CN115064707A - 基于sfmo纳米纤维骨架的多相复合阳极材料及其制备方法 - Google Patents

基于sfmo纳米纤维骨架的多相复合阳极材料及其制备方法 Download PDF

Info

Publication number
CN115064707A
CN115064707A CN202210580323.7A CN202210580323A CN115064707A CN 115064707 A CN115064707 A CN 115064707A CN 202210580323 A CN202210580323 A CN 202210580323A CN 115064707 A CN115064707 A CN 115064707A
Authority
CN
China
Prior art keywords
sfmo
framework
anode
composite anode
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210580323.7A
Other languages
English (en)
Other versions
CN115064707B (zh
Inventor
周娟
张博
丁孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210580323.7A priority Critical patent/CN115064707B/zh
Publication of CN115064707A publication Critical patent/CN115064707A/zh
Application granted granted Critical
Publication of CN115064707B publication Critical patent/CN115064707B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种基于SFMO纳米纤维骨架的多相复合阳极材料及其制备方法。所述方法先采用静电纺丝技术制备高比表面积的SFMO纳米纤维骨架材料,然后浸渍过渡金属盐和硝酸铈的混合液,浸渍完全后煅烧形成多相复合阳极材料M‑CeO2‑SFMO。本发明的复合阳极具有较大的比表面积和丰富的三相界面,具有优异的电化学性能,对碳氢燃料表现出优异的催化活性和抗碳沉积特性,可用于使用含碳燃料的固体氧化物燃料电池中。

Description

基于SFMO纳米纤维骨架的多相复合阳极材料及其制备方法
技术领域
本发明属于电极材料技术领域,涉及一种基于SFMO纳米纤维骨架的多相复合阳极材料及其制备方法。
背景技术
固体氧化物燃料电池(Solid oxide fuel cell,简称SOFC)能够将燃料中的化学能直接转化为电能,不受卡诺循环的限制。固体氧化物燃料电池是一种全固态的燃料电池,采用固体氧化物作为电解质,工作温度一般在600℃以上。由于其较高的工作温度,无需贵金属催化剂,具有能量转化效率高、燃料来源广、运行污染小等显著优点,是当前最具发展前景的清洁能源技术之一。
目前固体氧化物燃料电池的传统阳极材料为Ni基金属陶瓷阳极材料,其对于氢气有较好的催化性能,但当直接使用碳氢燃料如CH4、活性炭与生物质时,由于Ni对C-H裂解反应也有很强的催化活性,使得积碳产生,导致电极活性降低,堵塞燃料传输通道致使电池失效。此外,碳氢燃料如天然气均含有不纯物硫,即使通过纯化手段将H2S含量降低至ppm级别,H2S分解后产生的S易与Ni结合,封闭活性位点,导致电池性能显著衰减。因此,研究具有抗硫、抗碳沉积、强的催化活性的新型阳极材料是SOFC商业化进程的关键。
Chen等[Liu Q,Dong X H,Xiao G L,et al.Anovel electrode materialforsymmetrical SOFCs[J].AdvancedMaterials,2010,22:5478-5482]报道了一种新型的钙钛矿结构的Sr2Fe1.5Mo0.5O6-δ(SFMO)作为对称SOFC电极材料,制得的SFMO|LSGM|SFMO对称电池在空气气氛中800℃,750℃时的单位面积极化阻抗0.24Ω·cm2和0.66Ω·cm2,在空气和氢气气氛下表现出非常好的化学稳定性和高的电导率以及优异的氧化还原稳定性和电化学性能,其电化学性能可以与镍-陶瓷相媲美。但是,该文献中采用微波辅助燃烧法制备的SFMO粉末基电极存在比表面积较小、孔隙率不足、活性位点与三相界面较少的问题,因此,SFMO材料的制备方法有待进一步改善。
相比于氢气的使用,含碳燃料的分子体积较大,因此,需要阳极具有高的电化学性能的同时,具有更大的孔隙率。中国专利CN108048955B公开了一种锶铁钼基双钙钛矿型金属氧化物纳米纤维的制备方法,该方法将无机盐、聚乙烯吡咯烷酮和溶剂混合均匀,得到纺丝前驱体溶液,进行静电纺丝,预氧化与碳化,得到双钙钛矿Sr2Fe1.5-xCuxMo0.5O6(SFCM)纳米纤维。其制作的纳米线SFCM做电极的对称电池在850℃纯CO2条件下阻抗为0.37Ω·cm2。但SFCM为单相材料,其催化活性还有待进一步提高。
中国专利CN103117404B公开了一种利用一维纳米纤维LST骨架材料制备复合阳极的办法。该方法将纳米纤维骨架与电解质前驱液进行集合浸渍制备了LST基LST-GDC复合阳极,有效增加了电极的三相界面,拥有较好的电化学性能。其中以浸渍量1:0.8的复合电极电化学性能最优,在800℃、850℃、900℃、950℃时的面积电阻分别为1.31、0.75、0.32、0.18Ω·cm2左右。可以看出向单相电极中浸渍合适比例的复合相,能够帮助创造更多的活性位点。但由于该阳极中反应界面为LST和GDC,与上述专利报道类似,其催化活性上仍有进一步提高的空间。
发明内容
为解决固体氧化物燃料电池的传统阳极对含碳燃料的催化活性不够、易积碳易硫中毒、浓差极化过大等问题,本发明提供一种基于SFMO纳米纤维骨架的多相复合阳极材料及其制备方法。
本发明所述的SFMO纳米纤维骨架材料的化学式为Sr2Fe1.5Mo0.5O6-σ,其中σ为金属元素价态不同产生的化学计量氧空位和不同气氛条件产生的非化学计量氧空位数,形貌为一维纳米纤维状。
本发明所述的基于SFMO纳米纤维骨架的多相复合阳极材料的制备方法,先采用静电纺丝技术制备高比表面积的SFMO纳米纤维骨架材料,然后浸渍过渡金属盐和硝酸铈,最后煅烧形成多相复合阳极材料M-CeO2-SFMO,其中M代表过渡金属,具体步骤如下:
步骤1,按Sr、Fe、Mo的摩尔比为2:1.5:0.5,将硝酸锶、硝酸铁和钼酸铵加入到m无水乙醇:mN,N-二甲基甲酰胺=1:0.5~1.5的N,N-二甲基甲酰胺与无水乙醇的混合溶液中,在室温下磁力搅拌至完全溶解,加入聚乙烯吡咯烷酮,搅拌得到均匀的纺丝液,经静电纺丝得到纳米纤维毡,所述的纺丝液中,硝酸锶、硝酸铁和钼酸铵总的质量浓度为10%~15%,聚乙烯吡咯烷酮的质量浓度为5~15%;
步骤2,将纳米纤维毡升温至700℃~1000℃,恒温烧结2~3h,得到SFMO纳米纤维骨架材料;
步骤3,将SFMO纳米纤维骨架材料分散在丙酮中,按SFMO纳米纤维骨架材料与乙基纤维素的松油醇溶液的质量比为1:4,加入质量浓度为3~10%的乙基纤维素的松油醇溶液,超声得到均匀分散的一维纳米纤维状SFMO阳极浆料;
步骤4,将一维纳米纤维状SFMO阳极浆料滴定到电解质两侧,干燥,然后升温至800~1000℃,恒温烧结1~2h,再降至室温,得到具有一维SFMO纳米纤维阳极骨架的对称电池;
步骤5,将具有一维SFMO纳米纤维阳极骨架的对称电池浸渍于过渡金属盐和硝酸铈的混合液中,然后将浸渍饱和后的阳极骨架在400~600℃下预烧1~2h;
步骤6,重复浸渍-预烧步骤至SFMO和M-CeO2的质量比为1:0.1~0.5,将经过浸渍的一维纳米纤维状SFMO阳极骨架在750~800℃下煅烧1~2h,得到基于SFMO纳米纤维骨架的多相复合阳极M-CeO2-SFMO。
优选地,步骤1中,纺丝参数为:采用针头外径=0.9mm的20号不锈钢针头作为纺丝喷头,静电纺丝电压18kV,收集距离18~25cm,温度20~35℃,相对湿度22%,滚轴速度100r/min。
优选地,步骤2中,升温速度为1℃/min~3℃/min。
优选地,步骤3中,超声时间为5~15min。
优选地,步骤4中,升温速度为2℃/min~3℃/min。
步骤4中,电解质采用本领域常规使用的材料,在具体实施方式中,采用的电解质为LSGM。
优选地,步骤5中,过渡金属盐和硝酸铈的混合液中,过渡金属盐和硝酸铈的浓度相同,均为0.1~0.5mol/L,更优选为0.2mol/L。
步骤5中,所述的过渡金属盐为常见的过渡金属盐,包括但不限于Cu、Fe、Ni、Co等。
电极的电化学性能不仅取决于材料,也取决于其微观结构,而微观结构又取决于其制备工艺。高比表面积或大长径比的多孔或低维纤维状阳极可增加反应活性面积,同时改善阳极活性区域与燃料的接触。本发明采用静电纺丝法构筑比表面积高的低维纤维状双钙钛矿型SFMO骨架结构,再通过浸渍法在混合离子导体双钙钛矿结构SFMO基体上浸渍金属相和催化相的前驱体M(NO3)x和Ce(NO3)3溶液,再低温煅烧得到微纳米结构的复合阳极,形成多种不同载流子和催化特性的反应界面。
与现有技术相比,本发明具有以下优点:
(1)通过静电纺丝技术制备的固体氧化物燃料电池纳米纤维网状结构阳极,相比于传统电极结构,极大地提高了电极材料的比表面积,从而提高了阳极的孔隙率,进而提高了碳氢燃料在电极上的传质能力。
(2)浸渍的金属和氧化物相能够与SFMO形成多种反应界面,提高了阳极对碳氢燃料的催化活性和抗碳沉积特性。
附图说明
图1为实施例1制备的SFMO纳米纤维骨架材料的扫描电镜图;
图2为实施例1制备的基于SFMO纳米纤维骨架的多相复合阳极Cu-CeO2-SFMO的扫描电镜图;
图3为复合阳极M-CeO2-SFMO的结构示意图;
图4为M-CeO2-SFMO对称电池的阻抗谱图;
图5为对比例1煅烧温度为600℃制得的SFMO微观形貌图;
图6为对比例2无机盐总质量分数为7%制得的SFMO纤维毡微观形貌图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详述。
下述实施例中,采用的电解质为常规材料LSGM,参考文献(La0.8Sr0.2Ga0.8Mg0.2O3)[He,B.et al.Sr2Fe1.5Mo0.5O6-delta-Sm0.2Ce0.8O1.9 Composite Anodes for Intermediate-Temperature Solid Oxide Fuel Cells.Journal of the Electrochemical Society159,B619-B626]采用压片法制备,具体步骤如下:
称取1gLSGM粉体于研钵,加入适量的聚乙烯醇缩丁醛(PVB)溶液作为粘结剂,研磨至粉末干燥且足够细微,具有充分的流动性。然后将粉体加入磨具,7MPa下保压3min,得到圆片状的电解质胚体,并在1450℃下煅烧4h使其致密,得到LSGM电解质支撑体。
实施例1
(1)静电纺丝前驱液制备:将18.3g的N,N-二甲基甲酰胺与18.3g的无水乙醇混合得到溶剂,再将1.693g硝酸锶、2.424g硝酸铁、0.353g钼酸铵溶于溶剂中,磁力搅拌至无机盐完全溶解,加入3.2g聚乙烯吡咯烷酮,室温下搅拌6h,得到均匀的橙红色静电纺丝前驱液。
(2)静电纺丝制备纳米纤维:将静电纺丝前驱液加入到注射器中,采用针头外径=0.9mm的20号不锈钢针头作为纺丝喷头,收集板使用滚轴上包裹的铝箔纸,在静电纺丝电压18kV、收集距离18cm、室内温度25℃、相对湿度22%、滚轴速度100r/min的条件下进行静电纺丝,得到纳米纤维毡;将纳米纤维毡置于马弗炉中,以2℃/min的速度升温到800℃,恒温保持2h,然后以2℃/min降至室温,得到SFMO纳米纤维骨架材料形貌如图1所示。
(3)一维纳米纤维状SFMO阳极浆料的制备:称取0.01gSFMO纳米纤维骨架材料、0.04g乙基纤维素-松油醇粘结剂、0.16g丙酮,混合均匀,然后超声10min,得到黑色、均匀的一维纳米纤维状SFMO阳极浆料。
(4)一维SFMO纳米纤维阳极骨架的制备:将一维纳米纤维状SFMO阳极浆料涂敷到LSGM电解质片两侧,放入80℃的烘箱中干燥30min,反复三次后得到足够厚度与质量的阳极。然后置于马弗炉中900℃煅烧2h,获得对称电池。
(5)基于SFMO纳米纤维骨架的Cu-CeO2-SFMO多相复合阳极的制备:将浓度均为0.2mol/L的硝酸铜和硝酸铈的混合溶液浸渍到一维SFMO纳米纤维阳极骨架,至饱和,放在鼓风干燥箱烘干0.5h;将浸渍后的阳极骨架在400℃的条件下预烧2h;重复浸渍-预烧步骤至SFMO纳米纤维阳极骨架与Cu-CeO2微粒的质量比为1:0.2,将经过浸渍的一维纳米纤维状SFMO阳极骨架在800℃的条件下煅烧2h,得到基于SFMO纳米纤维骨架的多相复合阳极Cu-CeO2-SFMO,微观形貌如图2所示,其结构示意图如图3所示。
采用交流阻抗法测试基于SFMO纳米纤维骨架的多相复合阳极Cu-CeO2-SFMO的电化学性能,实验中频率范围为0.1Hz-100000Hz,交流幅值10mV。将待测对称电池置于管式炉中,升温至800℃,测量在650℃~800℃范围内、H2气氛下的交流阻抗。
基于SFMO纳米纤维骨架的多相复合阳极Cu-CeO2-SFMO在800℃湿氢气条件下阻抗仅为0.38Ω·cm2,如图4所示。这是因为该电极的多孔结构更有利于电子、离子的快速传导,三相反应界面大,电荷转移电阻小;也有助于H2吸附,气体扩散电阻小,因此总阻抗要小。基于SFMO纳米纤维骨架的多相复合阳极Cu-CeO2-SFMO具有高渗透性和传导电荷、离子的连续通道,三相反应界面更大,表现出更好的催化活性。
对比例1
本对比例与实施例1基本相同,不同之处在于将纳米纤维毡升温至600℃进行烧结,该温度下制得的SFMO纳米纤维骨架材料中含有较多有机物,如图5所示。
对比例2
本对比例与实施例1基本相同,不同之处在于纺丝液的硝酸锶、硝酸铁和钼酸铵无机盐总质量分数为7%,重复步骤一、步骤二,然后进行SEM观察得到的SFMO材料,其中纤维形状不清晰,有机物之间团聚粘结情况严重,如图6所示。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (10)

1.基于SFMO纳米纤维骨架的多相复合阳极材料的制备方法,其特征在于,具体步骤如下:
步骤1,按Sr、Fe、Mo的摩尔比为2:1.5:0.5,将硝酸锶、硝酸铁和钼酸铵加入到m无水乙醇:mN,N-二甲基甲酰胺=1:0.5~1.5的N,N-二甲基甲酰胺与无水乙醇的混合溶液中,在室温下磁力搅拌至完全溶解,加入聚乙烯吡咯烷酮,搅拌得到均匀的纺丝液,经静电纺丝得到纳米纤维毡,所述的纺丝液中,硝酸锶、硝酸铁和钼酸铵总的质量浓度为10%~15%,聚乙烯吡咯烷酮的质量浓度为5~15%;
步骤2,将纳米纤维毡升温至700℃~1000℃,恒温烧结2~3h,得到SFMO纳米纤维骨架材料;
步骤3,将SFMO纳米纤维骨架材料分散在丙酮中,按SFMO纳米纤维骨架材料与乙基纤维素的松油醇溶液的质量比为1:4,加入质量浓度为3~10%的乙基纤维素的松油醇溶液,超声得到均匀分散的一维纳米纤维状SFMO阳极浆料;
步骤4,将一维纳米纤维状SFMO阳极浆料滴定到电解质两侧,干燥,然后升温至800~1000℃,恒温烧结1~2h,再降至室温,得到具有一维SFMO纳米纤维阳极骨架的对称电池;
步骤5,将具有一维SFMO纳米纤维阳极骨架的对称电池浸渍于过渡金属盐和硝酸铈的混合液中,然后将浸渍饱和后的阳极骨架在400~600℃下预烧1~2h;
步骤6,重复浸渍-预烧步骤至SFMO和M-CeO2的质量比为1:0.1~0.5,将经过浸渍的一维纳米纤维状SFMO阳极骨架在750~800℃下煅烧1~2h,得到基于SFMO纳米纤维骨架的多相复合阳极M-CeO2-SFMO。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,纺丝参数为:采用针头外径=0.9mm的20号不锈钢针头作为纺丝喷头,静电纺丝电压18kV,收集距离18~25cm,温度20~35℃,相对湿度22%,滚轴速度100r/min。
3.根据权利要求1所述的制备方法,其特征在于,步骤2中,升温速度为1℃/min~3℃/min。
4.根据权利要求1所述的制备方法,其特征在于,步骤3中,超声时间为5~15min。
5.根据权利要求1所述的制备方法,其特征在于,步骤4中,升温速度为2℃/min~3℃/min。
6.根据权利要求1所述的制备方法,其特征在于步骤4中,电解质为LSGM。
7.根据权利要求1所述的制备方法,其特征在于,步骤5中,过渡金属盐和硝酸铈的混合液中,过渡金属盐和硝酸铈的浓度相同,均为0.1~0.5mol/L。
8.根据权利要求1所述的制备方法,其特征在于,步骤5中,过渡金属盐和硝酸铈的混合液中,过渡金属盐和硝酸铈的浓度为0.2mol/L。
9.根据权利要求1所述的制备方法,其特征在于,步骤5中,所述的过渡金属盐为Cu、Fe、Ni或Co。
10.根据权利要求1至9任一所述的制备方法制得的多相复合阳极M-CeO2-SFMO。
CN202210580323.7A 2022-05-26 2022-05-26 基于sfmo纳米纤维骨架的多相复合阳极材料及其制备方法 Active CN115064707B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210580323.7A CN115064707B (zh) 2022-05-26 2022-05-26 基于sfmo纳米纤维骨架的多相复合阳极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210580323.7A CN115064707B (zh) 2022-05-26 2022-05-26 基于sfmo纳米纤维骨架的多相复合阳极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115064707A true CN115064707A (zh) 2022-09-16
CN115064707B CN115064707B (zh) 2024-04-19

Family

ID=83198821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210580323.7A Active CN115064707B (zh) 2022-05-26 2022-05-26 基于sfmo纳米纤维骨架的多相复合阳极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115064707B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477666A (zh) * 2023-04-10 2023-07-25 南京工业大学 一种固体氧化物电解池氢电极材料及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117404A (zh) * 2013-01-30 2013-05-22 哈尔滨工业大学 一维纳米纤维状lst阳极材料及其制备方法、利用该阳极材料的复合阳极及其制备方法
CN103811789A (zh) * 2012-11-07 2014-05-21 中国科学院上海硅酸盐研究所 一种具有对称电极的固体氧化物燃料电池及其制备方法和应用
CN108927165A (zh) * 2018-06-22 2018-12-04 中国科学院上海硅酸盐研究所 一种镧/镍掺杂锶铁钼氧的钙钛矿结构电极催化材料及其制备方法和应用
CN114142054A (zh) * 2016-02-16 2022-03-04 新罗纳米技术有限公司 陶瓷纳米线的形成和改性以及其在功能材料中的使用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811789A (zh) * 2012-11-07 2014-05-21 中国科学院上海硅酸盐研究所 一种具有对称电极的固体氧化物燃料电池及其制备方法和应用
CN103117404A (zh) * 2013-01-30 2013-05-22 哈尔滨工业大学 一维纳米纤维状lst阳极材料及其制备方法、利用该阳极材料的复合阳极及其制备方法
CN114142054A (zh) * 2016-02-16 2022-03-04 新罗纳米技术有限公司 陶瓷纳米线的形成和改性以及其在功能材料中的使用
CN108927165A (zh) * 2018-06-22 2018-12-04 中国科学院上海硅酸盐研究所 一种镧/镍掺杂锶铁钼氧的钙钛矿结构电极催化材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PARBEY, J等: "Electrospun fabrication of nanofibers as high-performance cathodes of solid oxide fuel cells", CERAMICS INTERNATIONAL, vol. 46, no. 5, 1 April 2020 (2020-04-01), pages 6969 - 6972, XP086002171, DOI: 10.1016/j.ceramint.2019.11.099 *
ZHANG, WW等: "La0.6Sr0.4Co0.2Fe0.8O3-δ/CeO2 Heterostructured Composite Nanofibers as a Highly Active and Robust Cathode Catalyst for Solid Oxide Fuel Cells", APPLIED MATERIALS & INTERFACES, vol. 11, no. 30, 31 July 2019 (2019-07-31), pages 26830 - 26841 *
张少威等: "掺杂对Sr2Fe1.5Mo0.5O6-δ 阳极材料电化学性能的影响", 材料工程, vol. 49, no. 9, 30 September 2021 (2021-09-30), pages 1 - 13 *
陈静等: "静电纺丝技术在固体氧化物燃料电池中的应用", 硅酸盐学报, vol. 49, no. 9, 30 September 2021 (2021-09-30), pages 1861 - 1868 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477666A (zh) * 2023-04-10 2023-07-25 南京工业大学 一种固体氧化物电解池氢电极材料及其制备方法和用途

Also Published As

Publication number Publication date
CN115064707B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
US11883808B2 (en) Nanofiber electrocatalyst
Zhao et al. One dimensional La0. 8Sr0. 2Co0. 2Fe0. 8O3− δ/Ce0. 8Gd0. 2O1. 9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells
Zhao et al. Electrospinning La0. 8Sr0. 2Co0. 2Fe0. 8O3− δ tubes impregnated with Ce0. 8Gd0. 2O1. 9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode
Fu et al. Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
CN104779409B (zh) 一种固体氧化物燃料电池及其制备方法
Sun et al. Electrochemical performance of Nd1. 93Sr0. 07CuO4 nanofiber as cathode material for SOFC
CN103117404B (zh) 利用一维纳米纤维状lst阳极材料制备复合阳极的方法
Yu et al. BaZr0. 1Co0. 4Fe0. 4Y0. 1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells
CN110970628B (zh) 一种纳米碳纤维和金属复合电极及其应用
CN103811789A (zh) 一种具有对称电极的固体氧化物燃料电池及其制备方法和应用
CN111244470B (zh) 一种纳米复合阴极及其制备和应用
Bai et al. Preparation of 3D structure high performance Ba0· 5Sr0· 5Fe0· 8Cu0· 2O3-δ nanofiber SOFC cathode material by low-temperature calcination method
Liu et al. Electro-spinning Pr0. 4Sr0. 6Co0. 2Fe0. 7Nb0. 1O3− δ nanofibers infiltrated with Gd0. 2Ce0. 8O1. 9 nanoparticles as cathode for intermediate temperature solid oxide fuel cell
CN108048955B (zh) 锶铁钼基双钙钛矿型金属氧化物纳米纤维的制备方法
CN115064707B (zh) 基于sfmo纳米纤维骨架的多相复合阳极材料及其制备方法
Rehman et al. Parametric study on electrodeposition of a nanofibrous LaCoO3 SOFC cathode
Wang et al. Synthesis and characterization of Bi1-xSrxFeO3-δ (BSFO) nanofibers as cathodes for intermediate-temperature solid oxide fuel cells
Sun et al. Optimization of a cobalt-free La0. 7Sr0. 3FeO3-δ-BaZr0. 1Ce0. 7Y0. 2O3-δ composite cathode for proton-conducting solid oxide fuel cells
CN113991122A (zh) 一种对称固体氧化物燃料电池核壳结构电极材料及其制备方法和应用
Hu et al. Nanofiber-based LaxSr1− xTiO3-GdyCe1− yO2− δ composite anode for solid oxide fuel cells
KR102261142B1 (ko) 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법
CN114725403A (zh) 一种微生物燃料电池阳极材料及其制备方法与应用
Zhang et al. Preparation of Pr, Co co-doped BaFeO3–δ-based nanofiber cathode materials by electrospinning
KR102004250B1 (ko) 공기극의 제조방법, 공기극 및 이를 포함하는 고체산화물 연료전지
CN113136590A (zh) 一种用于电催化析氢反应的双钙钛矿催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant