CN115068622A - 一种交联小分子抑制剂otx015的大孔聚多巴胺纳米材料的制备方法 - Google Patents

一种交联小分子抑制剂otx015的大孔聚多巴胺纳米材料的制备方法 Download PDF

Info

Publication number
CN115068622A
CN115068622A CN202210600951.7A CN202210600951A CN115068622A CN 115068622 A CN115068622 A CN 115068622A CN 202210600951 A CN202210600951 A CN 202210600951A CN 115068622 A CN115068622 A CN 115068622A
Authority
CN
China
Prior art keywords
otx
solution
mpda
macroporous
otx015
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210600951.7A
Other languages
English (en)
Other versions
CN115068622B (zh
Inventor
田迎
王中秋
任帅
崔文静
袁翠平
周浩
郭凯
沈照峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Provincial Hospital of Chinese Medicine
Original Assignee
Jiangsu Provincial Hospital of Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Provincial Hospital of Chinese Medicine filed Critical Jiangsu Provincial Hospital of Chinese Medicine
Priority to CN202210600951.7A priority Critical patent/CN115068622B/zh
Publication of CN115068622A publication Critical patent/CN115068622A/zh
Application granted granted Critical
Publication of CN115068622B publication Critical patent/CN115068622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开一种交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料的制备方法,首先制备大孔聚多巴胺纳米材料MPDA储备液,然后通过与小分子免疫抑制剂OTX015溶液混合,得到交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料MPDA@OTX。本发明制备的纳米材料具有良好生物相容性、可降解性、肿瘤被动靶向作用及光热治疗性能,通过π‑π作用高效装载小分子抑制剂OTX015(OTX),制备能同时进行光热治疗和双通道免疫治疗的纳米药物,用于提高三阴性乳腺癌治疗疗效。

Description

一种交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料的制 备方法
技术领域
本发明属于医药技术领域,具体涉及一种交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料的制备和应用。
背景技术
全球最新肿瘤流行病统计数据(GLOBOCAN 2021)显示癌症仍然是威胁人类健康的头号“杀手”。最新研究数据显示,在2018-2020年间,全球癌症死亡人数由960万上升至1000万。预计到2040年,全球癌症负担将达到2840万例,比2020年增加47%。女性乳腺癌已经超过肺癌,成为最常见的癌症。在所有癌症发病率中,乳腺癌成为全球发病率第一的癌症,占比为11.8%,死亡率为 15.5%。在所有女性癌症患者中,约1/4是乳腺癌患者,在所有因癌症死亡的女性中,约1/6死于乳腺癌。针对乳腺癌治疗的研究具有重大的医学和社会意义,是提高我国居民健康的重大迫切需求。
目前临床上乳腺癌的治疗手段主要包括手术、放化疗、内分泌治疗或分子靶向治疗等,为部分乳腺癌患者带来了福音。但对三阴性乳腺癌即雌激素受体、孕激素受体及人表皮生长因子受体-2均不表达的患者,对化疗反应性差,又因缺少特异性靶点,不能从内分泌治疗或分子靶向治疗中获益,缺乏针对性的有效治疗方案。三阴性乳腺癌恶性程度高,生存时间短且侵袭性强,是引起乳腺癌患者死亡率高、生存率降低的主要原因。因此,探索三阴性乳腺癌治疗新策略是目前临床上迫切需要解决的问题。
免疫治疗的发展为肿瘤患者带来了新的曙光,不同于靶向治疗或化疗是通过药物的细胞毒性杀死肿瘤细胞,免疫治疗从根本上改变了疾病的治疗方式,通过激活自身免疫系统增强免疫细胞的抗癌能力,在抑制转移与复发、延长晚期患者生存期等方面彰显优势。2013年免疫治疗被《Science》杂志评为年度最重要的科学突破;2018年,两位科学家凭借免疫疗法获得了诺贝尔生理学或医学奖;2021年美国临床肿瘤学会年会(ASCO)评价免疫治疗仍然是肿瘤治疗的突破点,为重大疾病带来了前沿的临床治疗成果;截止到2021年5月,美国食品和药物管理局共批准了包括单克隆抗体免疫检查点抑制剂、免疫调节剂、过继性细胞疗法、疫苗及溶瘤病毒疗法等61种免疫疗法,几乎涵盖了所有肿瘤类型。
三阴性乳腺癌免疫治疗取得了欣喜的结果,给临床治疗指明了新的方向,但面临的形式仍然严峻。首先乳腺癌对免疫疗法反应有限,单一使用PD-1/PD-L1免疫抑制剂阻断客观缓解率较低,需联合放化疗或其他策略激活肿瘤细胞。但放疗具有辐射性,化疗药物不具有肿瘤靶向性,长期高剂量使用还可能增加患者的系统毒性,产生耐药性及严重不良事件。因此,寻找一种安全、有效的协同策略是三阴性乳腺癌免疫治疗成功的关键。
纳米医学中的光热治疗(photothermal therapy,PTT)是局部消融杀伤肿瘤的安全、无辐射、有效的治疗手段。PTT治疗原理与临床使用的热消融技术相似,可引起局部温度升高,直接破坏、杀伤肿瘤细胞,最低程度的避免正常组织的损伤;此外,热疗可诱导死亡的肿瘤细胞残基产生或暴露肿瘤相关因子,招募细胞毒性T淋巴细胞,募集肿瘤相关巨噬细胞,从而增强免疫细胞对肿瘤的识别,提高免疫应答,协同免疫治疗。因此,发明生物相容性好、具有光热治疗性能的药物递送纳米载体对于提高乳腺癌光热免疫治疗具有重要意义。
此外,三阴性乳腺癌除了高表达免疫检查点PD-L1之外,肿瘤微环境会诱导肿瘤相关巨噬细胞形成,光热治疗释放的相关细胞因子也会募集巨噬细胞浸润肿瘤。若充分调控巨噬细胞对肿瘤的识别,通过吞噬作用清除肿瘤细胞,对于提高乳腺癌免疫治疗疗效非常必要。然而巨噬细胞吞噬作用被CD47-SIRPα免疫检查点通路抑制,导致肿瘤细胞逃避巨噬细胞的吞噬。抑制CD47信号的疗法可能会促进巨噬细胞对肿瘤细胞的识别,从而限制肿瘤生长,为抗肿瘤治疗提供可行的免疫靶点。
与在研的单纯依靠抗体阻断疗法机制不同,溴化结构域蛋白小分子抑制剂OTX015(OTX)可作为“双通道”免疫检查点抑制剂,通过BRD4-c-MYC通路从基因及蛋白水平同时下调双免疫检查点PD-L1和CD47的表达。这种治疗方式更有利于同时调控自然杀伤T淋巴细胞和巨噬细胞对肿瘤的识别。此外,小分子免疫抑制剂OTX结构稳定,不易受温度的影响,即使在光热治疗局部温度升高的情况下也能维持其生理作用。因此,基于双免疫检查点抑制剂OTX结构及功能上的优势,可能会在三阴性乳腺癌免疫治疗中发挥更大的作用。然而,OTX水溶性较差,血液循环时间很短,且不具有肿瘤靶向性,影响了其在免疫治疗中的进一步研究。
到目前为止尚无交联OTX的大孔聚多巴胺纳米材料的制备及应用的相关文献报道。
发明内容
发明目的:针对现有技术的不足,本发明提供一种具有良好生物相容性、可降解性、肿瘤被动靶向作用及光热治疗性能的交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料的制备方法,通过π-π作用高效装载小分子抑制剂OTX015(OTX),制备能同时进行光热治疗和双通道免疫治疗的纳米药物,用于提高三阴性乳腺癌治疗疗效。
为了解决上述技术问题,本发明公开了一种交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料的制备方法,其特征在于,包括如下步骤:
(1)将表面活性剂F127和盐酸多巴胺溶解于乙醇水溶液中,表面活性剂F127的使用确保共聚物的临界胶束浓度、溶解性及颗粒生长方式的一致性;整个溶液搅拌至澄清得到混合液,向混合液中加入三甲苯,搅拌,得到乳白色纳米溶液;
(2)将氨水逐滴加入到步骤(1)得到的乳白色纳米溶液中,诱导多巴胺聚合,继续搅拌,得到树突状大孔聚多巴胺纳米球聚合物;
(3)用无水乙醇溶解树突状大孔聚多巴胺纳米球聚合物,离心,转速为 14000-15000rpm,时间每次20-30分钟,去上清,留沉淀,处理3-4次,最后一次的沉淀物用无水乙醇溶解后,将沉淀溶液在搅拌条件下水浴萃取,萃取时间为3-5h,萃取结束后离心,留沉淀,再次用无水乙醇沉淀,重复萃取-离心的步骤若干次,将得到的沉淀用无水乙醇溶解后得到大孔聚多巴胺纳米材料MPDA储备液;
(4)将小分子免疫抑制剂OTX015溶于二甲基亚砜配成OTX溶液,然后与步骤 (3)得到的大孔聚多巴胺纳米材料MPDA储备液混合,反应持续搅拌,然后离心洗涤若干次,去除上清液,留反应沉淀,用无水乙醇溶解沉淀,得到交联小分子抑制剂 OTX015的大孔聚多巴胺纳米材料MPDA@OTX。
其中,所述乙醇水溶液中,无水乙醇和水的体积比为1:1,以便保持相同的醇水比去除多余的杂质,将沉淀物洗涤干净。
步骤(1)中,表面活性剂和盐酸多巴胺的质量比范围1:1-1:2,其中,每100ml 的混合液中加入1-2ml的三甲苯液体。
步骤(2)中,氨水浓度为28wt%-30wt%,用量为每100ml的乳白色纳米溶液中加入5ml-6ml。
步骤(3)中,水浴萃取的条件为60℃-70℃、500-650转/分钟条件下萃取,水浴萃取后离心条件为14000-15000rpm,离心20-30分钟。
步骤(4)中,小分子免疫抑制剂OTX015与MPDA储备液的用量质量比范围为 2:1-1:1,OTX015与MPDA质量浓度为1-2mg/ml。
步骤(4)中,搅拌条件为:搅拌时间12-24小时,转速为500-650转/分钟;离心洗涤的条件为:洗涤液为无水乙醇,离心转速为14000-15000rpm,时间为20-30分钟。
有益效果:与现有技术相比,本发明的交联小分子抑制剂OTX015(OTX)的大孔聚多巴胺纳米材料,与现有技术相比,具有以下优点:
(1)该纳米材料可从基因、蛋白水平下调免疫检查点PD-L1和CD47的表达,而不是依靠免疫抗体与受体的阻断作用,治疗作用仅依靠抗体的能效,进而提高治疗效率;
(2)该纳米材料除了可以一次注射即可同时阻断PD-L1和CD47的表达,避免多次反复注射造成的系统损伤,也可以介导光热治疗直接杀伤肿瘤细胞,同时协同免疫治疗,相互增益,提高乳腺癌治疗疗效;
(3)大孔聚多巴胺纳米载体属于仿生纳米药物材料,具有良好的生物相容性和可降解性,大孔结构可以高效负载药物或抑制剂等,避免在体内的长期堆积造成的潜在毒性,具有临床转化潜力;
(4)现有的免疫抗体及治疗药物均不具备肿瘤靶向性,交联到纳米载体上后,不仅提高了药物等的水溶性和生物相容性,还可借助纳米材料的被动靶向运输作用,提高药物的肿瘤富集率。
附图说明
图1本发明在实施例1的工艺条件下制得的交联小分子抑制剂OTX015(OTX) 的大孔聚多巴胺纳米材料(mesoporous polydopamine nanoparticles,MPDA),命名为 MPDA@OTX,左图为MPDA@OTX的透射电镜照片,右图为MPDA@OTX的扫描电镜照片;
图2本发明在实施例1的工艺条件下小分子抑制剂OTX、大孔聚多巴胺纳米材料MPDA以及制得的交联小分子抑制剂的大孔聚多巴胺纳米材料MPDA@OTX的紫外- 可见光吸收光谱;
图3本发明在实施例1的工艺条件下获得MPDA对OTX的装载效率;
图4本发明在实施例1的工艺条件下制得的交联小分子抑制剂的大孔聚多巴胺纳米材料MPDA@OTX在1W/cm2的808nm近红外激光照射300秒下的温度变化曲线;
图5本发明在实施例1的工艺条件下小分子抑制剂OTX、大孔聚多巴胺纳米材料MPDA以及制得的交联小分子抑制剂的大孔聚多巴胺纳米材料MPDA@OTX对三阴性乳腺癌细胞处理治疗后凋亡蛋白(Caspase3、Survivin)及双免疫检查点(PD-L1、CD47) 的表达;
图6在实施例1的工艺条件下制得的小分子抑制剂OTX、大孔聚多巴胺纳米材料MPDA(有激光照射或无激光照射)以及制得的交联小分子抑制剂的大孔聚多巴胺纳米材料MPDA@OTX(有激光照射或无激光照射)对三阴性乳腺癌细胞生长抑制作用;
图7在实施例1的工艺条件下制得的小分子抑制剂OTX、大孔聚多巴胺纳米材料MPDA以及制得的交联小分子抑制剂的大孔聚多巴胺纳米材料MPDA@OTX对三阴性乳腺癌皮下瘤动物模型的治疗作用。
具体实施方式
本发明设计大孔聚多巴胺纳米材料装载小分子抑制剂OTX015,通过光热治疗作用安全、局部、无辐射杀伤肿瘤,增强肿瘤抗原释放,协同免疫治疗作用;装载的药物 OTX015同时引起免疫检查点PD-L1及CD47的表达下调,从而提高自然杀伤T细胞和巨噬细胞对肿瘤的识别;借助纳米材料的被动靶向运输作用提高药物的肿瘤富集率。本发明可实现光热治疗协同双免疫检查点抑制剂介导的免疫治疗,提高三阴性乳腺癌治疗疗效,并可推广到其他临床肿瘤的联合治疗中去。
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/ 或其他方面的优点将会变得更加清楚。
实施例1
(1)大孔聚多巴胺纳米材料(mesoporous polydopamine nanoparticles,MPDA)的制备。
将1.0g的表面活性剂F127和0.5g的盐酸多巴胺溶解于100ml的水和无水乙醇的混合液中,水和无水乙醇的体积比为1:1。室温用力搅拌至澄清溶液,搅拌条件为1200 转/分钟。将2ml的三甲苯加入到搅拌后的混合液中,低速搅拌30分钟,搅拌条件为500 转/分钟,形成肉眼可见的乳白色纳米溶液;随后5ml的氨水(28wt%-30wt%)在10s 内逐滴加入到乳白色纳米溶液中,诱导多巴胺聚合,继续搅拌30分钟,形成树突状大孔聚多巴胺纳米球聚合物。用10ml无水乙醇洗涤聚合物,洗涤三次,洗涤条件离心 14000rpm,时间是20分钟。去除上清液,留黑色沉淀,用5ml无水乙醇溶解沉淀。将沉淀溶液在60℃下水浴萃取,搅拌条件为500转/分钟,每次萃取时间为3个小时,萃取结束即14000rpm离心20分钟,留沉淀,无水乙醇溶解沉淀,重复萃取步骤。共萃取、离心3次,得到用无水乙醇溶解的大孔聚多巴胺纳米材料MPDA储备液,经过测算浓度为4mg/ml。
(2)纳米材料MPDA@OTX的制备
将小分子免疫抑制剂OTX015(OTX)用二甲基亚砜配成浓度为1mg/ml的溶液,取1ml1mg/ml的OTX溶液与1ml浓度为1mg/ml的MPDA按同等质量混匀,反应持续搅拌12-24小时,转速为500-650转/分钟。接着离心洗涤3-4次,洗涤液为无水乙醇,离心转速为14000-15000rpm,时间是20-30分钟。去除上清液,留反应沉淀,用1ml无水乙醇溶解沉淀,得到MPDA@OTX纳米材料储备液。取1ml OTX(30μg/ml)、MPDA (100μg/ml)或MPDA@OTX(100μg/ml)放进石英比色皿中,用紫外分光光度计检测3种材料光谱变化,结果如图2所示。图1为制得的交联小分子抑制剂OTX015(OTX) 的大孔聚多巴胺纳米材料(MPDA),命名为MPDA@OTX。左图为MPDA@OTX的透射电镜照片,右图为MPDA@OTX的扫描电镜照片;从图中可以看出,在表面活性剂F127、孔溶胀剂三甲苯及碳源多巴胺的聚合反应作用下,经Barrett–Joyner–Halenda 方法计算得出MPDA@OTX的孔径范围为12-15nm,大孔结构可提供更好的比表面积,装载更多的药物。
(3)纳米材料MPDA对OTX的装载量分析
为了检测MPDA对OTX的装载效率,1ml的MPDA(1mg)溶液分别与1ml不同质量的OTX(0.25mg、0.5mg、1mg或2mg)混合,构成不同的质量比,室温、避光搅拌12-24h。离心三次,将每次洗涤的上清收集起来,检测276nm处的紫外分光光谱吸收情况。与预设好的标准曲线对比换算,计算出上清中未交联的游离的OTX的质量。MPDA与OTX之间的最终结合能力通过以下公式计算:装载率=(OTX总质量- 游离OTX总质量)/(OTX总质量-游离OTX总质量+MPDA总质量)。
图3为MPDA对OTX的装载效率结果图,从图3可以看出,随着OTX与MPDA 的重量比增加,装载量也增加,后期增长缓慢,待OTX与MPDA质量比为2:1时,装载量达到一个平台期。
(4)纳米材料MPDA@OTX的光热性质分析
分别取1ml的H2O、1ml OTX(30μg/ml)、MPDA(100μg/ml)或MPDA@OTX (100μg/ml),进行808nm近红外激光照射,功率为1W/cm2,照射300秒,用红外热成像仪记录观察不同材料的温度,绘制照射时间与温度变化的曲线,观察材料的温度升温变化,结果如图4所示。从图中可以看出,H2O和抑制剂OTX因不具有光热转化的能力,即使进行300秒激光照射,温度也没有明显提升;而MPDA及载OTX 的MPDA@OTX介导光热效应,随着激光照射时间的延长,温度逐渐上升,可用于光热治疗。
(5)细胞培养
三阴性乳腺癌细胞系4T1在含有1%青霉素/链霉素和10%胎牛血清的1640培养基中分裂生长,传代比率是1:3,并放置在37℃,5%的CO2的细胞培养箱中培养。
(6)Western blot检测
为观察细胞经过不同处理后目标蛋白的表达,将三阴性乳腺癌细胞系4T1培养在6孔板中,待细胞汇合度达到70%-80%后,分别添加OTX(30μg/ml)、MPDA(100μg/ml) 或MPDA@OTX(100μg/ml),不加材料组为正常对照组。材料与细胞共孵育24h后,胰酶消化细胞1-2分钟,用PBS洗涤三次,转速为1000-1200rpm,离心3-5分钟。离心后的细胞沉淀加入100μl的细胞裂解液,混匀,在细胞超声仪上将细胞超碎, 12000-13000rpm低温离心20-30分钟取上清。
下一步进行蛋白定量,采用BCA蛋白定量分析法,按照说明书以标准品牛血清白蛋白为参考做标准曲线,然后将10μl待测的细胞样品转移进96孔板,加入200μl BCA 工作液,充分混匀后在37℃培养箱中孵育20-30分钟。酶标仪测量每个样品在562nm 处的吸光值,根据标准品牛血清白蛋白的标准曲线计算待测样品的蛋白浓度。用细胞裂解液调至蛋白浓度一致,并加入总体积1/5的上样缓冲液。接着将待测样品放置于 100℃水浴锅中煮5分钟使蛋白变性。
接着进行SDS-PAGE电泳,取出一块胶,放置入电泳槽中,加入电泳缓冲液,将煮过的蛋白样品分别上样,并在空白孔里加入2μl的蛋白marker,100V恒压电泳30 分钟左右。接着进行转膜,将胶取出转印至疏水性聚偏二氟乙烯膜上,低温恒流转膜2 小时。转膜结束后,将膜取出并用清洗液洗涤3次,每次5分钟,然后浸没于10ml 含5%脱脂奶粉的缓冲液中室温缓慢震荡,封闭1小时。接着用清洗液洗涤3次,每次 5分钟。洗涤后孵育一抗,抗体用一抗稀释液稀释(抗体稀释比例如下:anti-Caspase3: 1:1000,anti-Survivin:1:1000,anti-PD-L1:1:100,anti-CD47:1:1000),β-actin作为内参蛋白,稀释比例为1:1000,4℃孵育过夜。
次日,将膜取出,清洗液洗涤3次,每次5分钟,孵育与辣根过氧化物偶联的二抗(1:10000),室温缓慢震荡1小时。二抗孵育结束后,接下来对膜进行洗涤,滴加发光液,用全自动化学发光/荧光图像分析系统进行曝光成像,用ImageJ软件对免疫反应条带进行可视化分析。因OTX可引起细胞凋亡,所以经OTX处理后的细胞显示 Caspase3高表达及Survivin低表达的结果。MPDA@OTX因高效装载OTX,也可引起凋亡标志物的相应表达,发挥引起细胞凋亡的作用。此外,OTX及MPDA@OTX均能同时抑制双免疫检查点CD47及PD-L1的低表达,可应用于免疫治疗。而PBS对照组和MPDA治疗组本身没有引起细胞目标蛋白的明显变化。
(7)细胞毒性实验
将三阴性乳腺癌细胞系4T1接种于96孔板中,待细胞汇合度达到70%-80%后,平均分成两组,激光照射组和非激光照射组。每组分别添加系列浓度的OTX(3.75、 7.5、15、30及60μg/ml)、MPDA(12.5、25、50、100及200μg/ml)或MPDA@OTX (12.5、25、50、100及200μg/ml)。材料与细胞孵育24小时后,PBS洗涤3次,非激光照射组每孔加入100μl含有10%MTT(5mg/ml)的培养基,37℃下避光培养4h,移除培养基,每孔加入150μl的二甲基亚砜,避光室温缓慢震荡20min,用酶标仪检测570nm波长处的吸光度。激光照射组细胞用808nm激光照射300秒后,用上述MTT 法检测细胞的存活率,酶标仪检测每孔570nm波长处的吸光度,结果如图6所示。从结果中可以看出,MPDA(laser-)即MPDA未激光照射组没有引起细胞明显的死亡,各浓度细胞存活率达到80%以上,具有较好的细胞生物相容性。而MPDA(laser+)即MPDA激光照射组(PTT单治疗组)、OTX及MPDA@OTX(laser-)即MPDA@OTX未激光照射组随着孵育细胞浓度的增加,在PTT作用或单纯OTX药物作用下,均可引起细胞的死亡,孵育浓度越高死亡率也越高。然而,MPDA@OTX(laser+)即联合治疗组在PTT 及OTX的共同作用下,细胞出现明显的死亡,孵育浓度为200μg/ml时,细胞存活率仅为25%-30%,治疗效果最佳。因此,MPDA@OTX介导的联合治疗具有较好的细胞杀伤作用。
(8)三阴性乳腺癌动物模型的构建
取6周龄的雌性白鼠,在白鼠右侧皮下注射约5×106个4T1细胞,建立三阴性乳腺癌皮下瘤动物模型。待肿瘤大小约为100mm3后,将白鼠随机分为四组(n=10/组)。四组老鼠分别尾静脉注射100μl PBS、OTX(300μg/ml)、MPDA(1mg/ml)或 MPDA@OTX(1mg/ml)。其中MPDA或MPDA@OTX组注射24小时后,两组老鼠的肿瘤分别进行光热治疗,808nm激光照射,功率为1W/cm2,照射300秒。四组老鼠治疗结束后,用游标卡尺每隔3天测量一次肿瘤的体积。肿瘤体积按照以下公式计算:肿瘤体积=肿瘤最大纵径×肿瘤最大横径2×0.5。结果如图7所示,从图7可以看出,注射了MPDA@OTX的小鼠在光热治疗及抑制剂OTX联合作用下,肿瘤相对体积显著减小,治疗效果显著优于OTX单药治疗组及MPDA(laser+)单药治疗组(即单PTT治疗组)。
OTX015具有苯环结构,能够通过π-π化学堆积作用交联到同样具备苯环结构的大孔聚多巴胺纳米材料表面。因大孔聚多巴胺纳米材料具有良好的水溶性,进而提高了OTX015的水溶性,高效装载药物并保护药物。单纯OTX015属于小分子抑制剂,体内易扩散,血液循环时间短,经过载体装载后将药物锚定在材料孔内及表面区域,提高了药物的利用率,避免非特异的释放、损失。本发明主要依靠载体的被动靶向作用,解决了非必要的交联造成的纳米载体尺寸变大、合成步骤复杂等问题,实验结果已证实其被动靶向作用的效率已达到预期的结果。
本发明的研究意义在于简单的配置构成用于多功能的应用,即一药多用。载体药物可同时靶向调控双免疫检查点的表达,避免多次反复给药造成的不良反应,并结合光热治疗的协同作用,提高治疗疗效。
本发明提供了一种交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料的制备思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (7)

1.一种交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料的制备方法,其特征在于,包括如下步骤:
(1)将表面活性剂F127和盐酸多巴胺溶解于乙醇水溶液中,整个溶液搅拌至澄清得到混合液,向混合液中加入三甲苯,搅拌,得到乳白色纳米溶液;
(2)将氨水逐滴加入到步骤(1)得到的乳白色纳米溶液中,诱导多巴胺聚合,继续搅拌,得到树突状大孔聚多巴胺纳米球聚合物;
(3)用无水乙醇溶解树突状大孔聚多巴胺纳米球聚合物,离心,转速为14000-15000rpm,时间每次20-30分钟,去上清,留沉淀,处理3-4次,最后一次的沉淀物用无水乙醇溶解后,将沉淀溶液在搅拌条件下水浴萃取,萃取时间为3-5 h,萃取结束后离心,留沉淀,再次用无水乙醇沉淀,重复萃取-离心的步骤若干次,将得到的沉淀用无水乙醇溶解后得到大孔聚多巴胺纳米材料MPDA储备液;
(4)将小分子免疫抑制剂OTX015溶于二甲基亚砜配成OTX溶液,然后与步骤(3)得到的大孔聚多巴胺纳米材料MPDA储备液混合,反应持续搅拌,然后离心洗涤若干次,去除上清液,留反应沉淀,用无水乙醇溶解沉淀,得到交联小分子抑制剂OTX015的大孔聚多巴胺纳米材料MPDA@OTX。
2.根据权利要求1所述的制备方法,其特征在于,所述乙醇水溶液中,无水乙醇和水的体积比为1:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,表面活性剂和盐酸多巴胺的质量比范围1:1-1:2,其中,每100 ml的混合液中加入1-2 ml的三甲苯液体。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,氨水浓度为28 wt%-30wt%,用量为每100 ml的乳白色纳米溶液中加入5 ml-6 ml。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,水浴萃取的条件为60℃-70℃、500-650转/分钟条件下萃取,萃取结束后离心条件为14000-15000 rpm,离心20-30分钟。
6.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,小分子免疫抑制剂OTX015与MPDA储备液的用量质量比范围为2:1-1:1,OTX015与MPDA质量浓度为1-2 mg/ml。
7.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,搅拌条件为:搅拌时间12-24小时,转速为500-650转/分钟;离心洗涤的条件为:洗涤液为无水乙醇,离心转速为14000-15000 rpm,时间为20-30分钟。
CN202210600951.7A 2022-05-30 2022-05-30 一种交联小分子抑制剂otx015的大孔聚多巴胺纳米材料的制备方法 Active CN115068622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210600951.7A CN115068622B (zh) 2022-05-30 2022-05-30 一种交联小分子抑制剂otx015的大孔聚多巴胺纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210600951.7A CN115068622B (zh) 2022-05-30 2022-05-30 一种交联小分子抑制剂otx015的大孔聚多巴胺纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN115068622A true CN115068622A (zh) 2022-09-20
CN115068622B CN115068622B (zh) 2024-03-19

Family

ID=83248524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210600951.7A Active CN115068622B (zh) 2022-05-30 2022-05-30 一种交联小分子抑制剂otx015的大孔聚多巴胺纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN115068622B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113521035A (zh) * 2021-08-05 2021-10-22 河南大学 化学免疫联合治疗纳米药物的制备方法及应用
CN114452268A (zh) * 2020-12-31 2022-05-10 淮阴工学院 介孔聚多巴胺载花青素纳米粒的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452268A (zh) * 2020-12-31 2022-05-10 淮阴工学院 介孔聚多巴胺载花青素纳米粒的制备方法
CN113521035A (zh) * 2021-08-05 2021-10-22 河南大学 化学免疫联合治疗纳米药物的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YING TIAN 等: ""Precision Delivery of Dual Immune Inhibitors Loaded Nanomodulator to Reverse Immune Suppression for Combinational Photothermal-Immunotherapy"", 《SMALL》, vol. 19, pages 1 - 14 *
YING TIAN等: ""JQ1-Loaded Polydopamine Nanoplatform Inhibits c‑MYC/Programmed Cell Death Ligand 1 to Enhance Photothermal Therapyfor Triple-Negative Breast Cancer"", 《ACS APPLIED MATERIALS & INTERFACES》, vol. 11, pages 46626 - 46636 *

Also Published As

Publication number Publication date
CN115068622B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
Li et al. Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation
Xiong et al. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy
Chen et al. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect
Wang et al. Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium
Narisawa et al. Inhibition of development of Methylinitrosourea-induced rat colon tumors by Indomethacin treatment
Wang et al. Molecular engineering of anti-PD-L1 peptide and photosensitizer for immune checkpoint blockade photodynamic-immunotherapy
Huang et al. Dual mitigation of immunosuppression combined with photothermal inhibition for highly effective primary tumor and metastases therapy
CN108452303A (zh) 一种载双药纳米制剂及其制备方法
Zhang et al. Autocatalytic Delivery of Brain Tumor–Targeting, Size‐Shrinkable Nanoparticles for Treatment of Breast Cancer Brain Metastases
Wu et al. Light-responsive hyaluronic acid nanomicelles co-loaded with an IDO inhibitor focus targeted photoimmunotherapy against “immune cold” cancer
Wu et al. Multifunctional Protein Hybrid Nanoplatform for Synergetic Photodynamic‐Chemotherapy of Malignant Carcinoma by Homologous Targeting Combined with Oxygen Transport
Wang et al. Nano-integrated cascade antioxidases opsonized by albumin bypass the blood–brain barrier for treatment of ischemia-reperfusion injury
CN113648401B (zh) 一种蛋白酶体抑制增敏光动力治疗的杂化纳米组装体及其制备与应用
WO2007140280A1 (en) Anti-cancer composition and method for using the same
TW201247244A (en) Methods of using dual-effect liposome in therapy
Hang et al. Mesoporous nanodrug delivery system: a powerful tool for a new paradigm of remodeling of the tumor microenvironment
CN106606783B (zh) 一种靶向共递释光敏剂与化疗药物的药物递释系统
CN115068622A (zh) 一种交联小分子抑制剂otx015的大孔聚多巴胺纳米材料的制备方法
CN115364235B (zh) 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用
CN109589402A (zh) 一种具有靶向光热治疗和可控释药的多重作用纳米材料的制备方法及应用
CN113633784B (zh) 一种热休克蛋白抑制增敏光热治疗的杂化纳米组装体及其制备与应用
CN109481418A (zh) 抗肿瘤纳米颗粒及其制备方法和应用
Meng et al. Macrophage Membrane‐Camouflaged Aggregation‐Induced Emission Nanoparticles Enhance Photodynamic‐Immunotherapy to Delay Postoperative Tumor Recurrence
Guo et al. Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment
CN113769087A (zh) 仿生预淬灭双光敏剂共组装纳米粒及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant