CN115060971B - 基于tls-prony的电网电压波形多维参数估计方法 - Google Patents

基于tls-prony的电网电压波形多维参数估计方法 Download PDF

Info

Publication number
CN115060971B
CN115060971B CN202210985099.XA CN202210985099A CN115060971B CN 115060971 B CN115060971 B CN 115060971B CN 202210985099 A CN202210985099 A CN 202210985099A CN 115060971 B CN115060971 B CN 115060971B
Authority
CN
China
Prior art keywords
power grid
voltage
vector
frequency
grid voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210985099.XA
Other languages
English (en)
Other versions
CN115060971A (zh
Inventor
陈俊长
罗耀强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Estable Electric Power Technology Co ltd
Original Assignee
Nanjing Estable Electric Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Estable Electric Power Technology Co ltd filed Critical Nanjing Estable Electric Power Technology Co ltd
Priority to CN202210985099.XA priority Critical patent/CN115060971B/zh
Publication of CN115060971A publication Critical patent/CN115060971A/zh
Application granted granted Critical
Publication of CN115060971B publication Critical patent/CN115060971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Algebra (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

发明公开了基于TLS‑PRONY的电网电压波形多维参数估计方法:针对稳态单频电网电压信号,根据奈圭斯特采样定理采
Figure DEST_PATH_IMAGE001
个数据构造为向量
Figure 15148DEST_PATH_IMAGE002
,再对
Figure 932289DEST_PATH_IMAGE002
做自相关运算,并构造其Toeplitz矩阵
Figure DEST_PATH_IMAGE003
;然后对矩阵
Figure 649709DEST_PATH_IMAGE003
做奇异值分解,并建立多项式估计电网电压频率与电压衰减因子;接着利用采样数据
Figure 44918DEST_PATH_IMAGE002
,估计的电网电压频率电压衰减因子,构造矩阵
Figure 859291DEST_PATH_IMAGE004
,并对
Figure 681753DEST_PATH_IMAGE004
做奇异值分解估计电压幅度与初始相位;本发明估计方法能够在更大的电压波动变化范围内给出精确的多维参数估计值,能够有效提高对电网电压波形的拟合效果。

Description

基于TLS-PRONY的电网电压波形多维参数估计方法
技术领域
本发明涉及一种基于TLS (Total Least Squares)-PRONY的电网电压波形多维参数估计方法,用于对电网电压波形多维参数进行估计,属于电力系统运行与控制技术领域。
背景技术
电网电压的稳定性对电网能源的高效利用,以及电网负载的安全性都有重要影响。光伏、风力发电等新能源通过场站内的集电线路汇集到电场并网点并连接到外部电网的过程,都会对电网电压的稳定性造成影响。同时,在电网技术中,常需要检测三相电网中每相电压的频率、幅值和相角,以确定各相电压的运行状态。目前电网电压稳定性分析经常采用的是基于PRONY的电网电压多维参量估计方法。PRONY方法(用一组指数项的线性组合来拟合等间距采样数据的方法)采用特征值分解与最小二乘方法估计电网电压的幅度、频率、衰减因子与初始相位等多维参量,当电网电压波动较小时,PRONY方法多维参量估计精度高且波形拟合效果好。
但是,当电网电压波动较大时,PRONY方法多维参量估计精度高与波形拟合效果会明显下降。
发明内容
本发明的目的是提供一种基于TLS-PRONY的电网电压波形多维参数估计方法,利用总体最小二乘算法对电网电压波动的抑制能力,设计TLS-PRONY方法,使其具有比PRONY方法更小的电网电压的幅度、频率、衰减因子与初始相位等多维参量的估计误差,使估计值构成拟合波形更贴近真实数据。
为达到上述目的,本发明的技术方案是:
基于TLS-PRONY的电网电压波形多维参数估计方法:针对稳态单频电网电压信号,根据奈圭斯特采样定理采
Figure 714825DEST_PATH_IMAGE001
个数据构造为向量
Figure 68184DEST_PATH_IMAGE002
,再对
Figure 847921DEST_PATH_IMAGE002
做自相关运算,并构造其Toeplitz矩阵
Figure 243130DEST_PATH_IMAGE003
;然后对矩阵
Figure 57502DEST_PATH_IMAGE003
做奇异值分解,并建立多项式估计电网电压频率与电压衰减因子;接着利用采样数据
Figure 879965DEST_PATH_IMAGE002
,估计的电网电压频率电压衰减因子,构造矩阵
Figure 146998DEST_PATH_IMAGE004
,并对
Figure 283581DEST_PATH_IMAGE004
做奇异值分解估计电压幅度与初始相位。
相对于PRONY方法,TLS-PRONY将总体最小二乘算法引入到PRONY方法中,利用总体最小二乘算法对电网电压波动更强的抑制能力,相比PRONY方法提高了电网电压波形多维参数估计精度。
具体包括以下步骤:
步骤1,对单频电网电压信号按照奈圭斯特采样定理进行采样,得到采样序列
Figure 952460DEST_PATH_IMAGE005
,其中,
Figure 945824DEST_PATH_IMAGE002
代表采样序列向量,
Figure 700153DEST_PATH_IMAGE006
代表第
Figure 437165DEST_PATH_IMAGE007
个顺序采样数据,
Figure 960550DEST_PATH_IMAGE001
代表总的采样数据个数;
步骤2,对采样序列向量
Figure 328078DEST_PATH_IMAGE002
进行自相关运算,获得自相关向量
Figure 569703DEST_PATH_IMAGE008
Figure 844827DEST_PATH_IMAGE009
的表达式为:
Figure 488298DEST_PATH_IMAGE010
其中,
Figure 823464DEST_PATH_IMAGE011
代表对
Figure 552386DEST_PATH_IMAGE012
取共轭,
Figure 568883DEST_PATH_IMAGE013
代表自相关向量的长度,
Figure 66861DEST_PATH_IMAGE014
代表自相关向量的第
Figure 838508DEST_PATH_IMAGE015
个元素;
步骤3,根据给定的自相关向量
Figure 789146DEST_PATH_IMAGE016
,将
Figure 671651DEST_PATH_IMAGE016
改写为
Figure 24135DEST_PATH_IMAGE017
维的Toeplitz矩阵形式,设为
Figure 405831DEST_PATH_IMAGE018
,对
Figure 843766DEST_PATH_IMAGE018
进行奇异值分解,表达式为:
Figure 264383DEST_PATH_IMAGE019
其中,
Figure 736953DEST_PATH_IMAGE020
Figure 850402DEST_PATH_IMAGE021
Figure 775633DEST_PATH_IMAGE022
分别对应的是信号子空间的左奇异向量、奇异值和右奇异向量;
Figure 937624DEST_PATH_IMAGE023
Figure 999121DEST_PATH_IMAGE024
Figure 283472DEST_PATH_IMAGE025
分别对应的是噪声子空间的右奇异向量、奇异值和右奇异向量;
步骤4,对于单频电网电压信号,
Figure 695998DEST_PATH_IMAGE026
Figure 723997DEST_PATH_IMAGE027
维矩阵,设
Figure 905580DEST_PATH_IMAGE028
,令
Figure 32936DEST_PATH_IMAGE029
为:
Figure 932759DEST_PATH_IMAGE030
其中,
Figure 498869DEST_PATH_IMAGE031
Figure 800538DEST_PATH_IMAGE032
Figure 161112DEST_PATH_IMAGE033
分别代表
Figure 548231DEST_PATH_IMAGE034
的第一行第
Figure 855716DEST_PATH_IMAGE035
列,第二行第
Figure 746311DEST_PATH_IMAGE035
列与第三行第
Figure 543366DEST_PATH_IMAGE035
列的值;
步骤5,根据
Figure 152202DEST_PATH_IMAGE036
建立多项式,表达式为:
Figure 325694DEST_PATH_IMAGE037
对多项式求解,设
Figure 336375DEST_PATH_IMAGE038
为实部与虚部皆为正值的解,则电网频率估计值
Figure 740550DEST_PATH_IMAGE039
即为
Figure 836682DEST_PATH_IMAGE040
,衰减因子为
Figure 548286DEST_PATH_IMAGE041
;其中,
Figure 413474DEST_PATH_IMAGE042
代表对
Figure 552331DEST_PATH_IMAGE043
取虚部,
Figure 135759DEST_PATH_IMAGE044
代表对
Figure 323158DEST_PATH_IMAGE043
取实部,
Figure 308431DEST_PATH_IMAGE045
代表反正切函数,
Figure 618190DEST_PATH_IMAGE046
代表对
Figure 688914DEST_PATH_IMAGE047
取绝对值,
Figure 742321DEST_PATH_IMAGE048
代表获取采样序列
Figure 582101DEST_PATH_IMAGE002
时的采样频率;
步骤6,设
Figure 444DEST_PATH_IMAGE049
Figure 292885DEST_PATH_IMAGE050
Figure 149982DEST_PATH_IMAGE051
的共轭,分别定义
Figure 844269DEST_PATH_IMAGE052
Figure 495830DEST_PATH_IMAGE053
为:
Figure 541147DEST_PATH_IMAGE054
Figure 874039DEST_PATH_IMAGE055
步骤7,令
Figure 422832DEST_PATH_IMAGE056
Figure 510874DEST_PATH_IMAGE057
代表对
Figure 777907DEST_PATH_IMAGE058
取转置,对
Figure 976807DEST_PATH_IMAGE059
进行奇异值分解,表达式为:
Figure 380107DEST_PATH_IMAGE060
其中,
Figure 78198DEST_PATH_IMAGE061
Figure 832527DEST_PATH_IMAGE062
Figure 569539DEST_PATH_IMAGE063
分别对应的是
Figure 92924DEST_PATH_IMAGE064
的左奇异向量、奇异值和右奇异向量;设
Figure 522768DEST_PATH_IMAGE065
,设
Figure 498815DEST_PATH_IMAGE066
Figure 977201DEST_PATH_IMAGE067
中实部与虚部皆为正值的解,则电网幅度估计值
Figure 620671DEST_PATH_IMAGE068
,电网电压采样的初始相位估计值
Figure 955838DEST_PATH_IMAGE069
,其中,
Figure 684759DEST_PATH_IMAGE042
代表对
Figure 763574DEST_PATH_IMAGE070
取虚部,
Figure 261551DEST_PATH_IMAGE071
代表对
Figure 705302DEST_PATH_IMAGE072
取实部,
Figure 921520DEST_PATH_IMAGE073
代表对
Figure 804025DEST_PATH_IMAGE072
取绝对值。
本发明方法能够在电网电压波动较大时更准确地估计出电网电压的幅度、频率、衰减因子与初始相位等多维参量。产生该优点的原因是本发明利用总体最小二乘技术替换了PRONY方法中的最小二乘技术。与现有技术相比,本发明提出的基于TLS-PRONY的电网电压波形多维参数估计方法能够在更大的电压波动变化范围内给出精确的多维参数估计值,能够有效提高对电网电压波形的拟合效果。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为基于TLS-PRONY的电网电压波形多维参数估计方法流程图。
图2为信噪比从10dB到20dB时的各参数估计误差比较图。
图3为信噪比从10dB到20dB时总体估计误差比较图。
图4为信噪比为20dB时电压多维参数估计后的拟合效果比较。
具体实施方式
基于TLS-PRONY的电网电压波形多维参数估计方法,如图1-4所示,针对稳态单频电网电压信号,根据奈圭斯特采样定理采
Figure 156509DEST_PATH_IMAGE001
个数据构造为向量
Figure 99057DEST_PATH_IMAGE002
,再对
Figure 536992DEST_PATH_IMAGE002
做自相关运算,并构造其Toeplitz矩阵
Figure 957609DEST_PATH_IMAGE003
;然后对矩阵
Figure 367862DEST_PATH_IMAGE003
做奇异值分解,并建立多项式估计电网电压频率与电压衰减因子;接着利用采样数据
Figure 215732DEST_PATH_IMAGE002
,估计的电网电压频率电压衰减因子,构造矩阵
Figure 577181DEST_PATH_IMAGE004
,并对
Figure 801489DEST_PATH_IMAGE004
做奇异值分解估计电压幅度与初始相位。
如图1所示,具体包括以下步骤:
1、顺序选取一段采样序列
对单频电网电压信号按照奈圭斯特采样定理进行采样,得到采样序列
Figure 128565DEST_PATH_IMAGE005
,其中,
Figure 412916DEST_PATH_IMAGE002
代表采样序列向量,
Figure 825443DEST_PATH_IMAGE006
代表第
Figure 587862DEST_PATH_IMAGE007
个顺序采样数据,
Figure 707128DEST_PATH_IMAGE001
代表总的采样数据个数。
2、获得自相关向量对采样序列做自相关运算,获得自相关向量
对采样序列向量
Figure 162380DEST_PATH_IMAGE002
进行自相关运算,获得自相关向量
Figure 62203DEST_PATH_IMAGE008
Figure 628314DEST_PATH_IMAGE009
的表达式为:
Figure 664403DEST_PATH_IMAGE010
其中,
Figure 290556DEST_PATH_IMAGE011
代表对
Figure 615358DEST_PATH_IMAGE012
取共轭,
Figure 719580DEST_PATH_IMAGE013
代表自相关向量的长度,
Figure 875755DEST_PATH_IMAGE014
代表自相关向量的第
Figure 672810DEST_PATH_IMAGE015
个元素。
3、对Toeplitz矩阵做奇异值分解并建立参数估计多项式
Figure 281646DEST_PATH_IMAGE016
改写为
Figure 455138DEST_PATH_IMAGE017
维的Toeplitz矩阵形式,设为
Figure 403503DEST_PATH_IMAGE018
。对
Figure 371459DEST_PATH_IMAGE018
进行奇异值分解,表达式为:
Figure 467591DEST_PATH_IMAGE019
其中,
Figure 913615DEST_PATH_IMAGE020
Figure 44383DEST_PATH_IMAGE021
Figure 183240DEST_PATH_IMAGE022
分别对应的是信号子空间的左奇异向量、奇异值和右奇异向量;
Figure 205816DEST_PATH_IMAGE023
Figure 455532DEST_PATH_IMAGE024
Figure 440805DEST_PATH_IMAGE025
分别对应的是噪声子空间的右奇异向量、奇异值和右奇异向量。
对于单频电网电压信号,
Figure 750564DEST_PATH_IMAGE026
Figure 821288DEST_PATH_IMAGE027
维矩阵,设
Figure 874695DEST_PATH_IMAGE028
,令
Figure 652158DEST_PATH_IMAGE029
为:
Figure 132818DEST_PATH_IMAGE030
其中,
Figure 425259DEST_PATH_IMAGE031
Figure 282356DEST_PATH_IMAGE032
Figure 976643DEST_PATH_IMAGE033
分别代表
Figure 628204DEST_PATH_IMAGE034
的第一行第
Figure 611203DEST_PATH_IMAGE035
列,第二行第
Figure 6413DEST_PATH_IMAGE035
列与第三行第
Figure 555206DEST_PATH_IMAGE035
列的值。根据
Figure 643247DEST_PATH_IMAGE036
建立多项式,表达式为:
Figure 910281DEST_PATH_IMAGE037
4、估计电网电压频率与衰减因子
对多项式
Figure 843602DEST_PATH_IMAGE037
求解,设
Figure 450164DEST_PATH_IMAGE038
为实部与虚部皆为正值的解,则电网频率估计值
Figure 709107DEST_PATH_IMAGE039
即为
Figure 197857DEST_PATH_IMAGE040
,衰减因子为
Figure 200448DEST_PATH_IMAGE041
。其中,
Figure 723833DEST_PATH_IMAGE042
代表对
Figure 888098DEST_PATH_IMAGE043
取虚部,
Figure 565942DEST_PATH_IMAGE044
代表对
Figure 106645DEST_PATH_IMAGE043
取实部,
Figure 484536DEST_PATH_IMAGE045
代表反正切函数,
Figure 85282DEST_PATH_IMAGE046
代表对
Figure 548624DEST_PATH_IMAGE047
取绝对值,
Figure 830701DEST_PATH_IMAGE048
代表获取采样序列
Figure 328679DEST_PATH_IMAGE002
时的采样频率。
5、构造新矩阵,并估计电压幅度与初始相位
Figure 834746DEST_PATH_IMAGE049
Figure 50964DEST_PATH_IMAGE050
Figure 933469DEST_PATH_IMAGE051
的共轭,分别定义
Figure 223636DEST_PATH_IMAGE052
Figure 900605DEST_PATH_IMAGE053
为:
Figure 338540DEST_PATH_IMAGE054
Figure 24736DEST_PATH_IMAGE055
Figure 231727DEST_PATH_IMAGE056
Figure 282859DEST_PATH_IMAGE057
代表对
Figure 208090DEST_PATH_IMAGE058
取转置,对
Figure 432398DEST_PATH_IMAGE059
进行奇异值分解,表达式为:
Figure 759474DEST_PATH_IMAGE060
其中,
Figure 43825DEST_PATH_IMAGE061
Figure 641639DEST_PATH_IMAGE062
Figure 669638DEST_PATH_IMAGE063
分别对应的是
Figure 851221DEST_PATH_IMAGE064
的左奇异向量、奇异值和右奇异向量。设
Figure 306473DEST_PATH_IMAGE065
,设
Figure 206296DEST_PATH_IMAGE066
Figure 710089DEST_PATH_IMAGE067
中实部与虚部皆为正值的解,则电网幅度估计值
Figure 746178DEST_PATH_IMAGE068
,电网电压采样的初始相位估计值
Figure 372332DEST_PATH_IMAGE069
。其中,
Figure 493872DEST_PATH_IMAGE042
代表对
Figure 863673DEST_PATH_IMAGE070
取虚部,
Figure 957531DEST_PATH_IMAGE071
代表对
Figure 754586DEST_PATH_IMAGE072
取实部,
Figure 363421DEST_PATH_IMAGE073
代表对
Figure 271335DEST_PATH_IMAGE072
取绝对值。
仿真结果:
本发明针对基于TLS-PRONY的电网电压波形多维参数估计方法仿真。仿真中,设
Figure DEST_PATH_IMAGE074
Figure 219699DEST_PATH_IMAGE075
,
Figure DEST_PATH_IMAGE076
,幅度为
Figure 187655DEST_PATH_IMAGE077
伏特,衰减因子
Figure DEST_PATH_IMAGE078
,频率为
Figure 283787DEST_PATH_IMAGE079
,初始相位为
Figure DEST_PATH_IMAGE080
,采样频率为
Figure 431609DEST_PATH_IMAGE081
Figure DEST_PATH_IMAGE082
为零均值高斯白噪声。信噪比为10dB时的一段带扰动的采样序列,如图2所示。从图3与图4可以看出基于TLS-PRONY的电网电压波形多维参数估计方法在信噪比相对较低时具有减小多维参量估计误差的效果,并且估计值构成的拟合波形更贴近真实数据。
由上述仿真结果可知,本发明能够在更大的电压波动变化范围内更准确地估计出电网电压的幅度、频率、衰减因子与初始相位等多维参量,对电网电压波形的拟合效果具有明显提高。
上述实施例不以任何方式限制本发明,凡是采用等同替换或等效变换的方式获得的技术方案均落在本发明的保护范围内。

Claims (1)

1.基于TLS-PRONY的电网电压波形多维参数估计方法,其特征在于:针对稳态单频电网电压信号,根据奈圭斯特采样定理采
Figure 749436DEST_PATH_IMAGE001
个数据构造为向量
Figure 24560DEST_PATH_IMAGE002
,再对
Figure 668031DEST_PATH_IMAGE002
做自相关运算,并构造其Toeplitz矩阵
Figure 3197DEST_PATH_IMAGE003
;然后对矩阵
Figure 935381DEST_PATH_IMAGE003
做奇异值分解,并建立多项式估计电网电压频率与电压衰减因子;接着利用采样数据
Figure 14196DEST_PATH_IMAGE002
,估计的电网电压频率电压衰减因子,构造矩阵
Figure 512173DEST_PATH_IMAGE004
,并对
Figure 283820DEST_PATH_IMAGE004
做奇异值分解估计电压幅度与初始相位;
包括以下步骤:
步骤1,对单频电网电压信号按照奈圭斯特采样定理进行采样,得到采样序列
Figure 234459DEST_PATH_IMAGE005
,其中,
Figure 293462DEST_PATH_IMAGE002
代表采样序列向量,
Figure 645946DEST_PATH_IMAGE006
代表第
Figure 588494DEST_PATH_IMAGE007
个顺序采样数据,
Figure 26429DEST_PATH_IMAGE001
代表总的采样数据个数;
步骤2,对采样序列向量
Figure 447046DEST_PATH_IMAGE008
进行自相关运算,获得自相关向量
Figure 919616DEST_PATH_IMAGE009
Figure 970748DEST_PATH_IMAGE010
的表达式为:
Figure 895979DEST_PATH_IMAGE011
其中,
Figure 120287DEST_PATH_IMAGE012
代表对
Figure 181784DEST_PATH_IMAGE013
取共轭,
Figure 466135DEST_PATH_IMAGE014
代表自相关向量的长度,
Figure 816345DEST_PATH_IMAGE015
代表自相关向量的第
Figure 844343DEST_PATH_IMAGE016
个元素;
步骤3,根据给定的自相关向量
Figure 25926DEST_PATH_IMAGE017
,将
Figure 215599DEST_PATH_IMAGE017
改写为
Figure 115422DEST_PATH_IMAGE018
维的Toeplitz矩阵形式,设为
Figure 681532DEST_PATH_IMAGE019
,对
Figure 419419DEST_PATH_IMAGE019
进行奇异值分解,表达式为:
Figure 779993DEST_PATH_IMAGE020
其中,
Figure 167112DEST_PATH_IMAGE021
Figure 536914DEST_PATH_IMAGE022
Figure 427509DEST_PATH_IMAGE023
分别对应的是信号子空间的左奇异向量、奇异值和右奇异向量;
Figure 427826DEST_PATH_IMAGE024
Figure 36662DEST_PATH_IMAGE025
Figure 210155DEST_PATH_IMAGE026
分别对应的是噪声子空间的右奇异向量、奇异值和右奇异向量;
步骤4,对于单频电网电压信号,
Figure 220836DEST_PATH_IMAGE027
Figure 188792DEST_PATH_IMAGE028
维矩阵,设
Figure 957028DEST_PATH_IMAGE029
,令
Figure 668632DEST_PATH_IMAGE030
为:
Figure 533820DEST_PATH_IMAGE031
其中,
Figure 672677DEST_PATH_IMAGE032
Figure 256105DEST_PATH_IMAGE033
Figure 505821DEST_PATH_IMAGE034
分别代表
Figure 428777DEST_PATH_IMAGE035
的第一行第
Figure 738536DEST_PATH_IMAGE036
列,第二行第
Figure 809260DEST_PATH_IMAGE036
列与第三行第
Figure 862667DEST_PATH_IMAGE036
列的值;
步骤5,根据
Figure 702447DEST_PATH_IMAGE037
建立多项式,表达式为:
Figure 386369DEST_PATH_IMAGE038
对多项式求解,设
Figure 678810DEST_PATH_IMAGE039
为实部与虚部皆为正值的解,则电网频率估计值
Figure 535908DEST_PATH_IMAGE040
即为
Figure 230194DEST_PATH_IMAGE041
,衰减因子为
Figure 52395DEST_PATH_IMAGE042
;其中,
Figure DEST_PATH_IMAGE043
代表对
Figure 97711DEST_PATH_IMAGE044
取虚部,
Figure 492920DEST_PATH_IMAGE045
代表对
Figure 41713DEST_PATH_IMAGE044
取实部,
Figure 129755DEST_PATH_IMAGE046
代表反正切函数,
Figure DEST_PATH_IMAGE047
代表对
Figure 600051DEST_PATH_IMAGE048
取绝对值,
Figure 798951DEST_PATH_IMAGE049
代表获取采样序列
Figure 202250DEST_PATH_IMAGE002
时的采样频率;
步骤6,设
Figure 133297DEST_PATH_IMAGE050
Figure 887626DEST_PATH_IMAGE051
Figure 624638DEST_PATH_IMAGE052
的共轭,分别定义
Figure 148024DEST_PATH_IMAGE053
Figure 577868DEST_PATH_IMAGE054
为:
Figure 553914DEST_PATH_IMAGE055
Figure 530835DEST_PATH_IMAGE056
步骤7,令
Figure 174306DEST_PATH_IMAGE057
Figure 509472DEST_PATH_IMAGE058
代表对
Figure 238394DEST_PATH_IMAGE059
取转置,对
Figure 317209DEST_PATH_IMAGE060
进行奇异值分解,表达式为:
Figure 815186DEST_PATH_IMAGE061
其中,
Figure 524516DEST_PATH_IMAGE062
Figure 740734DEST_PATH_IMAGE063
Figure 623239DEST_PATH_IMAGE064
分别对应的是
Figure 975723DEST_PATH_IMAGE065
的左奇异向量、奇异值和右奇异向量;设
Figure 918271DEST_PATH_IMAGE066
,设
Figure 28310DEST_PATH_IMAGE067
Figure 448927DEST_PATH_IMAGE068
中实部与虚部皆为正值的解,则电网幅度估计值
Figure 921496DEST_PATH_IMAGE069
,电网电压采样的初始相位估计值
Figure 769367DEST_PATH_IMAGE070
,其中,
Figure 694597DEST_PATH_IMAGE043
代表对
Figure 918905DEST_PATH_IMAGE071
取虚部,
Figure 449244DEST_PATH_IMAGE072
代表对
Figure 733595DEST_PATH_IMAGE073
取实部,
Figure 146121DEST_PATH_IMAGE074
代表对
Figure 908541DEST_PATH_IMAGE073
取绝对值。
CN202210985099.XA 2022-08-17 2022-08-17 基于tls-prony的电网电压波形多维参数估计方法 Active CN115060971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210985099.XA CN115060971B (zh) 2022-08-17 2022-08-17 基于tls-prony的电网电压波形多维参数估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210985099.XA CN115060971B (zh) 2022-08-17 2022-08-17 基于tls-prony的电网电压波形多维参数估计方法

Publications (2)

Publication Number Publication Date
CN115060971A CN115060971A (zh) 2022-09-16
CN115060971B true CN115060971B (zh) 2022-11-01

Family

ID=83207444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210985099.XA Active CN115060971B (zh) 2022-08-17 2022-08-17 基于tls-prony的电网电压波形多维参数估计方法

Country Status (1)

Country Link
CN (1) CN115060971B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182529A (zh) * 2017-12-27 2018-06-19 河海大学常州校区 一种微电网运行时的不确定因素辨识方法
CN109541306A (zh) * 2018-12-06 2019-03-29 华北电力大学 一种基于tls-esprit的谐波间谐波检测方法
CN112688324A (zh) * 2021-01-15 2021-04-20 福建工程学院 基于FastICA与TLS-ESPRIT的电力系统低频振荡模态辨识方法
CN113468474A (zh) * 2021-09-06 2021-10-01 南京易司拓电力科技股份有限公司 基于根Mini-Norm的电网频率估计方法
CN114586097A (zh) * 2019-11-05 2022-06-03 阿里巴巴集团控股有限公司 差分定向传感器系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182529A (zh) * 2017-12-27 2018-06-19 河海大学常州校区 一种微电网运行时的不确定因素辨识方法
CN109541306A (zh) * 2018-12-06 2019-03-29 华北电力大学 一种基于tls-esprit的谐波间谐波检测方法
CN114586097A (zh) * 2019-11-05 2022-06-03 阿里巴巴集团控股有限公司 差分定向传感器系统
CN112688324A (zh) * 2021-01-15 2021-04-20 福建工程学院 基于FastICA与TLS-ESPRIT的电力系统低频振荡模态辨识方法
CN113468474A (zh) * 2021-09-06 2021-10-01 南京易司拓电力科技股份有限公司 基于根Mini-Norm的电网频率估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高速铁路车网耦合系统网压振荡模态分析与对策;付莉等;《电力系统保护与控制》;20160101;第44卷(第1期);第24-32页 *

Also Published As

Publication number Publication date
CN115060971A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN111679158A (zh) 基于同步量测数据相似度的配电网故障辨识方法
CN110514954B (zh) 一种基于pmu数据的电力线路故障诊断方法及系统
Xie et al. Improved synchrophasor measurement to capture sub/super‐synchronous dynamics in power systems with renewable generation
CN109146336B (zh) 一种基于t分布的电力系统鲁棒状态估计方法
CN106405285A (zh) 一种电力系统故障录波数据突变时刻检测方法及系统
Rivas et al. Adaptive current harmonic estimation under fault conditions for smart grid systems
CN103427405B (zh) 基于高阶累积量的输电线路差动保护方法
CN116520095B (zh) 故障测距方法、系统以及计算机可读存储介质
CN107091958A (zh) 一种输电线路参数在线辨识系统及其辨识方法
CN111562521A (zh) 量程自适应电力系统信号采集方法
Terzija et al. Two-stage improved recursive Newton-type algorithm for power-quality indices estimation
CN115060971B (zh) 基于tls-prony的电网电压波形多维参数估计方法
Gurusinghe et al. Efficient algorithms for real‐time monitoring of transmission line parameters and their performance with practical synchrophasors
CN110703134B (zh) 一种基于故障序分量的小电流接地选线选相方法
Xia et al. Development and implementation of a variable-window algorithm for high-speed and accurate digital distance protection
CN113468474B (zh) 基于根Mini-Norm的电网频率估计方法
CN113850425B (zh) 基于改进的广义极大似然估计的配电网状态估计方法
CN112285421B (zh) 基于最小范数准则的系统侧谐波阻抗估计方法
Rathod et al. Implementing two stage hybrid state estimation with various approaches
Ruan et al. Improved Prony method for high-frequency-resolution harmonic and interharmonic analysis
CN112649694B (zh) 一种小电流接地系统单相接地故障的判定方法
CN110007195B (zh) 基于电流不平衡量的scada不良数据剔除方法及系统
CN112345876A (zh) 一种适用于间隔式dtu的故障定位方法及系统
CN110736879A (zh) 一种短波射频直采桥式矢量阻抗检测方法
Jiale et al. Transmission line pilot protection based on phase segregated model recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant