CN115044055B - 氮配位的CoFe-PBA纳米框架材料的制备及应用 - Google Patents

氮配位的CoFe-PBA纳米框架材料的制备及应用 Download PDF

Info

Publication number
CN115044055B
CN115044055B CN202210721519.3A CN202210721519A CN115044055B CN 115044055 B CN115044055 B CN 115044055B CN 202210721519 A CN202210721519 A CN 202210721519A CN 115044055 B CN115044055 B CN 115044055B
Authority
CN
China
Prior art keywords
cofe
coordinated
nitrogen
pba
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210721519.3A
Other languages
English (en)
Other versions
CN115044055A (zh
Inventor
于岩
邵文磊
江玮珊
周林鑫
庄赞勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210721519.3A priority Critical patent/CN115044055B/zh
Publication of CN115044055A publication Critical patent/CN115044055A/zh
Application granted granted Critical
Publication of CN115044055B publication Critical patent/CN115044055B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种氮配位的CoFe‑PBA纳米框架材料及其制备方法与应用,属于材料技术领域。其是针对现有MOF材料在不同配位环境中催化性能存在差异的问题,利用铁氰化钾为原料,采用简单的共沉淀法方法制备出氮配位的钴铁类普鲁士蓝纳米框架材料。该方法具有操作简单、制备周期短、经济效益高、适合大规模生产的特点,且所制得的钴铁类普鲁士蓝纳米框架材料能够在温和的条件下高活性光催化二氧化碳还原成一氧化碳,因而具有良好的经济效益和环境效益。

Description

氮配位的CoFe-PBA纳米框架材料的制备及应用
技术领域
本发明属于材料技术领域,具体涉及一种氮配位的CoFe-PBA纳米框架材料的制备方法及应用。
背景技术
利用太阳能将CO2温室气体转化为清洁和可再生能源是解决目前日益严重的能源和环境问题的一种非常有前景的方法。以往的研究发现催化剂中的活性中心往往可以降低CO2转化的反应能垒、提升光生电荷的迁移速率。通常活性中心的催化性能与其对应的配位环境息息相关。配位环境可以影响到催化中心对于CO2分子、CO2转化中间体和还原产物的吸附及解离,因此,活性中心的催化性能决定了CO2还原效率和产物的选择性,此外优化活性中心的配位环境也可以提升光生电荷的转移效率。因此,合理的设计活性位点的配位环境是构建高效催催化中心的关键,但仍然是一个巨大挑战。
MOFs是一个理想的高效光催化剂平台,MOFs自身的框架结构可以维持其特定的形貌和结构,同时具有种类多、孔隙多、催化性能好和可调控的结构等优点,但是MOFs难以实现N或者C与金属中心的单独配位,通常N和C都与同一个金属配位,或者有多个金属中心同时存在,使得单原子N/C配位更难以控制。普鲁士蓝类似物(PBA)作为一类典型的具有CN配体的MOFs材料,其可以克服以上缺点。PBA的两端金属中心可以灵活调控,能够实现在同一体相中N配位位点和C配位位点的精细设计。与此同时,PBA中的氮配位非常有利于电荷的传输,可以让电子定向快速的注入金属位点中有利于光催化,故选择适当的金属位点和PBA的氮进行匹配,可以获得优秀的光催化CO2性能。
发明内容
本发明的目的在于针对现有技术的不足,提供一种氮配位的CoFe-PBA纳米框架材料的制备方法。本发明利用PBA两端金属中心可以灵活调控的特点,通过使用特定的铁盐,使得Co原子可以与PBA的N位点精准配位,以实现对活性中心钴位点的精细设计,制备出氮配位的CoFe-PBA纳米框架材料,其具有高效的二氧化碳催化性能。
为实现上述目的,本发明采用如下技术方案:
一种氮配位的CoFe-PBA纳米框架材料,其制备方法包括以下步骤:
1)将二价钴盐和一价钠盐加入到去离子水中,充分混合溶解,形成混合溶液A;
2)将一价钾盐加入到去离子水中,充分溶解,形成溶液B;
3)将溶液B滴加到溶液A中,充分溶解,形成混合溶液C;
4)对混合溶液C进行离心,洗涤,干燥,得到所述氮配位的CoFe-PBA纳米框架材料。
进一步地,步骤1)中所用二价钴盐与一价钠盐的质量比为2:3-20:3,所用一价钠盐与去离子水的质量体积比为1:100 g/mL-1:300 g/mL;其中,所述二价钴盐为四水合乙酸钴((CH3COO)2Co·4H2O);所述一价钠盐为二水合柠檬酸三钠(C6H5Na3O7·2H2O)。
进一步地,步骤2)所用一价钾盐与去离子水的质量体积比为1:100 g/mL-1:400g/mL;所述一价钾盐为铁氰化钾(K3[Fe(CN)6])。
进一步地,步骤3)中所用溶液A与溶液B的体积百分数之比为(2-6):(4-8)。
进一步地,步骤3)所述溶解采用磁力搅拌,其搅拌转速为500-1000 rpm,时间为60-120 min。
进一步地,步骤4)所述离心的转速为5000-10000 rpm,时间为1-5 min;所述洗涤具体是采用无水乙醇和去离子水交替洗涤三次;所述干燥是于-56 ℃冷冻干燥6-12 h。
上述制得的氮配位的CoFe-PBA纳米框架材料可用于CO2的催化还原,其具体是以六水合三联吡啶氯化钌作为催化剂,所述氮配位的CoFe-PBA纳米框架材料作为助催化剂,在光照条件下经两者共同作用实现还原CO2为CO;其中,氮配位的CoFe-PBA纳米框架材料的用量为六水合三联吡啶氯化钌质量的5%~8%。
本发明的有益效果在于:
(1)本发明利用简单的共沉淀法方法制得一种氮配位的CoFe-PBA纳米框架材料,为构建双金属普鲁士蓝类似物纳米框架材料提供了新思路。
(2)本发明制备的氮配位的CoFe-PBA纳米框架材料能够精确控制钴原子与氮原子的配位,因而具有较高的光催化CO2还原性能。
(3)本发明制备方法所需要原材料和设备简单易取,工艺简单、易操作、安全,成本相对低廉,可大规模工业化生产;所得纳米框架材料具有较高的光催化效率,是一种环境友好型新材料,具有很好的推广应用价值和使用前景。
附图说明
图1为实施例制得的氮配位的CoFe-PBA纳米框架材料(Co-NC-Fe PBA)及对比例制得的碳配位的CoFe-PBA纳米框架材料(Fe-NC-Co PBA)的X射线衍射图;
图2为实施例制得的氮配位的CoFe-PBA纳米框架材料(A)和对比例制得的碳配位的CoFe-PBA纳米框架材料(B)的透射电子显微镜图;
图3为实施例制得的氮配位的CoFe-PBA纳米框架材料(A)和对比例制得的碳配位的CoFe-PBA纳米框架材料(B)的EDX元素映射图;
图4为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料在273K下的CO2吸脱附曲线;
图5为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的氮气吸脱附曲线;
图6为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的孔径示意图;
图7为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的催化CO2还原性能对比图;
图8为实施例制得的氮配位的CoFe-PBA纳米框架材料的光催化还原CO2循环稳定性图;
图9为实施例制得的氮配位的CoFe-PBA纳米框架材料在不同反应条件下反应获得CO和H2的产量对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图即实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以结合。
实施例
氮配位的CoFe-PBA纳米框架材料的制备:
(1)用电子天平称取0.299 g四水合乙酸钴((CH3COO)2Co·4H2O)和0.300g二水合柠檬酸三钠(C6H5Na3O7·2H2O),用量筒量取40 ml去离子水,将三者混合均匀,得到均匀混合溶液A;
(2)用电子天平称取0.200 g铁氰化钾K3Fe(CN)6,用量筒量取60ml去离子水,将二者混合均匀,得到均匀溶液B;
(3)在600 rpm磁力搅拌下,向混合溶液A中均匀滴加溶液B直至全部滴加完毕,然后继续搅拌60min,得到混合溶液C;
(4)以6000 rpm的转速对混合溶液C离心3min,然后用水和无水乙醇交替洗涤三次,再于-56℃下冷冻干燥6h,得到氮配位的CoFe-PBA纳米框架材料Fe-NC-Co PBA。
对比例
碳配位的CoFe-PBA纳米框架材料的制备:
(1)用电子天平称取0.480 g硫酸铁(Fe2(SO4)3)和0.300g二水合柠檬酸三钠(C6H5Na3O7·2H2O),用量筒量取40 ml去离子水,将三者混合均匀,得到均匀混合溶液A;
(2)用电子天平称取0.202 g钴氰化钾(K3[Co(CN)6]),用量筒量取60ml去离子水,将二者混合均匀,得到均匀溶液B;
(3)在600 rpm磁力搅拌下,向混合溶液A中均匀滴加溶液B直至全部滴加完毕,然后继续搅拌60min,得到混合溶液C;
(4)以6000 rpm的转速对混合溶液C离心3min,然后用水和无水乙醇交替洗涤共三次,再于-56℃下冷冻干燥6h,得到碳配位的CoFe-PBA纳米框架材料Co-NC-Fe PBA。
图1为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的X射线衍射图。由图中可见,不同的原子配位方式对材料的结构没有明显影响。
图2为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的透射电子显微镜图。由图中可见,所得材料均为致密的正方体颗粒。
图3为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的EDX元素映射图。由图中可见,两种材料中的Fe、Co元素均匀分布。
可见光照射下二氧化碳还原实验
将实施例及对比例得到的CoFe-PBA纳米框架材料用于二氧化碳还原,其具体步骤如下:
(1)取0.5 mg的CoFe-PBA纳米框架材料、6.5 mg六水合三联吡啶氯化钌加入到含有1 ml去离子水、3 ml 乙腈、1 ml三乙醇胺混合液的25 ml反应器中;
(2)在1 atm下,将高纯CO2充入反应器中;
(3)在25 ℃下,将石英反应器置于300 W的氙灯下照射;
(4)用磁力搅拌器对整个体系进行搅拌;
(5)在一定时间后,取0.5 ml产生的气体,做气相色谱。
图4为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料在273K下的CO2吸脱附曲线。图5为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的氮气吸脱附曲线对比图。图6为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料的比表面积和孔径对比图。从图中可以看出,在比表面积相差不大的情况下,在273 K的条件下,Co-N PBA和Co-C PBA对于CO2吸附容量分别为68.95 cm3 g-1、5.64 cm3 g-1,说明Co-N PBA具有优异的CO2吸附能力。
图7为实施例制得的氮配位的CoFe-PBA纳米框架材料及对比例制得的碳配位的CoFe-PBA纳米框架材料催化CO2还原性能的对比图。其中Co-NC-Fe PBA表现出更加优异的光催化CO2还原性能,其CO产生速率高达31529 μmol g-1 h-1,H2产生速率25961 μmol g-1 h-1,选择性为54.8%。相比之下,Co-C PBA的光催化产率仅为Fe-NC-Co PBA的三分之一左右(VCO=10190 μmol h-1 g-1,VH2=9324 μmol g-1 h-1)。表明Co-NC-Fe PBA纳米框架结构作为光催化还原CO2催化剂具有优秀的CO2还原性能。
在催化还原反应后,将收集的氮配位的CoFe-PBA纳米框架材料经洗涤过滤后重新进行四次反应,以测定氮配位的CoFe-PBA纳米框架材料的稳定性,结果如图8所示。由图中可见,在四次循环以后,氮配位的CoFe-PBA纳米框架材料催化还原CO2的能力未见明显衰减,表现出高的稳定性和循环催化能力。
图9为实施例制得的氮配位的CoFe-PBA纳米框架材料在不同条件下反应获得CO和H2的产量对比图。由图中可见,与无CoFe-PBA、无六水合三联吡啶氯化钌(无Ru)、无光照及在N2气氛下进行CO2还原反应相比,所得CoFe-PBA纳米框架材料在六水合三联吡啶氯化钌及光照存在条件下显示出优秀的CO2还原性能。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,均应包含在本发明的保护范围之内。

Claims (7)

1.一种用于催化CO2还原的氮配位CoFe-PBA纳米框架材料的制备方法,其特征在于:包括以下步骤:
1)将二价钴盐和一价钠盐加入到去离子水中,充分混合溶解,形成混合溶液A;
2)将一价钾盐加入到去离子水中,充分溶解,形成溶液B;
3)将溶液B滴加到溶液A中,充分溶解,形成混合溶液C;
4)对混合溶液C进行离心,洗涤,干燥,得到所述氮配位的CoFe-PBA纳米框架材料;
所述二价钴盐为四水合乙酸钴,所述一价钠盐为二水合柠檬酸三钠,所述一价钾盐为铁氰化钾。
2.根据权利要求1所述的一种氮配位CoFe-PBA纳米框架材料的制备方法,其特征在于:步骤1)中所用二价钴盐与一价钠盐的质量比为2:3-20:3,所用一价钠盐与去离子水的质量体积比为1:100 g/mL-1:300 g/mL。
3.根据权利要求1所述的一种氮配位CoFe-PBA纳米框架材料的制备方法,其特征在于:步骤2)所用一价钾盐与去离子水的质量体积比为1:100 g/mL-1:400 g/mL。
4.根据权利要求1所述的一种氮配位CoFe-PBA纳米框架材料的制备方法,其特征在于:步骤3)中所用溶液A与溶液B的体积百分数之比为(2-6):(4-8)。
5.根据权利要求1所述的一种氮配位CoFe-PBA纳米框架材料的制备方法,其特征在于:步骤4)所述离心的转速为5000-10000 rpm,时间为1-5 min;所述洗涤具体是采用无水乙醇和去离子水交替洗涤三次;所述干燥是于-56 ℃冷冻干燥6-12 h。
6.一种如权利要求1-5任一项方法制备的氮配位CoFe-PBA纳米框架材料。
7.一种如权利要求6所述氮配位CoFe-PBA纳米框架材料在催化CO2还原中的应用,其特征在于:以六水合三联吡啶氯化钌作为催化剂,所述氮配位的CoFe-PBA纳米框架材料作为助催化剂,在光照条件下将CO2还原为CO;
其中,氮配位的CoFe-PBA纳米框架材料的用量为六水合三联吡啶氯化钌质量的5%~8%。
CN202210721519.3A 2022-06-24 2022-06-24 氮配位的CoFe-PBA纳米框架材料的制备及应用 Active CN115044055B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210721519.3A CN115044055B (zh) 2022-06-24 2022-06-24 氮配位的CoFe-PBA纳米框架材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210721519.3A CN115044055B (zh) 2022-06-24 2022-06-24 氮配位的CoFe-PBA纳米框架材料的制备及应用

Publications (2)

Publication Number Publication Date
CN115044055A CN115044055A (zh) 2022-09-13
CN115044055B true CN115044055B (zh) 2023-10-13

Family

ID=83163136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210721519.3A Active CN115044055B (zh) 2022-06-24 2022-06-24 氮配位的CoFe-PBA纳米框架材料的制备及应用

Country Status (1)

Country Link
CN (1) CN115044055B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694685A (zh) * 2019-10-14 2020-01-17 福州大学 一种由超薄纳米片组装的锰铁钴类普鲁士蓝和锰氧化物复合纳米盒的制备方法及应用
CN111715248A (zh) * 2020-06-22 2020-09-29 陕西科技大学 一种中空纳米电解水用阴极催化剂及其制备方法
CN113402726A (zh) * 2021-06-25 2021-09-17 福州大学 一种普鲁士蓝类似物纳米框架材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694685A (zh) * 2019-10-14 2020-01-17 福州大学 一种由超薄纳米片组装的锰铁钴类普鲁士蓝和锰氧化物复合纳米盒的制备方法及应用
CN111715248A (zh) * 2020-06-22 2020-09-29 陕西科技大学 一种中空纳米电解水用阴极催化剂及其制备方法
CN113402726A (zh) * 2021-06-25 2021-09-17 福州大学 一种普鲁士蓝类似物纳米框架材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115044055A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN103752319B (zh) 抗积碳Ni基甲烷水蒸气重整制氢催化剂及其制备方法
CN109876865B (zh) 一种插层结构的多酸基金属有机框架的制备及催化性能
CN111111668A (zh) 一种mof基衍生复合光催化剂及其制备方法
CN113289653A (zh) 一种负载金属单原子的g-C3N4光催化剂的制备方法
CN113680361B (zh) 一种钴钌双金属单原子光催化剂及其制备方法和应用
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN111848974A (zh) 多酸基金属有机框架材料及其合成方法和在光催化氧化苄胺偶联中的应用
CN114849785A (zh) 一种三嗪环共价有机框架材料掺杂卟啉钴光催化剂的制备
CN114471658A (zh) 一种温度调控双功能原子级分散金属的g-C3N4光催化剂的制备方法
CN113150291B (zh) 葡萄糖改性双金属沸石咪唑酯骨架衍生催化剂及其制备方法
CN115044055B (zh) 氮配位的CoFe-PBA纳米框架材料的制备及应用
CN111437820B (zh) 一种用于光催化分解水产氢的复合纳米材料及其制备方法
CN113388859A (zh) 一种Th-MOF负载Cu基单位点催化材料及其制备方法和应用
CN112536070A (zh) 可见光响应型MIL-100(Fe)光催化复合材料的制备方法
CN113481527B (zh) 一种单/双原子催化剂及其可控合成方法和应用
CN114873611A (zh) 一锅法原位制备3D中空大孔Co/Fe PBA纳米笼结构材料的方法及其应用
CN113398934B (zh) 一种C/FeNi纳米复合材料及其制备方法以及在催化固氮合成氨中的应用
CN112916018B (zh) 一种乙酸自热重整制氢的镨锆复合氧化物钴基催化剂
CN113117696A (zh) 一种硫化镉基复合光催化材料及制备方法与用途
CN113083325A (zh) 一种氨硼烷水解制氢用催化剂Ru1-xCox/P25及其制备方法
CN112853378B (zh) 一种用于二氧化碳电还原的Bi-NC催化剂的制备方法
CN114308057B (zh) 乙酸自热重整制氢用钨锰矿型氧化物负载钴基催化剂
CN114797932B (zh) 一种双金属3d独特蜂窝状还原二氧化碳催化剂及其制备方法和应用
CN114561023A (zh) 一种二维层状Co-ZIF-9材料的制备方法
CN114618534B (zh) 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant