CN115068636B - 基于人参皂苷与超声联合微泡造影剂的仿生共递送系统 - Google Patents

基于人参皂苷与超声联合微泡造影剂的仿生共递送系统 Download PDF

Info

Publication number
CN115068636B
CN115068636B CN202210697627.1A CN202210697627A CN115068636B CN 115068636 B CN115068636 B CN 115068636B CN 202210697627 A CN202210697627 A CN 202210697627A CN 115068636 B CN115068636 B CN 115068636B
Authority
CN
China
Prior art keywords
ginsenoside
drug
nano
bionic
delivery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210697627.1A
Other languages
English (en)
Other versions
CN115068636A (zh
Inventor
邵敬伟
林颖琦
冯珂珂
杨明月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210697627.1A priority Critical patent/CN115068636B/zh
Publication of CN115068636A publication Critical patent/CN115068636A/zh
Application granted granted Critical
Publication of CN115068636B publication Critical patent/CN115068636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Cell Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种基于人参皂苷与超声联合微泡造影剂的仿生共递送系统及其制备与应用,属于生物医药技术领域。本发明通过将天然产物人参皂苷Rg1、超声联合微泡造影剂全氟己烷与聚乳酸‑乙醇酸共聚物组装成纳米药物,然后利用血小板膜/红细胞膜混合物进行包裹,制得一种绿色、简单的仿生共递送系统,其具有免疫逃逸和自我靶向的显著特征,可同时达到天然产物人参皂苷Rg1和超声联合微泡造影剂全氟己烷协同抗血栓的作用,而聚乳酸‑乙醇酸共聚物的加入赋予药物缓释效果,可进一步提高人参皂苷Rg1的生物利用度,因而具有较大的临床应用潜力。

Description

基于人参皂苷与超声联合微泡造影剂的仿生共递送系统
技术领域
本发明属于生物医药技术领域,具体涉及一种基于人参皂苷与超声联合微泡造影剂的仿生共递送系统及其制备与应用。
背景技术
血栓性血管疾病是全球人类健康的主要威胁之一。血栓的形成涉及多种因素,包括血小板、纤维蛋白、炎性细胞因子、活性氧等。抗凝药、抗血小板聚集药、溶栓药等是预防和治疗血栓性疾病的主流药物。但这些药物具有缺乏靶向性、治疗窗口窄和毒副作用等问题。在临床中的应用也存在循环时间短、非选择性出血及技术要求高等限制因素。因此,一种方便、靶向、生物相容的给药系统的开发,是实现血栓性疾病的精准安全治疗的重要研究方向。
人参皂苷Rg1是人参的主要活性成分,具有抗炎、抗氧化等药理活性与抑制血栓的作用。研究表明人参皂苷Rg1能通过下调细胞外信号调节激酶(ERK)磷酸化和P选择素的表达抑制血小板聚集和粘附。尽管人参皂苷Rg1在临床治疗血栓方面显示出巨大的潜力,但传统的口服给药仍具有生物利用度低、半衰期短、缺乏靶向性等问题。
超声联合微泡造影剂被视为无创靶向溶栓治疗的有效途径。研究显示,全氟己烷液滴在超声的作用下会转化为气体并产生大量微泡,这种液-气相转化使动脉再通改善微血管循环。该方法还可能对肿瘤、血栓和动脉粥样硬化斑块等病理组织造成损伤。此外,为了提高其稳定性,延长循环时间,全氟己烷通常采用聚合物胶束、白蛋白、脂质体等制备成纳米颗粒。超声联合微泡造影剂全氟己烷在无创、靶向药物输送方面具有巨大的潜力。
研究表明,红细胞-血小板杂化膜包被纳米药物具有优异的巨噬细胞吞噬逃逸能力,具有更长的血液循环时间。混合细胞膜包被策略在癌症诊断和治疗方面取得了很大进展,但其在心血管疾病治疗方面的优势仍有待探索。
基于上述背景,本发明构建了一种载有人参皂苷Rg1和全氟己烷的纳米药物,该药物使用聚乳酸-乙醇酸共聚物进行包裹,并通过血小板-红细胞混合膜的伪装赋予纳米药物血栓粘附能力和免疫逃逸能力;在低强度聚焦超声作用下,纳米药物中的全氟己烷快速相变,有助于溶栓和药物释放,而人参皂苷Rg1的抗氧化和抗炎作用可修复病理区域的微环境,抑制血栓的进一步发展。
发明内容
本发明的目的在于提供一种基于人参皂苷与超声联合微泡造影剂的仿生共递送系统及其制备与应用,其为靶向仿生纳米药物用于防治血栓性血管疾病提供了理论依据。
为实现上述目的,本发明采用如下技术方案:
一种基于人参皂苷与超声联合微泡造影剂的仿生共递送系统,其是将人参皂苷Rg1、超声联合微泡造影剂全氟己烷与聚乳酸-乙醇酸共聚物(PLGA)组装成纳米药物,并使用血小板膜(PM)/红细胞膜(RM)混合物进行包裹制得。
所述仿生共递送系统的制备方法包括如下步骤:
1)将聚乳酸-乙醇酸共聚物溶于丙酮中,超声10 min,得到浓度为5 mg/mL的聚乳酸-乙醇酸共聚物的丙酮溶液;
2)将步骤1)制得的聚乳酸-乙醇酸共聚物的丙酮溶液滴入含0.6 mg/mL人参皂苷Rg1和20 μL/mL全氟己烷的混合物水溶液中,搅拌5 h,即得到聚乳酸-乙醇酸共聚物包裹形成的PLGA@P/R纳米药物;
3)将血小板膜和红细胞膜按体积比1:1超声混合5 min,即得到血小板膜/红细胞膜混合物;
4)将步骤2)制得的PLGA@P/R纳米药物在超声条件下缓慢滴入步骤3)制得的血小板膜/红细胞混合物中,滴完再超声5 min,然后将所得反应物使用孔径为200 nm的聚碳酸酯多孔膜重复挤出3次,即获得仿生共递送系统PM/RM@PLGA@P/R。
步骤2)中所用聚乳酸-乙醇酸共聚物的丙酮溶液与混合物水溶液的体积比1:2.5。
步骤4)中所用PLGA@P/R纳米药物与血小板膜/红细胞混合物的体积比为1:1。
步骤4)中所用超声的功率为200 W。
所述仿生共递送系统可粘附血栓,并具有免疫逃逸和自我靶向性,因而可用于制备抗血栓治疗靶向药物。
本发明的优点在于:
(1)本发明在所制备的仿生共递送系统中装载了人参皂苷Rg1和全氟己烷,其结合血小板膜的使用,可实现药物靶向递送到血栓部位,从而有效发挥天然药物和微泡造影剂的协同抗血栓作用,且人参皂苷Rg1的抗氧化和抗炎作用可修复病理区域的微环境,抑制血栓的进一步发展,而红细胞膜的使用可提高纳米药物的半衰期和免疫逃逸能力,聚乳酸-乙醇酸共聚物的使用还赋予其缓释效果。
(2)本发明提供的基于人参皂苷Rg1与超声联合微泡造影剂的仿生共递送系统,其制备过程简单、绿色,所得仿生共递送系统具有免疫逃逸、自我靶向性及很好的生物相容性,可以克服传统抗血栓药物缺乏靶向性、治疗窗口窄和存在毒副作用等问题,为以后新药研发和制备提供新的思路。
附图说明
图1为实施例2所得PM/RM@PLGA@P/R的SEM和TEM图。
图2为实施例2所得PM/RM@PLGA@P/R在水中(4 ℃)的稳定性情况图。
图3为实施例3中通过激光扫描共聚焦显微镜分析的人脐静脉内皮细胞(HUVEC)和人胚肺成纤维细胞(HELF)对纳米药物的摄取情况图。
图4为实施例4中纳米药物体内抑制血栓生长情况的对比图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
一种基于人参皂苷与超声联合微泡造影剂的仿生共递送系统的制备方法,其具体包括如下步骤:
(1)精准称取一定量聚乳酸-乙醇酸共聚物溶于1 mL丙酮中,超声10 min辅助溶解,配制成聚乳酸-乙醇酸共聚物的丙酮溶液;
(2)精准称取一定量人参皂苷Rg1和全氟己烷,溶于水中并稀释至2.5 mL,得到人参皂苷Rg1和全氟己烷的混合物水溶液;将步骤(1)制得的聚乳酸-乙醇酸共聚物的丙酮溶液缓慢滴加到上述混合水溶液中,搅拌5 h,配制成纳米药物PLGA@P/R。
考察不同用量的人参皂苷Rg1(1.5、2.0、2.5 mg)、全氟己烷(25、50、100 μL)和聚乳酸-乙醇酸共聚物(5、10、15 mg)对所制备PLGA@P/R纳米药物的平均粒径、电势等的影响。结果如表1-3所示。
表1 加入不同量的聚乳酸-乙醇酸共聚物对纳米药物的影响
表2 加入不同量的人参皂苷对纳米药物的影响
表3 加入不同量的全氟己烷对纳米药物的影响
由表1-3所得结果可见,不同量的聚乳酸-乙醇酸共聚物、人参皂苷Rg1、全氟己烷制备的纳米药物的载药量和包封率有明显差别。综上,选择聚乳酸-乙醇酸共聚物为5 mg,人参皂苷Rg1为1.5 mg,全氟己烷为50 μL(即聚乳酸-乙醇酸共聚物5 mg/mL,人参皂苷Rg10.6 mg/mL,全氟己烷为20 μL/mL)作为制备纳米药物的方案。
实施例2
一种基于人参皂苷与超声联合微泡造影剂的仿生共递送系统的制备方法,其具体包括如下步骤:
(1)精准称取5 mg聚乳酸-乙醇酸共聚物溶于1 mL丙酮中,超声10 min辅助溶解,配制成浓度为5 mg/mL的聚乳酸-乙醇酸共聚物的丙酮溶液;
(2)精准称取1.5 mg人参皂苷Rg1和50 μL全氟己烷,溶于水中并稀释至2.5 mL,得到含人参皂苷Rg1 0.6 mg/ml和全氟己烷20 μL/mL的混合物水溶液;将步骤(1)制得的聚乳酸-乙醇酸共聚物的丙酮溶液缓慢滴加到上述混合物水溶液中,搅拌5 h,配制成纳米药物PLGA@P/R;
(3)将血小板膜和红细胞膜按体积比1:1超声混合5 min,配制成血小板膜/红细胞膜混合物;
(4)按体积比1:1将制得的纳米药物PLGA@P/R在超声条件下缓慢滴入血小板膜/红细胞膜混合物中,200 W超声5 min,然后使用孔径200 nm的聚碳酸酯多孔膜重复挤出,即可获得纳米药物PM/RM@PLGA@P/R。
图1为所得PM/RM@PLGA@P/R的SEM图和TEM图。从图中可以看出该纳米药物呈球形,尺寸分布较为均一,没有发生团聚,且其呈现核-壳结构,粒径100 nm左右,证明了纳米药物的成功构建。
图2为所得PM/RM@PLGA@P/R在水中(4 ℃)的稳定性情况图。如图2所示,在48 h内,该纳米药物的粒径及尺寸均一性均无明显变化,最终仍能保持约150 nm,PDI<0.1,证明其具有较好的稳定性。
实施例3
通过激光共聚焦监测人脐静脉内皮细胞、人胚肺成纤维细胞对纳米药物PM/RM@PLGA@P/R的摄取情况。其操作方法是:
1)在含有人参皂苷Rg1及全氟己烷的水溶液中加入吲哚菁绿,搅拌下将聚乳酸-乙醇酸共聚物缓慢滴加进去,制备成带有吲哚菁绿标记的PLGA@P/R。再按实施例2中步骤(3)、(4)的方法包裹血小板膜/红细胞膜混合物,即得吲哚菁绿标记的PM/RM@PLGA@P/R的水溶液。
2)将人脐静脉内皮细胞及人胚肺成纤维细胞分别消化之后,按每孔6×104个细胞加入到有细胞爬片的12孔板中,并在37 ℃温育24 h,待细胞贴壁后,加入10 mg/mL的肿瘤坏死因子α(TNF-α)刺激1h,再加入吲哚菁绿标记的PM/RM@PLGA@P/R以及PLGA@P/R,孵育30min取出培养基,用生理盐水清洗后,加入4%的多聚甲醛固定15 min,生理盐水清洗后加入Hoechst 33342对细胞核进行染色30 min,生理盐水清洗后,在载玻片上滴加适量的抗荧光淬灭封片剂,将细胞爬片盖在载玻片上,利用共聚焦显微镜观察细胞对纳米药物的摄取情况。其中吲哚菁绿在633 nm处激发,其荧光在638-747 nm处监测。Hoechst 33342染色液在405 nm处激发,并在410-500 nm处监测其荧光。
如图3所示,与PM/RM@PLGA@P/R一起孵育的人脐静脉内皮细胞显示出比PLGA@P/R高得多的红色荧光强度。同时,人胚肺成纤维细胞的测试也显示出相同的结果,表明PM/RM@PLGA@P/R的被摄取量高于PLGA@P/R,这证明血小板膜和红细胞膜的修饰使纳米药物具有了更强的靶向能力。同时,人脐静脉内皮细胞的平均荧光强度强于人胚肺成纤维细胞。表明混合细胞膜包裹后的纳米药物靶向受损的人脐静脉内皮细胞的能力强于靶向人胚肺成纤维细胞,这进一步说明了纳米药物PM/RM@PLGA@P/R的靶向能力更强。
实施例4
通过注射角叉菜胶建立鼠尾血栓模型,正常小鼠和不被治疗的血栓模型小鼠分别被标记为空白组(a)和对照组(b),c-k组分别采用低强度聚焦超声(LIFU)、华法林(War)、人参皂苷Rg1、全氟己烷+低强度聚焦超声、人参皂苷Rg1+全氟己烷+低强度聚焦超声、PLGA@P/R+低强度聚焦超声、PM/RM@PLGA@P/R、PM/RM@PLGA@P/R+低强度聚焦超声和华法林+PM/RM@PLGA@P/R+低强度聚集超声进行治疗(其中低强度聚焦超声的频率为2 W/cm2,治疗时间为1h),通过观察并统计小鼠黑尾情况,判断药物对血栓性疾病的影响,并按下式计算抑制率:
抑制率(%)=(对照组的黑尾长度-给药组的黑尾长度)/对照组的黑尾长度×100%。
如图4所示,PM/RM@PLGA@P/R+低强度聚焦超声(j)组展现了非常显著的治疗效果,仅尾尖有少部分变黑(0.947 cm),横截面也无明显的栓塞,对血栓的抑制率高达88.20%,显著高于PLGA@P/R+低强度聚焦超声(h)的53.03%,表明采用血小板膜/细胞膜混合物包裹能够帮助纳米颗粒实现免疫逃逸,主动靶向血栓部位,显著增加血栓部位的药物积累,提高血栓治疗效果。同时,对比PM/RM@PLGA@P/R(i)30.96%的抑制率,再一次证明了全氟己烷的超声响应性溶栓能力。
另外,血栓性疾病形成机制复杂,临床常通过多种药物联用提高疗效,但研究发现,人参皂苷Rg1与华法林联用,会促进CYP代谢酶表达,抑制华法林的药理作用。因此,本发明在PM/RM@PLGA@P/R+低强度聚焦超声基础上联合华法林(k),其小鼠黑尾长度较PM/RM@PLGA@P/R+低强度聚焦超声(j)略有增加,表明华法林与PM/RM@PLGA@P/R联用不能进一步提升溶栓效果,临床上应尽量避免两者联用。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种基于人参皂苷与超声联合微泡造影剂的仿生共递送系统制备方法,其特征在于:所述仿生共递送系统是将人参皂苷Rg1、超声联合微泡造影剂全氟己烷与聚乳酸-乙醇酸共聚物组装成纳米药物,并使用血小板膜/红细胞膜混合物进行包裹制得;其包括如下步骤:
1)将聚乳酸-乙醇酸共聚物溶于丙酮中,超声10 min,得到聚乳酸-乙醇酸共聚物的丙酮溶液;
2)将步骤1)制得的聚乳酸-乙醇酸共聚物的丙酮溶液滴入人参皂苷Rg1和全氟己烷的混合物水溶液中,搅拌5 h,即得到PLGA@P/R纳米药物;
3)将血小板膜和红细胞膜超声混合5 min,即得到血小板膜/红细胞膜混合物;
4)将步骤2)制得的PLGA@P/R纳米药物在超声条件下缓慢滴入步骤3)制得的血小板膜/红细胞混合物中,滴完再超声5 min,然后将所得反应物使用孔径为200 nm的聚碳酸酯多孔膜重复挤出3次,即获得仿生共递送系统;
步骤1)所得聚乳酸-乙醇酸共聚物的丙酮溶液的浓度为5 mg/mL;
步骤2)所述人参皂苷Rg1和全氟己烷的混合物水溶液中人参皂苷Rg1的浓度为0.6 mg/mL,全氟己烷的浓度为20 μL/mL;所加入聚乳酸-乙醇酸共聚物的丙酮溶液与混合物水溶液的体积比为1:2.5;
步骤3)中所用血小板膜和红细胞膜的体积比为1:1;
步骤4)中所用PLGA@P/R纳米药物与血小板膜/红细胞混合物的体积比为1:1。
2.根据权利要求1所述的仿生共递送系统制备方法,其特征在于:步骤4)中所述超声的功率为200 W。
CN202210697627.1A 2022-06-20 2022-06-20 基于人参皂苷与超声联合微泡造影剂的仿生共递送系统 Active CN115068636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210697627.1A CN115068636B (zh) 2022-06-20 2022-06-20 基于人参皂苷与超声联合微泡造影剂的仿生共递送系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210697627.1A CN115068636B (zh) 2022-06-20 2022-06-20 基于人参皂苷与超声联合微泡造影剂的仿生共递送系统

Publications (2)

Publication Number Publication Date
CN115068636A CN115068636A (zh) 2022-09-20
CN115068636B true CN115068636B (zh) 2024-01-26

Family

ID=83253096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210697627.1A Active CN115068636B (zh) 2022-06-20 2022-06-20 基于人参皂苷与超声联合微泡造影剂的仿生共递送系统

Country Status (1)

Country Link
CN (1) CN115068636B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109316608A (zh) * 2018-10-31 2019-02-12 重庆医科大学附属第二医院 一种低强度聚焦超声响应型相变溶栓纳米粒、应用及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109316608A (zh) * 2018-10-31 2019-02-12 重庆医科大学附属第二医院 一种低强度聚焦超声响应型相变溶栓纳米粒、应用及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Biomimetic Nanotherapies: Red Blood Cell Based Core–Shell Structured Nanocomplexes for Atherosclerosis Management;Yi Wang等;《Advanced Science》;第1-13页,尤其是第2页左栏第1段至右栏第2段,第3页第2段 *
Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi;Sheng Bai等;《Biomaterials Science》;第5047-5060页 *
三七抗凝血量效关系研究;崔志莹等;《时珍国医国药》;第32卷(第11期);第2570-2573页,尤其是第2573页左栏倒数第2段 *
仿生纳米递送系统在心血管疾病诊疗中的研究进展;岳晓婷等;《中华老年心脑血管病杂志》;第23卷(第4期);第436-437页,尤其是第436页左栏倒数第2段,第437页左栏第3段 *
超声微泡造影剂在疾病诊断与治疗中的研究进展;王志刚;《中国医学影像技术》;第21卷(第8期);第1148-1150页 *
载EWVDV多模态纳米粒的相变及体外血栓靶向性研究;周君等;《现代医药卫生》;第34卷(第10期);第1441-1445页 *

Also Published As

Publication number Publication date
CN115068636A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Zhang et al. One-pot synthesis of hollow PDA@ DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer
Ni et al. Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy
CN108653754B (zh) 一种透明质酸靶向聚多巴胺包覆相变型液态氟碳纳米超声造影剂
Yang et al. Lipid microbubbles as ultrasound-stimulated oxygen carriers for controllable oxygen release for tumor reoxygenation
Yang et al. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy
Sun et al. Ultrasound microbubbles mediated sonosensitizer and antibody co-delivery for highly efficient synergistic therapy on HER2-positive gastric cancer
CN104888235A (zh) 具有共递送多个药物的pH敏感纳米粒前药及其制备方法与应用
Wang et al. Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging
CN108653733A (zh) 具有气泡生成功能的双载蒽环类药物及光敏剂的聚合物囊泡与制备
CN109260480A (zh) 一种携载阿霉素的壳聚糖纳米级超声造影剂及其制备方法与应用
CN111632154A (zh) 一种相转变纳米泡、其制备方法及用途
CN107412787A (zh) 一种用于光学治疗的光敏剂靶向纳米粒及其制备方法和应用
CN101926821B (zh) 一种靶向释放微量元素的药物组合物及制备方法和应用
CN112656944B (zh) 一种齐墩果酸纳米凝胶的制备方法及其应用
Wu et al. A multifunctional theranostics nanosystem featuring self-assembly of alcohol-abuse drug and photosensitizers for synergistic cancer therapy
CN108186571A (zh) 可逆交联不对称囊泡在制备治疗急性白血病药物中的应用
CN108201540A (zh) 富勒烯结构在制备治疗白血病的药物中的应用
Sun et al. Smart composite scaffold to synchronize magnetic hyperthermia and chemotherapy for efficient breast cancer therapy
CN115068636B (zh) 基于人参皂苷与超声联合微泡造影剂的仿生共递送系统
Geng et al. Reshaping the tumor microenvironment for increasing the distribution of glucose oxidase in tumor and inhibiting metastasis
KR102181117B1 (ko) 3상 하이브리드 나노입자 및 이를 제조하는 방법
CN102302507B (zh) 定向控释微量元素的药物组合物及制备方法和应用
Li et al. Triterpenoids and ultrasound dual-catalytic nanoreactor ignites long-lived hypertoxic reactive species storm for deep tumor treatment
CN109675052B (zh) 生物点击触发的高效靶向偶联物及其多元组合物、制备方法和应用
CN106606783B (zh) 一种靶向共递释光敏剂与化疗药物的药物递释系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant