电容值。取得第二位置的电容值的方式与取得第一位置的电容值的方式类似。
在步骤628,确定第二取样浆料部分的电容率是否符合规格。在一些实施例中,这个确定还包含检查与第二取样浆料部分相关联的平均移除率和移除率变化。平均移除率和移除率变化的参考数据可以从数据库630中取得。
如果确定第二取样浆料的电容率符合规格,这表示第一位置和第二位置之间的管道区段可能包含污染源,导致浆料降解或劣化。方法600于是继续进行步骤632以替换第一位置和第二位置之间的管道区段。所述方法之后返回到步骤610以执行CMP操作的正常运行。
如果确定第二取样浆料的电容率仍不符合规格,在步骤634确定检查所有输送系统的管道网络是否已排空。如果是确认的,那么表示浆料的劣化与输送系统的管道网络状况无关。方法600于是进行到步骤608用新浆料替换不合格的浆料。
图7是根据一些实施例的用于实现浆料质量监测方法的系统700的示意图。系统700包含处理器701、网络接口703、输入和输出(I/O)装置705、存储装置707、存储器709和总线708。总线708将网络接口703、I/O装置705、存储装置707、存储器709和处理器701彼此耦合。
处理器701可以包含处理器240。处理器701经布置以执行程序指令,所述程序指令经布置以执行参考本揭露的附图所描述和绘示的电容感测。在一些实施例中,处理器701经布置以存取来自数据库的历史数据并且进行电容(或电容率)与移除率的历史数据之间的比较。在一些实施例中,处理器701经布置以产生电容(或电容率)和移除率之间的对照数据。
网络接口703经布置以存取通过网络(本文未示出)远程存储的程序指令和由程序指令存取的数据。在一些实施例中,网络接口703将处理器701连接到管道网络208以控制阀门V1到V12、泵P1、P2和过滤器F1、F2或F3的开关切换。在一些实施例中,网络接口703将处理器701连接到半导体工具232、234或236以控制其操作,例如CMP操作。
I/O装置705包含输入装置和输出装置,其经布置以用于让用户能够与系统700交互。在一些实施例中,输入装置包含例如键盘、鼠标和其它装置。此外,输出装置包含例如显示器、打印机和其它装置。
存储装置707经布置以存储程序指令和程序指令存取的数据。在一些实施例中,存储装置707包含非暂态计算机可读取媒体,例如磁盘和光盘。在一些实施例中,存储装置707包含一或多个数据库,例如数据库630,用于存储CMP操作的对照数据或对照表。
存储器709经布置以存储处理器701要执行的程序指令和程序指令存取的数据。存储器709还可以包含数据库,例如数据库630,经布置以存储电容值或电容率值与CMP移除率性能(例如平均移除率和移除率变化)之间的对照表的历史数据。在一些实施例中,存储器709包含随机存取存储器(RAM)、一些其它易失性存储装置、只读存储器(ROM)和一些其它非易失性存储装置的任意组合。
本揭露一些实施例提供了一种方法。所述方法包含:通过浆料输送系统的管道网络将浆料输送到半导体工具;将电极对耦接管道网络的管路外侧管壁;测量与电极对相关的一或多个电容值,其中浆料是电极对之间的绝缘层;根据一或多个电容值导出浆料的质量指标,并且因应于针对浆料的质量指标符合规格,而使用半导体工具执行化学机械研磨操作。
本揭露一些实施例提供了一种方法。所述方法包含从移动式容器接收浆料;通过槽和第一管路将浆料从移动式容器输送到半导体工具;将第一电容传感器耦接第一管路;在通过第一管路向槽提供浆料的同时测量第一电容传感器的第一电容值;根据对第一电容值的测量得出浆料的质量指标;并且根据用于第一管路的浆料的质量指标以确定是否使用半导体工具执行化学机械研磨操作。
本揭露一些实施例提供了一种系统。所述系统包含经布置以存储浆料的槽;连接在移动式容器与槽之间以及槽与半导体工具之间的管道网络;一或多个电容传感器耦接管道网络的管路并经布置以测量与管路中的浆料相关联的电容传感器的一或多个电容值;及处理器。处理器经布置以根据一或多个电容值导出浆料的质量指标,并且反应于浆料的质量指标而使用半导体工具让半导体工具执行化学机械研磨操作以符合规格。
上文已概述若干实施例的特征,使得所属领域的技术人员可较佳理解本揭露的方面。所属领域的技术人员应了解,其可易于将本揭露用作设计或修改其它工艺及结构以实施相同于本文中所引入的实施例的目的及/或达成相同于本文中所引入的实施例的优点的基础。所属领域的技术人员还应认识到,这些等效建构不应背离本揭露的精神及范围,并且其可在不背离本揭露的精神及范围的情况下对本文作出各种改变、替换及变更。
符号说明
100:化学机械研磨设备
110:研磨轮组件
112:研磨平台
114:研磨垫
116:转轴
120:晶片载体组件
122:晶片载体
124:固定环
126:转轴
128:浆料导入装置
200:浆料输送系统
201:浆料
202:供应容器
204:稀释槽
206:存储槽
207:存取端口
208:管道网络
208A:管道区段
210A:质量传感器
210B:质量传感器
210C:质量传感器
210D:质量传感器
232:半导体工具
234:半导体工具
236:半导体工具
300:电容器结构
302A:电极
302B:电极
400:电容传感器
402:信号产生器
404:放大器
406:电阻元件
412:第一电压计
414:第二电压计
416:电流计
600:方法
602:步骤框
604:步骤框
606:步骤框
608:步骤框
610:步骤框
612:步骤框
614:步骤框
616:步骤框
618:步骤框
620:步骤框
622:步骤框
624:步骤框
626:步骤框
628:步骤框
630:步骤框
632:步骤框
634:步骤框
700:系统
701:处理器
703:网络接口
705:I/O装置
707:存储装置
708:总线
709:程序指令和程序指令存取的数据
B1-B6:取样浆料
D:直径
Deff:有效距离
Dm:距离
Ix:电流电平
F1-F3:过滤器
P1-P2:泵
S1:第一感测信号
S2:第二感测信号
V+:非反相端子
V-:反相端子
V1-V12:阀门
Vo:输出端子
Vr1:电压读数
Vr2:电压读数
W:晶片
X1:第一节点
X2:第二节点。

Claims (10)

1.一种输送浆料的方法,包含:
通过浆料输送系统的管道网络将浆料输送到半导体工具;
将电极对耦接所述管道网络的管路的外侧管壁;
测量与所述电极对相关联的一或多个电容值,其中所述浆料是所述电极对之间的绝缘层;
根据所述一或多个电容值导出所述浆料的质量指标;及
因应于针对所述浆料的所述质量指标符合规格,而使用所述半导体工具执行化学机械研磨操作。
2.根据权利要求1所述的方法,其中所述电极对包含第一电极和第二电极,每一个电极具有与所述管路的所述外侧管壁共形的弯曲形状。
3.根据权利要求1所述的方法,其中导出所述质量指标包含根据所述一或多个电容值以确定所述浆料的一或多个电容率值。
4.根据权利要求1所述的方法,进一步包含在测量所述一或多个电容值期间,控制所述管道网络的阀门的切换以使所述浆料的一部分静止。
5.一种接收浆料的方法,包含:
从移动式容器接收浆料;
通过槽和第一管路将所述浆料从所述移动式容器输送到半导体工具;
将第一电容传感器耦接所述第一管路;
在通过所述第一管路向所述槽提供所述浆料的同时测量所述第一电容传感器的第一电容值;
根据对所述第一电容值的测量导出所述浆料的质量指标;及
根据用于所述第一管路的所述浆料的所述质量指标以确定是否使用所述半导体工具执行化学机械研磨操作。
6.根据权利要求5所述的方法,其中导出所述质量指标包含根据所述第一管路的所述第一电容值以确定所述浆料的电容率值。
7.根据权利要求5所述的方法,其中导出所述质量指标包含确定所述浆料的平均电容率。
8.一种存储浆料的系统,包含:
槽,其经布置以存储浆料;
管道网络,其在移动式容器与所述槽之间连接以及在所述槽与半导体工具之间连接;
一或多个电容传感器,其耦接所述管道网络的管路并经布置以测量与所述管路中的所述浆料相关联的所述电容传感器的一或多个电容值;及
处理器,其耦接所述电容传感器并经布置以:
根据所述一或多个电容值导出所述浆料的质量指标;及
因应于针对所述浆料的所述质量指标符合规格,而使用所述半导体工具让所述半导体工具执行化学机械研磨操作。
9.根据权利要求8所述的系统,进一步包含数据库,所述数据库包含所述质量指标的历史数据以及由所述半导体工具执行的操作的性能结果,其中所述处理器经布置以根据所述历史数据以确定所述浆料是否符合规格。
10.根据权利要求8所述的系统,其中所述一或多个电容传感器中的每一个包含耦接所述管路的外侧管壁的电极对。
CN202210150216.0A 2021-05-14 2022-02-18 用于浆料质量监测的方法和系统 Pending CN115070601A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163189058P 2021-05-14 2021-05-14
US63/189,058 2021-05-14
US17/409,407 2021-08-23
US17/409,407 US20220362902A1 (en) 2021-05-14 2021-08-23 Method and system for slurry quality monitoring

Publications (1)

Publication Number Publication Date
CN115070601A true CN115070601A (zh) 2022-09-20

Family

ID=83246329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210150216.0A Pending CN115070601A (zh) 2021-05-14 2022-02-18 用于浆料质量监测的方法和系统

Country Status (3)

Country Link
US (1) US20220362902A1 (zh)
CN (1) CN115070601A (zh)
TW (1) TWI823270B (zh)

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467775A (en) * 1977-11-09 1979-05-31 Mitsubishi Electric Corp Film quality evaluation method of insulation film
KR910020834A (ko) * 1990-05-01 1991-12-20 오레그 이. 앨버 반도체 또는 광학장치에 사용하는 장치 및 그 방법
US5187444A (en) * 1988-07-29 1993-02-16 Murata Mfg. Co., Ltd. Sensor for sensing the presence of electrolyte solution
US5846398A (en) * 1996-08-23 1998-12-08 Sematech, Inc. CMP slurry measurement and control technique
CN1305393A (zh) * 1998-06-18 2001-07-25 卢西德处理系统公司 回收化学和机械平整化所用水与浆料研磨剂的方法和设备
US20010024878A1 (en) * 2000-03-27 2001-09-27 Kabushiki Kaisha Toshiba Polishing pad, polishing apparatus and polishing method
JP2002016029A (ja) * 2000-06-27 2002-01-18 Mitsubishi Chemical Engineering Corp 研磨液の調製方法および調製装置
US20020061722A1 (en) * 2000-11-17 2002-05-23 Kaoru Kondo Apparatus for producing polishing solution and apparatus for feeding the same
JP2002154057A (ja) * 2000-11-17 2002-05-28 Rion Co Ltd 研磨液の供給装置
CN1356369A (zh) * 2000-11-17 2002-07-03 理音株式会社 研磨液的制造装置
JP2002277426A (ja) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd 誘電物性測定装置
CN1447057A (zh) * 2002-03-27 2003-10-08 株式会社唯红 绝缘性流动物的计测装置、纯度控制装置、混合度控制装置
JP2005038924A (ja) * 2003-07-16 2005-02-10 Sanyo Chem Ind Ltd Cmpプロセス用研磨液
CN101109725A (zh) * 2007-08-16 2008-01-23 中国科学院合肥物质科学研究院 表面敏感电容式气体传感器及其制作方法
CN101477075A (zh) * 2008-11-06 2009-07-08 东北大学 电容式传感器和两相流相浓度检测装置
CN101477074A (zh) * 2008-11-06 2009-07-08 东北大学 两相流流动参数监测方法和系统
US20100229632A1 (en) * 2009-03-12 2010-09-16 Ngk Insulators, Ltd. Particulate matter detection device
US20110180512A1 (en) * 2010-01-28 2011-07-28 Environmental Process Solutions, Inc. Accurately Monitored CMP Recycling
CN102192928A (zh) * 2010-03-11 2011-09-21 株式会社Lg化学 用于监测玻璃板抛光状态的装置和方法
CN102814291A (zh) * 2012-08-23 2012-12-12 广州市香港科大霍英东研究院 基于电容检测的塑料制品自动检测分配方法
WO2014078398A1 (en) * 2012-11-13 2014-05-22 Air Products And Chemicals, Inc. Slurry and/or chemical blend supply apparatuses
CN104458521A (zh) * 2014-11-21 2015-03-25 西安交通大学 一种在线监测油液的装置及方法
CN204330664U (zh) * 2014-12-28 2015-05-13 武汉理工大学 管道内泥浆浓度电容式测量装置
CN104714160A (zh) * 2015-03-27 2015-06-17 江苏峰工电气科技有限公司 多功能传感器及其在gis放电和微水含量检测方面的应用
US20160089765A1 (en) * 2014-09-30 2016-03-31 Taiwan Semiconductor Manufacturing Co., Ltd. Slurry dispersion system with real time control
CN106041707A (zh) * 2016-07-25 2016-10-26 黄文正 一种金属制品无尘抛光装置
CN206780193U (zh) * 2017-04-28 2017-12-22 青岛鑫嘉星电子科技股份有限公司 一种蓝宝石衬底单面抛光表面光洁度控制装置
CN108145606A (zh) * 2017-11-23 2018-06-12 浙江工业大学 一种抛光过程中抛光液大颗粒实时在线监测装置
CN108724004A (zh) * 2017-04-18 2018-11-02 台湾积体电路制造股份有限公司 化学机械研磨设备
CN109417039A (zh) * 2016-06-20 2019-03-01 应用材料公司 具有电容式微传感器的晶片处理设备
CN109839412A (zh) * 2019-01-21 2019-06-04 东南大学 同步获取气固两相流内电容和静电信号的测量装置及方法
CN110153032A (zh) * 2019-04-19 2019-08-23 山东科技大学 瓶装液位智能检测剔除装置
CN112105913A (zh) * 2018-12-03 2020-12-18 株式会社Lg化学 用于测量活性材料的活性面积的非破坏性方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736154B2 (en) * 2001-01-26 2004-05-18 American Air Liquide, Inc. Pressure vessel systems and methods for dispensing liquid chemical compositions
TWI693395B (zh) * 2019-01-24 2020-05-11 台灣積體電路製造股份有限公司 半導體製程之品質監控方法

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467775A (en) * 1977-11-09 1979-05-31 Mitsubishi Electric Corp Film quality evaluation method of insulation film
US5187444A (en) * 1988-07-29 1993-02-16 Murata Mfg. Co., Ltd. Sensor for sensing the presence of electrolyte solution
KR910020834A (ko) * 1990-05-01 1991-12-20 오레그 이. 앨버 반도체 또는 광학장치에 사용하는 장치 및 그 방법
US5846398A (en) * 1996-08-23 1998-12-08 Sematech, Inc. CMP slurry measurement and control technique
CN1305393A (zh) * 1998-06-18 2001-07-25 卢西德处理系统公司 回收化学和机械平整化所用水与浆料研磨剂的方法和设备
US20010024878A1 (en) * 2000-03-27 2001-09-27 Kabushiki Kaisha Toshiba Polishing pad, polishing apparatus and polishing method
JP2002016029A (ja) * 2000-06-27 2002-01-18 Mitsubishi Chemical Engineering Corp 研磨液の調製方法および調製装置
JP2002154057A (ja) * 2000-11-17 2002-05-28 Rion Co Ltd 研磨液の供給装置
US20020061722A1 (en) * 2000-11-17 2002-05-23 Kaoru Kondo Apparatus for producing polishing solution and apparatus for feeding the same
CN1356369A (zh) * 2000-11-17 2002-07-03 理音株式会社 研磨液的制造装置
JP2002277426A (ja) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd 誘電物性測定装置
CN1447057A (zh) * 2002-03-27 2003-10-08 株式会社唯红 绝缘性流动物的计测装置、纯度控制装置、混合度控制装置
JP2005038924A (ja) * 2003-07-16 2005-02-10 Sanyo Chem Ind Ltd Cmpプロセス用研磨液
CN101109725A (zh) * 2007-08-16 2008-01-23 中国科学院合肥物质科学研究院 表面敏感电容式气体传感器及其制作方法
CN101477075A (zh) * 2008-11-06 2009-07-08 东北大学 电容式传感器和两相流相浓度检测装置
CN101477074A (zh) * 2008-11-06 2009-07-08 东北大学 两相流流动参数监测方法和系统
US20100229632A1 (en) * 2009-03-12 2010-09-16 Ngk Insulators, Ltd. Particulate matter detection device
US20110180512A1 (en) * 2010-01-28 2011-07-28 Environmental Process Solutions, Inc. Accurately Monitored CMP Recycling
CN102192928A (zh) * 2010-03-11 2011-09-21 株式会社Lg化学 用于监测玻璃板抛光状态的装置和方法
CN102814291A (zh) * 2012-08-23 2012-12-12 广州市香港科大霍英东研究院 基于电容检测的塑料制品自动检测分配方法
WO2014078398A1 (en) * 2012-11-13 2014-05-22 Air Products And Chemicals, Inc. Slurry and/or chemical blend supply apparatuses
US20160089765A1 (en) * 2014-09-30 2016-03-31 Taiwan Semiconductor Manufacturing Co., Ltd. Slurry dispersion system with real time control
CN104458521A (zh) * 2014-11-21 2015-03-25 西安交通大学 一种在线监测油液的装置及方法
CN204330664U (zh) * 2014-12-28 2015-05-13 武汉理工大学 管道内泥浆浓度电容式测量装置
CN104714160A (zh) * 2015-03-27 2015-06-17 江苏峰工电气科技有限公司 多功能传感器及其在gis放电和微水含量检测方面的应用
CN109417039A (zh) * 2016-06-20 2019-03-01 应用材料公司 具有电容式微传感器的晶片处理设备
CN106041707A (zh) * 2016-07-25 2016-10-26 黄文正 一种金属制品无尘抛光装置
CN108724004A (zh) * 2017-04-18 2018-11-02 台湾积体电路制造股份有限公司 化学机械研磨设备
CN206780193U (zh) * 2017-04-28 2017-12-22 青岛鑫嘉星电子科技股份有限公司 一种蓝宝石衬底单面抛光表面光洁度控制装置
CN108145606A (zh) * 2017-11-23 2018-06-12 浙江工业大学 一种抛光过程中抛光液大颗粒实时在线监测装置
CN112105913A (zh) * 2018-12-03 2020-12-18 株式会社Lg化学 用于测量活性材料的活性面积的非破坏性方法
CN109839412A (zh) * 2019-01-21 2019-06-04 东南大学 同步获取气固两相流内电容和静电信号的测量装置及方法
CN110153032A (zh) * 2019-04-19 2019-08-23 山东科技大学 瓶装液位智能检测剔除装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘凯: "油液在线监测电容传感器的研制及在线测试方法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》, no. 3, pages 13 - 60 *

Also Published As

Publication number Publication date
US20220362902A1 (en) 2022-11-17
TW202243801A (zh) 2022-11-16
TWI823270B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
US9528814B2 (en) Apparatus and method of using impedance resonance sensor for thickness measurement
US6020264A (en) Method and apparatus for in-line oxide thickness determination in chemical-mechanical polishing
KR101164984B1 (ko) 전기 부품의 반복적인 테스트를 위한 방법 및 기계
KR20110020226A (ko) 도전 층의 두께를 측정하는 방법 및 이를 이용한 장치
US9297776B2 (en) Probe
CN1871494A (zh) 涡流传感器
US11806828B2 (en) Polishing apparatus and calibration method
CN102445144B (zh) 用于在线膜厚测量系统的标定方法及标定装置
KR101944309B1 (ko) 반도체 cmp 공정 연마제의 측정을 통한 품질 예측 및 조정 통합 시스템
KR20150126294A (ko) 칩 전자 부품의 전기 특성의 연속적인 검사 방법
US20200016720A1 (en) Polishing apparatus and polishing method
CN109822448A (zh) 估计膜厚的化学机械平坦化装置及方法
TWI823270B (zh) 用於漿料質量監測的方法和系統
US8395398B2 (en) Method of characterizing particles
CN100538374C (zh) 一种测定样品介电特性的装置及其测定方法和应用
US4871427A (en) Ion detection using a differential resistance measurement of an ion exchange membrane
US7489141B1 (en) Surface micro sensor and method
CN111537408B (zh) 一种在线测定水环境中颗粒物粒径的方法
US5928962A (en) Process for forming a semiconductor device
US11131541B2 (en) Shutter monitoring system
CN111307870A (zh) 一种锂离子电池浆料均匀性的评价方法与装置
US11555730B2 (en) In-situ method and apparatus for measuring fluid resistivity
KR20030093917A (ko) 반도체 제조장치, 연마액공급장치 및 반도체장치의 제조방법
JPH1070167A (ja) 半導体ウェハ表面積のモニタ方法およびモニタ装置
CN110836842B (zh) 颗粒检测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination