CN115058751A - 一种基于聚多巴胺改性的钛基材料电镀方法 - Google Patents

一种基于聚多巴胺改性的钛基材料电镀方法 Download PDF

Info

Publication number
CN115058751A
CN115058751A CN202210836318.8A CN202210836318A CN115058751A CN 115058751 A CN115058751 A CN 115058751A CN 202210836318 A CN202210836318 A CN 202210836318A CN 115058751 A CN115058751 A CN 115058751A
Authority
CN
China
Prior art keywords
titanium
based material
layer
electroplating
polydopamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210836318.8A
Other languages
English (en)
Inventor
周波
张于胜
江海霞
胡恺琪
郑富凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Rare Metal Materials Research Institute Co Ltd
Original Assignee
Xian Rare Metal Materials Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Rare Metal Materials Research Institute Co Ltd filed Critical Xian Rare Metal Materials Research Institute Co Ltd
Priority to CN202210836318.8A priority Critical patent/CN115058751A/zh
Publication of CN115058751A publication Critical patent/CN115058751A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1834Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1882Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种基于聚多巴胺改性的钛基材料电镀方法,该方法包括:一、将钛基材料清洗后放入含有多巴胺的Tris‑HCl缓冲液中搅拌,在钛基材料表面接枝聚多巴胺层;二、将表面接枝有聚多巴胺层的钛基材料清洗吹干后浸入到金属离子‑还原剂溶液中进行还原,得到导电化处理的钛基材料;三、将导电化处理的钛基材料作为阴极浸入电镀液中进行直流电电镀沉积,经清洗吹干得到表面具有电镀层的钛基材料。本发明通过在钛基材料表面直接构筑聚多巴胺中间层的方式改性替代酸洗和活化前处理过程,提高了钛基材料与电镀层之间的结合力,解决了钛合金前处理操作危险、工艺复杂、成品率低和污染环境等问题,显著提高了钛基材料的电镀生产效率。

Description

一种基于聚多巴胺改性的钛基材料电镀方法
技术领域
本发明属于电镀技术领域,特别涉及了一种基于聚多巴胺改性的钛基材料电镀方法。
背景技术
钛合金由于具有质量轻、比强度高、耐蚀性好、导热率低、无毒无磁和生物相容性好等优点,被广泛应用于航空、航天、造船、化工等领域。然而,钛合金表面存在耐磨性差(容易划伤和咬死)、导电性差和可焊性不良等缺陷,限制了钛合金的进一步开发和应用。在钛合金表面电镀其他金属层,不仅可有效解决上述各种缺陷,还能赋予钛合金表面新的物理性能。根据钛合金表面电镀的工艺顺序,可将其分为钛合金的前处理、电镀液的配制、电镀金属层和后处理等步骤,其中通过前处理赋予钛合金优异的反应活性是电镀高质量镀层的前提条件。
目前常采用酸洗和活化等方式对钛合金进行前处理,如利用氢氟酸、硝酸、盐酸和硫酸等腐蚀液去除钛合金表面惰性氧化膜,并在其表面生成TiH2等活性膜。由于钛合金是非常活泼的金属,易与空气中的氧或其它氧化性介质发生反应,在其表面生成各种价态的惰性氧化膜。氧化膜的形成会阻碍钛合金基底与电镀层的紧密结合,难以获得具有强结合力的镀层。通过酸洗和活化前处理将惰性的氧化膜转变为具有反应活性的氢化膜可有效提高钛合金基底和镀层间的结合力。
然而,现有的前处理工艺存在以下三个问题:(1)在前处理中需要使用强腐蚀性试剂,导致操作危险且易造成环境污染;(2)钛合金表面致密的氧化膜难以完全去除,在部分区域有氧化膜残留,导致成品率低;(3)不同种类的钛合金前处理所需的腐蚀液存在差异,针对每种钛合金需单独配置腐蚀液,使得前处理工艺复杂,制备效率低。因此,探索出一种反应条件温和、反应周期短、适用范围广且环境友好的新技术,在各种钛合金表面安全高效得电镀具有强结合力的镀层具有重要意义。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种基于聚多巴胺改性的钛基材料电镀方法。该方法依次在钛基材料表面接枝聚多巴胺层、在聚多巴胺层表面导电化处理和电镀沉积,通过在钛基材料表面直接构筑聚多巴胺中间层的方式改性替代现有的酸洗和活化前处理过程,大大提高了钛基材料与电镀层之间的结合力,解决了现有钛合金前处理操作危险、工艺复杂、成品率低和污染环境等问题。
为解决上述技术问题,本发明采用的技术方案为:一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,该方法包括以下步骤:
步骤一、钛基材料表面的聚多巴胺层接枝:将钛基材料分别在丙酮、乙醇和去离子水中超声清洗,然后放入含有1g/L~20g/L多巴胺的Tris-HCl缓冲液中,在pH=8.5的条件下搅拌20h~30h,在钛基材料表面接枝聚多巴胺层;
步骤二、聚多巴胺层的表面导电化处理:将步骤一中表面接枝有聚多巴胺层的钛基材料置于去离子水中超声清洗后采用氮气吹干,然后浸入到金属离子-还原剂溶液中进行还原反应,在钛基材料表面接枝的聚多巴胺层的表面化学镀制备导电层,得到导电化处理的钛基材料;所述金属离子-还原剂溶液中金属组分的浓度为10g/L~30g/L;
步骤三、导电层的电镀沉积:将步骤二中得到的导电化处理的钛基材料作为阴极浸入电镀液中进行直流电电镀沉积至设计厚度,然后浸入去离子水中超声清洗并吹干,得到表面具有电镀层的钛基材料;所述直流电电镀沉积的电流密度为1A/dm2~10A/dm2
本发明首先在钛基材料的表面接枝聚多巴胺层,使得多巴胺通过自发的氧化聚合作用生成黑褐色的聚多巴胺层接枝在钛基材料表面,利用聚多巴胺层的改性作用在钛基材料表面形成具有反应活性的官能团如酚羟基和氨基基团,通过活性官能团的弱氧化还原性和对金属离子的络合能力在接枝的聚多巴胺层表面化学镀制备导电层,利用导电处理赋予钛基材料导电性,从而使得导电化处理的钛基材料能够作为阴极在电镀液中进行直流电电镀沉积形成电镀层,得到表面具有电镀层的钛基材料。本发明的制备过程中,通过在钛基材料表面直接构筑聚多巴胺中间层赋予钛基材料优异的反应活性,有效替代现有的酸洗和活化前处理过程,大大提高了钛基材料与电镀层之间的结合力,解决了现有钛合金前处理操作危险、工艺复杂、成品率低和污染环境等问题。
上述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤一中所述钛基材料为钛、氧化钛、TC4钛合金或TC6钛合金。本发明的方法适用于上述常用的钛基材料,提高了本发明方法的适用性。通常,本发明的方法普适于各种钛合金材料。
上述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤二中所述导电层为Ag导电层、Ni导电层或Cu导电层。综合考虑成本、导电性和制备条件等因素,上述导电层为化学镀和电镀中常用的导电层,提高了本发明的实用性。
上述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤三中所述电镀液为单金属电镀液、合金电镀液或复合材料电镀液。该单金属电镀液为含有单种金属元素的电镀液,对应得到单金属的电镀层,合金电镀液为含有两种以上金属元素的电镀液,对应得到合金的电镀层,复合材料电镀液为含有金属元素和其他成分的电镀液,对应得到复合材料的电镀层。本发明基于聚多巴胺改性的钛基材料可采用上述多种电镀液进行电镀沉积,适用于多种镀层的制备,满足了不同的使用要求。
上述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤三中所述电镀液中含有硫酸镍、氯化镍、硼酸、糖精和十二烷基磺酸钠,且硫酸镍的加入量为295g/L~305g/L,氯化镍的加入量为55g/L~60g/L,硼酸的加入量为35g/L~40g/L,糖精的加入量为4g/L~6g/L,十二烷基磺酸钠的加入量为0.1g/L~0.4g/L,并采用稀硫酸溶液调节电镀液的pH为3.5~4.5。
上述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,采用《ASTMD3359》中的剥离试验对步骤三中表面具有电镀层的钛基材料中钛基材料与电镀层之间的结合力进行检测。该检测方式可以简单快速地定量比较基体与电镀层之间的结合力。
本发明与现有技术相比具有以下优点:
1、本发明依次在钛基材料表面接枝聚多巴胺层、在聚多巴胺层表面导电化处理和电镀沉积,实现了在钛基材料表面形成电镀层,通过在钛基材料表面直接构筑聚多巴胺中间层的方式改性替代现有的酸洗和活化前处理过程,大大提高了钛基材料与电镀层之间的结合力,解决了现有钛合金前处理操作危险、工艺复杂、成品率低和污染环境等问题。
2、本发明通过在聚多巴胺层表面导电化处理而获得导电性,克服了钛基材料表面因接枝聚多巴胺层而损失导电性能的缺陷,保证后续电镀过程的顺利进行。
3、本发明的方法工艺简单,采用的试剂安全无毒,具有短流程、低成本和安全无毒的特点,显著提高了钛基材料的电镀生产效率。
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。
附图说明
图1为本发明基于聚多巴胺改性的钛基材料电镀方法的工艺示意图。
图2为本发明实施例1中在氧化钛表面接枝的聚多巴胺层的形貌图。
图3a为本发明实施例1中在氧化钛表面接枝的聚多巴胺层中Ti元素分布图。
图3b为本发明实施例1中在氧化钛表面接枝的聚多巴胺层中C元素分布图。
图3c为本发明实施例1中在氧化钛表面接枝的聚多巴胺层中O元素分布图。
图3d为本发明实施例1中在氧化钛表面接枝的聚多巴胺层中N元素分布图。
图4为本发明实施例1中得到的表面具有镍电镀层的氧化钛中镍电镀层的剥离试验形貌图。
图5为本发明对比例1中得到的表面具有镍电镀层的氧化钛中镍电镀层的剥离试验形貌图。
图6为本发明实施例2中得到的表面具有镍铁合金电镀层的TC4钛合金中镍铁合金电镀层的剥离试验形貌图。
图7为本发明实施例3中得到的表面具有镍铁/氧化铝复合材料电镀层的TC6钛合金中镍铁/氧化铝复合材料电镀层的剥离试验形貌图。
附图标记说明:
1—钛基材料; 2—聚多巴胺层; 3—导电层;
4—电镀层。
具体实施方式
如图1所示,本发明基于聚多巴胺改性的钛基材料电镀方法过程为:将钛基材料1放置于多巴胺的Tris-HCl缓冲液中,在钛基材料1表面接枝聚多巴胺层2,然后在采用化学镀在聚多巴胺层2上制备导电层3,再经电镀形成电镀层4。
实施例1
本实施例包括以下步骤:
步骤一、钛基材料表面的聚多巴胺层接枝:将氧化钛分别在丙酮、乙醇和去离子水中超声清洗,然后浸泡在200mL含1.2g三羟甲基氨基甲烷(Tris)的去离子水溶液中,采用盐酸调节pH为8.5得到Tris-HCl缓冲液,并加入0.2g多巴胺,在室温下搅拌20h,在氧化钛表面接枝聚多巴胺层;
步骤二、聚多巴胺层的表面导电化处理:将步骤一中表面接枝有聚多巴胺层的氧化钛置于去离子水中超声清洗后采用氮气吹干,然后浸入到由30g乙醇和10g乙二醇组成的混合液中,随后向混合液中滴加0.08g硝酸银在室温下浸泡20min进行活化,在氧化钛表面形成纳米银颗粒,将活化后的氧化钛浸入银氨-葡萄糖溶液在室温下浸泡40min,通过纳米银颗粒催化银离子进行还原反应在氧化钛表面形成Ag导电层,得到导电化处理的氧化钛;所述银氨-葡萄糖溶液的制备过程为:将0.2g硝酸银滴加到20mL去离子水中,待硝酸银完全溶解后缓慢滴加氨水,当溶液由澄清变为浑浊、再由浑浊变成无色透明时停止滴加氨水,得到银氨溶液,将0.2g葡萄糖滴加到20mL去离子水,得到葡萄糖溶液,将银氨溶液和葡萄糖溶液在室温下混合搅拌10min得到银氨-葡萄糖溶液;
步骤三、导电层的电镀沉积:将质量纯度大于99%的镍片作为阳极、步骤二中得到的导电化处理的氧化钛作为阴极浸入电镀液中,采用电化学工作站进行直流电电镀沉积至设计厚度,然后浸入去离子水中超声清洗并吹干,得到表面具有镍电镀层的氧化钛;所述电镀液中含有以下组分:硫酸镍的加入量为295g/L,氯化镍的加入量为55g/L,硼酸的加入量为35g/L,糖精的加入量为4g/L,十二烷基磺酸钠的加入量为0.1g/L,并采用稀硫酸溶液调节电镀液的pH为3.5;所述直流电电镀沉积的温度为50℃~55℃,电流密度为10A/dm2
图2为本实施例中在氧化钛表面接枝的聚多巴胺层的形貌图,从图2可知,多巴胺通过自发的氧化聚合作用,生成黑褐色的聚多巴胺层接枝在氧化钛表面。
图3a~图3d为本实施例中在氧化钛表面接枝的聚多巴胺层中Ti元素、C元素、O元素和N元素分布图,从图3a~图3d可知,通过能谱表征在改性后的氧化钛上检测到N元素,说明聚多巴胺层成功接枝到氧化钛的表面。
根据《ASTM D3359》中的剥离试验,先采用网格刀在镍电镀层表面划分单元格,随后通过3M胶带剥离实验检测表面具有镍电镀层的氧化钛中氧化钛与镍电镀层之间的结合力,结果如图4所示。
图4为本实施例中得到的表面具有镍电镀层的氧化钛中镍电镀层的剥离试验形貌图,其中(a)为剥离前的形貌图,(b)为剥离前的形貌图,从图4可以看出,网格刀切口的相交处有小片剥落,划格区内实际破损面积为5%以下,表面本实施例中基于聚多巴胺改性得到的具有镍电镀层的氧化钛中氧化钛与镍电镀层的结合力为4B。
对比例1
本对比例与实施例1的不同之处在于:将氧化钛直接按照步骤三中的工艺进行电镀沉积。
图5为本对比例中得到的表面具有镍电镀层的氧化钛中镍电镀层的剥离试验形貌图,其中(a)为剥离前的形貌图,(b)为剥离前的形貌图,从图5可以看出,在划线的边缘及交叉点处有成片脱落,且脱落总面积大于65%,表面本对比例中未进行改性处理得到的具有镍电镀层的氧化钛中氧化钛与镍电镀层的结合力为0B。
将图4与图5进行比较可知,本发明通过在钛基材料表面直接构筑聚多巴胺中间层的方式改性,大大提高了钛基材料与电镀层之间的结合力。
实施例2
本实施例包括以下步骤:
步骤一、钛基材料表面的聚多巴胺层接枝:将TC4钛合金分别在丙酮、乙醇和去离子水中超声清洗,然后浸泡在200mL含1.2g三羟甲基氨基甲烷(Tris)的去离子水溶液中,采用盐酸调节pH为8.5得到Tris-HCl缓冲液,并加入2g多巴胺,在室温下搅拌25h,在TC4钛合金表面接枝聚多巴胺层;
步骤二、聚多巴胺层的表面导电化处理:将步骤一中表面接枝有聚多巴胺层的TC4钛合金置于去离子水中超声清洗后采用氮气吹干,然后浸入到化学镀镍溶液中进行还原反应,在TC4钛合金表面形成含有少量磷元素的Ni导电层,得到导电化处理的TC4钛合金;所述化学镀镍溶液中含有以下组分:氯化镍30g/L,次磷酸钠10g/L,乙酸钠5g/L,柠檬酸钠13g/L,并通过稀盐酸溶液将化学镀镍溶液的pH值调整为5.0;
步骤三、导电层的电镀沉积:将面积比为3:1的镍片和铁片组合作为阳极、步骤二中得到的导电化处理的TC4钛合金作为阴极浸入电镀液中,采用电化学工作站进行直流电电镀沉积至设计厚度,然后浸入去离子水中超声清洗并吹干,得到表面具有镍铁电镀层的TC4钛合金;所述电镀液中含有以下组分:硫酸镍305g/L,硫酸亚铁40g/L,氯化钠60g/L,十二烷基磺酸钠0.4g/L,硼酸40g/L,氨基乙酸1g/L,抗坏血酸0.5g/L,葡萄糖2g/L,葡萄糖酸钠0.5g/L,糖精5g/L,氯化铈0.6g/L,并采用稀硫酸溶液调节电镀液的pH为4.5;所述直流电电镀沉积的温度为50℃~60℃,电流密度为5A/dm2
根据《ASTM D3359》中的剥离试验,先采用网格刀在镍电镀层表面划分单元格,随后通过3M胶带剥离实验检测表面具有镍铁电镀层的TC4钛合金中TC4钛合金与镍铁电镀层之间的结合力,结果如图6所示。
图6为本实施例中得到的表面具有镍铁电镀层的TC4钛合金中镍电镀层的剥离试验形貌图,其中(a)为剥离前的形貌图,(b)为剥离前的形貌图,从图6可以看出,在切口的相交处有小片剥落,划格区内实际破损面积为5%以下,表明本实施例中基于聚多巴胺改性得到的具有镍铁电镀层的TC4钛合金中TC4钛合金与镍铁电镀层的结合力为4B,大于常规未经改性制备的具有镍铁电镀层的TC4钛合金,说明通过在钛基材料表面直接构筑聚多巴胺中间层的方式改性,大大提高了钛基材料与电镀层之间的结合力。
实施例3
本实施例包括以下步骤:
步骤一、钛基材料表面的聚多巴胺层接枝:将TC6钛合金分别在丙酮、乙醇和去离子水中超声清洗,然后浸泡在200mL含1.2g三羟甲基氨基甲烷(Tris)的去离子水溶液中,采用盐酸调节pH为8.5得到Tris-HCl缓冲液,并加入4g多巴胺,在室温下搅拌30h,在TC6钛合金表面接枝聚多巴胺层;
步骤二、聚多巴胺层的表面导电化处理:将步骤一中表面接枝有聚多巴胺层的TC6钛合金置于去离子水中超声清洗后采用氮气吹干,然后浸入到化学镀铜溶液中在室温下搅拌90min进行还原反应,在TC4钛合金表面形成Cu导电层,得到导电化处理的TC4钛合金;所述化学镀铜溶液中含有以下组分:硫酸铜10g/L,酒石酸钾钠22g/L,氢氧化钠10g/L,硼氢化钠1.3g/L,并通过稀盐酸溶液将化学镀铜溶液的pH值调整为13.0;
步骤三、导电层的电镀沉积:将面积比为3:1的镍片和铁片组合作为阳极、步骤二中得到的导电化处理的TC6钛合金作为阴极浸入电镀液中,采用电化学工作站进行直流电电镀沉积至设计厚度,然后浸入去离子水中超声清洗并吹干,得到表面具有镍铁/氧化铝复合材料的TC6钛合金;所述电镀液为通过向实施例2的电镀液中添加平均粒径为0.15μm的α-氧化铝粉末至10g/L配制得到;所述直流电电镀沉积的温度为55℃,电流密度为1A/dm2
根据《ASTM D3359》中的剥离试验,先采用网格刀在镍电镀层表面划分单元格,随后通过3M胶带剥离实验检测表面具有镍铁/氧化铝复合材料电镀层的TC6钛合金中TC6钛合金与镍铁/氧化铝复合材料电镀层之间的结合力,结果如图7所示。
图7为本实施例中得到的表面具有镍铁/氧化铝复合材料电镀层的TC6钛合金中镍铁/氧化铝复合材料电镀层的剥离试验形貌图,其中(a)为剥离前的形貌图,(b)为剥离前的形貌图,从图7可以看出,在切口的相交处有小片剥落,划格区内实际破损面积为5%以下,表明本实施例中基于聚多巴胺改性得到的具有镍电镀层的TC6钛合金中TC6钛合金与镍电镀层的结合力为4B,大于常规未经改性制备的具有镍铁/氧化铝复合材料电镀层的TC6钛合金,说明通过在钛基材料表面直接构筑聚多巴胺中间层的方式改性,大大提高了钛基材料与电镀层之间的结合力。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (6)

1.一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,该方法包括以下步骤:
步骤一、钛基材料表面的聚多巴胺层接枝:将钛基材料分别在丙酮、乙醇和去离子水中超声清洗,然后放入含有1g/L~20g/L多巴胺的Tris-HCl缓冲液中,在pH=8.5的条件下搅拌20h~30h,在钛基材料表面接枝聚多巴胺层;
步骤二、聚多巴胺层的表面导电化处理:将步骤一中表面接枝有聚多巴胺层的钛基材料置于去离子水中超声清洗后采用氮气吹干,然后浸入到金属离子-还原剂溶液中进行还原反应,在钛基材料表面接枝的聚多巴胺层的表面化学镀制备导电层,得到导电化处理的钛基材料;所述金属离子-还原剂溶液中金属组分的浓度为10g/L~30g/L;
步骤三、导电层的电镀沉积:将步骤二中得到的导电化处理的钛基材料作为阴极浸入电镀液中进行直流电电镀沉积至设计厚度,然后浸入去离子水中超声清洗并吹干,得到表面具有电镀层的钛基材料;所述直流电电镀沉积的电流密度为1A/dm2~10A/dm2
2.根据权利要求1所述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤一中所述钛基材料为钛、氧化钛、TC4钛合金或TC6钛合金。
3.根据权利要求1所述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤二中所述导电层为Ag导电层、Ni导电层或Cu导电层。
4.根据权利要求1所述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤三中所述电镀液为单金属电镀液、合金电镀液或复合材料电镀液。
5.根据权利要求1所述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,步骤三中所述电镀液中含有硫酸镍、氯化镍、硼酸、糖精和十二烷基磺酸钠,且硫酸镍的加入量为295g/L~305g/L,氯化镍的加入量为55g/L~60g/L,硼酸的加入量为35g/L~40g/L,糖精的加入量为4g/L~6g/L,十二烷基磺酸钠的加入量为0.1g/L~0.4g/L,并采用稀硫酸溶液调节电镀液的pH为3.5~4.5。
6.根据权利要求1所述的一种基于聚多巴胺改性的钛基材料电镀方法,其特征在于,采用《ASTM D3359》中的剥离试验对步骤三中表面具有电镀层的钛基材料中钛基材料与电镀层之间的结合力进行检测。
CN202210836318.8A 2022-07-15 2022-07-15 一种基于聚多巴胺改性的钛基材料电镀方法 Pending CN115058751A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210836318.8A CN115058751A (zh) 2022-07-15 2022-07-15 一种基于聚多巴胺改性的钛基材料电镀方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210836318.8A CN115058751A (zh) 2022-07-15 2022-07-15 一种基于聚多巴胺改性的钛基材料电镀方法

Publications (1)

Publication Number Publication Date
CN115058751A true CN115058751A (zh) 2022-09-16

Family

ID=83206335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210836318.8A Pending CN115058751A (zh) 2022-07-15 2022-07-15 一种基于聚多巴胺改性的钛基材料电镀方法

Country Status (1)

Country Link
CN (1) CN115058751A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821396A (zh) * 2016-03-27 2016-08-03 华南理工大学 一种无钯化学镀铜的方法
CN110777400A (zh) * 2019-10-16 2020-02-11 中国科学院兰州化学物理研究所 一种基于弹性导电硅橡胶模具的微电铸方法
CN111020542A (zh) * 2019-12-31 2020-04-17 福州大学 一种利用多巴胺制备铝合金镀银层的方法
US20200157684A1 (en) * 2014-12-11 2020-05-21 The Research Foundation For The State University Of New York Electroless copper plating polydopamine nanoparticles
CN112513338A (zh) * 2018-08-27 2021-03-16 卢森堡科学技术研究院 金属-cnt复合材料、生产方法及其材料
CN112853409A (zh) * 2020-12-29 2021-05-28 哈尔滨工业大学(深圳) 一种含银镀液及泡沫金属材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200157684A1 (en) * 2014-12-11 2020-05-21 The Research Foundation For The State University Of New York Electroless copper plating polydopamine nanoparticles
CN105821396A (zh) * 2016-03-27 2016-08-03 华南理工大学 一种无钯化学镀铜的方法
CN112513338A (zh) * 2018-08-27 2021-03-16 卢森堡科学技术研究院 金属-cnt复合材料、生产方法及其材料
CN110777400A (zh) * 2019-10-16 2020-02-11 中国科学院兰州化学物理研究所 一种基于弹性导电硅橡胶模具的微电铸方法
CN111020542A (zh) * 2019-12-31 2020-04-17 福州大学 一种利用多巴胺制备铝合金镀银层的方法
CN112853409A (zh) * 2020-12-29 2021-05-28 哈尔滨工业大学(深圳) 一种含银镀液及泡沫金属材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU LN 等: "Ag-coated PAN Nanofibers Prepared by Poly(dopamine)-assisted Electroless Plating", ADVANCED MATERIALS RESEARCH, vol. 482, pages 2543 - 2546 *
邱国飞: "AZ31镁合金表面聚多巴胺/铜复合膜层的制备及腐蚀行为研究", 中国优秀硕士学位论文全文数据库工程科技I辑, no. 01, pages 022 - 334 *

Similar Documents

Publication Publication Date Title
US10377947B2 (en) Composition and process for metallizing nonconductive plastic surfaces
US1988012A (en) Metal deposites in oxide coatings
CN104364421B (zh) 使非导电塑料表面金属化的方法
JP2013225513A (ja) 燃料電池に使用される電極を製造するためのプロセス
CA2866766C (en) Process for metallizing nonconductive plastic surfaces
KR101270770B1 (ko) 인쇄회로기판의 도금방법
CN111690931A (zh) 铝合金表面多层复合镀层及其制备方法
CA2893664C (en) Process for metallizing nonconductive plastic surfaces
CN102732862B (zh) 铜箔上置换镀Ni-S合金阻挡层的方法及该阻挡层的化学钝化方法
Zhang et al. Electroless plating of copper and nickel via a Sn-free process on polyimide films modified by surface graft copolymerization with 1-vinylimidazole
Farzaneh et al. Effect of Zincating bath additives on structural and electrochemical properties of electroless Ni-P coating on AA6061
CN115058751A (zh) 一种基于聚多巴胺改性的钛基材料电镀方法
JP2006233315A (ja) マグネシウム合金部材及びその製造方法
CN112501596B (zh) 一种钛表面化学镀镍前无氟无钯银活化方法
JPS60211097A (ja) ニオブの電気化学的、化学的被覆法
CN110129779B (zh) 一种铝合金表面化学浸镀铁的方法
CN102936741A (zh) 一种铝或铝合金的预植电镀镍基合金的方法
CN112048744A (zh) 一种提高钛基材表面镀铂均匀性的工艺
Vazirani Surface preparation of copper and its alloys for adhesive bonding and organic coatings
Murugan et al. The disparity of corrosion resistance between Ni/Au and Ni–P/Au electrical contacts in mixed flowing and salt spray tests
CN113930814B (zh) 一种银合金镀液、电刷镀工艺、银合金镀层及应用
Valiulienė et al. Investigation of the interaction between Co sulfide coatings and Cu (I) ions by cyclic voltammetry and XPS
US9689064B2 (en) Treatment of anodized aluminum components
CN112111766B (zh) 一种基于纳米颗粒固相溶解的钛金属含钨表层制备方法
Usta et al. Effect of Different Passivation Treatments on Alkali Zn-Ni Coatings: Corrosion Resistance and Adhesion Performance of Geomet 321 and ML Black Coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination