CN115026340A - 一种铣削测温刀具及其制造方法 - Google Patents

一种铣削测温刀具及其制造方法 Download PDF

Info

Publication number
CN115026340A
CN115026340A CN202210634750.9A CN202210634750A CN115026340A CN 115026340 A CN115026340 A CN 115026340A CN 202210634750 A CN202210634750 A CN 202210634750A CN 115026340 A CN115026340 A CN 115026340A
Authority
CN
China
Prior art keywords
cutter
milling
powder
temperature measurement
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210634750.9A
Other languages
English (en)
Other versions
CN115026340B (zh
Inventor
郑轶彤
殷增斌
陈为友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210634750.9A priority Critical patent/CN115026340B/zh
Publication of CN115026340A publication Critical patent/CN115026340A/zh
Application granted granted Critical
Publication of CN115026340B publication Critical patent/CN115026340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/12Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明公开了一种铣削测温刀具及其制造方法,属于切削刀具制备技术领域。本发明的铣削测温刀具,包括刀具主体和嵌在刀具主体芯部的测温模块。本发明制备的铣削测温刀具的相对密度为100%,维氏硬度为19.6±0.2GPa,断裂韧性为6.9±0.2MPa·m1/2,抗弯强度为1121±42MPa,切削温度测量范围为150~1000℃,测量灵敏度为14415K。本发明的铣削测温刀具,克服了热电偶传感器测量瞬态温度响应速度不足、热电偶布置在切削区易产生磨损及破坏、影响测量精度的问题。

Description

一种铣削测温刀具及其制造方法
技术领域
本发明涉及切削刀具制备技术领域,特别是涉及一种铣削测温刀具及其制造方法。
背景技术
随着新一轮产业革命的发展,智能制造成了信息技术和制造技术高度融合的新领域。智能切削技术是智能制造的基础技术,也是实现智能制造的关键技术。刀具状态监测作为智能切削加工的重要组成部分,它在优化加工参数、降低加工成本和提高加工质量等方面具有积极作用。
机械加工过程中会产生大量的切削热,切削热的变化会引起切削温度的变化,切削温度的变化会影响加工零件表面的质量,引起加工误差,因此由切削温度引起的加工误差已经成为影响和制约工件加工质量的重要障碍之一。有研究表明,由于切削温度引起的加工误差占到了总加工误差的40%至70%。切削加工过程中,由于主要是由刀尖附近切削刃进行切削加工,故切削温度主要集中在刀尖处,传统测量切削温度的方法有自然热电偶法、人工热电偶法、半人工热电偶法、红外辐射测温法、金相组织观察法等,但是这些测量温度的方法都存在弊端,例如自然热电偶法只能测出切削区域的平均温度,红外线辐射测温法一般用在被测物体为静止物体较为精准,金相组织观察法不能用于切削温度在线测量。
使用具有温度测量功能的智能刀具是测量切削温度的一种最有效和最易实现的手段。对于铣削测温刀具来说,目前这类测温刀具主要是通过在刀具切削刃附近预先埋入热电偶,利用热电偶实现对切削温度测量。如,论文(Measuring temperature of rotatingcutting tools:Application to MQL drilling and dry milling of aerospace alloys[J].Applied Thermal Engineering,2012,36:434-441.)提出了一种旋转式刀具温度测量系统,在钻头与端铣刀切削刃附近预埋热电偶,实现对钻头、端铣刀切削温度的测量;论文(A wireless sensor for tool temperature measurement and its integrationwithin a manufacturing system[J].Transactions of the North AmericanManufacturing Research Institute of SME,2006,34:63-70)研制了一种用于铣削刀具温度测量的无线测温刀具,电阻式温度传感器安装在端铣刀的背面;论文(Temperaturemeasurement in CFRP milling using a wireless tool-integrated processmonitoring sensor[J].International Journal of Automation Technology,2013,7(6):742-750.)研制了一种智能无线测温刀具,将直径0.2mm的K型热电偶精确地嵌入0.6mm的刀具凹槽中,保证热电偶距切削刃底部0.5mm的距离。但是,在刀具切削刃附近预先埋入热电偶测量切削温度存在多方面不足:热电偶传感器测量瞬态温度响应速度不足;将热电偶布置在切削区易产生磨损及破坏,影响测量精度;刀具需要特殊处理,工艺复杂,难以量产,不易实现工程应用。
发明内容
本发明的目的是提供一种铣削测温刀具及其制造方法,以解决现有技术中存在的问题,本发明通过原料及制备方法的调整制备得到的铣削测温刀具,测温灵敏度高;并且本发明的制造工艺简单高效,可以实现批量生产。本发明的铣削测温刀具,有助于推动智能切削技术的发展和应用,对实现航空、航天和兵器等领域的复杂精密零件、热敏感构件的高质量制造具有重要意义。
为实现上述目的,本发明提供了如下方案:
本发明的技术方案之一:一种铣削测温刀具,包括刀具主体和嵌在刀具主体芯部的测温模块;
所述测温模块为热敏陶瓷xAl2O3-yLaCrO3-0.1Y2O3,其中0.3≤x≤0.7,x+y=0.9,x和y均为摩尔数。
更进一步地,所述铣削测温刀具还包括与刀具主体和测温模块连接的数字源表。
Al2O3、LaCrO3和Y2O3三种原料合适的比例混合烧结后得到热敏陶瓷具有宽测温范围、高测量灵敏度,适合切削温度测量;三者组成的复合材料的致密化温度与刀具主体碳氮化钛金属陶瓷致密化温度一致,可以实现金属陶瓷刀具主体和热敏陶瓷测温模块一体化烧结成形,获得较高的力学性能。
进一步地,所述刀具主体的长度为20~35mm,直径为4~20mm;所述测温模块的直径为2~16mm。
进一步地,所述刀具主体为金属陶瓷或碳化钨硬质合金。
进一步地,所述金属陶瓷,以重量百分比计,包括以下原料:65%Ti(C0.7N0.3)、15%Mo2C、5%WC、3%NbC、6%Ni、6%Co。
进一步地,所述金属陶瓷由陶瓷原始粉末制备而成;所述金属陶瓷原始粉末的制备具体包括:按质量百分比称取各个原料,与乙醇混合后同时进行机械搅拌和超声震荡2h,120℃真空干燥过100目筛,得到所述金属陶瓷原始粉末。
进一步地,所述热敏陶瓷由热敏陶瓷原始粉末制备而成;所述热敏陶瓷原始粉末的制备具体包括:按摩尔数称取Al2O3、LaCrO3和Y2O3粉末,与乙醇混合后球磨6h,120℃真空干燥过100目筛,得到所述热敏陶瓷原始粉末。
本发明的技术方案之二:一种上述铣削测温刀具的制造方法,包括以下步骤:
(1)将刀具主体原料粉末装入中心腔设置有圆棒的模具中,施加轴向压力固定刀具主体原料粉末后抽出中心腔设置的圆棒,在中心腔设置的圆棒形成的孔道中填充测温模块原料粉末,再次施加轴向压力,得到刀具素坯;
(2)将带有模具的刀具素坯进行真空烧结,过程中施加轴向压力,得到所述铣削测温刀具。
进一步地,步骤(1)中所述轴向压力为5~10MPa,保压时间为2min。
进一步地,步骤(2)中所述真空烧结压力≤10Pa;所述轴向压力为40MPa;所述真空烧结温度为1500℃,保温时间为5min。
本发明的技术方案之三:一种上述铣削测温刀具在热敏感构件中的应用。
本发明公开了以下技术效果:
(1)本发明与传统铣削刀具相比,不但具有切削功能而且具备切削温度测量功能。
(2)本发明利用热敏陶瓷作为测温模块,将热敏陶瓷温度感知模块嵌入刀具主体芯部,通过热敏陶瓷感知切削过程中的温度变化,可实现150~1000℃的范围内测量,测量灵敏度为14415K。
(3)本发明的刀具主体和温度测量模块在一次烧结条件下即可成形,制造工艺简单高效。
(4)本发明的铣削测温刀结构紧凑,通过常规技术即可实现批量制造,制造成本低,便于推广应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1制备的铣削测温刀具二维结构示意图,其中,1为刀具主体,2为测温模块,3和4为导线;
图2为本发明实施例1制备的铣削测温刀具三维图,其中,1为刀具主体,2为测温模块,3和4为导线。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
一种铣削测温刀具的制造方法:
(1)金属陶瓷原始粉末的制备
A.按质量百分比计,由以下原料组成:65%Ti(C0.7N0.3)、15%Mo2C、5%WC、3%NbC、6%Ni、6%Co。
B.将以上原料混合后得到混合粉末,将混合粉末和无水乙醇以质量比1:3混合放入烧杯中,烧杯在超声波振荡器中以50r/min进行机械搅拌和超声震荡2h,得到浆体;然后将浆体在120℃下真空干燥,将干燥冷却后的粉末过100目筛,得到金属陶瓷原始粉末(Ti(C,N)金属陶瓷刀具主体的原始粉末)。
(2)热敏陶瓷原始粉末的制备
将Al2O3、LaCrO3和Y2O3粉末以摩尔比例0.3:0.6:0.1混合后得到混合粉末,将混合粉末和无水乙醇以质量比1:3混合,在行星球磨机中以氧化铝磨球球磨6h,球料比8:1,得到浆体;然后将浆体在120℃下真空干燥,将干燥冷却后的粉末过100目筛,得到热敏陶瓷原始粉末(LaCrO3-Al2O3-Y2O3负温度系数热敏陶瓷,用于制备测温模块)。
(3)刀具素坯的制备
在内直径为12.6mm、高为60mm的石墨模具内壁上覆盖石墨纸,将直径为4mm的石墨圆棒固定在石墨模具内腔中心位置,把金属陶瓷原始粉末填入石墨模具中,然后给粉末施加5MPa的轴向压力,保压2min;抽出石墨圆棒,将热敏陶瓷原始粉末填入石墨圆棒形成的孔道中,然后给粉末施加10MPa的轴向压力,保压2min,得到刀具素坯。
(4)铣削测温刀具的制备
A.将含有刀具素坯的石墨模具用碳毡包裹,放入放电等离子烧结炉中,抽真空至10Pa,向模具压头施加40MPa的轴向压力,在1500℃下烧结,保温时间为5min,保温结束后立即卸掉压力,随炉自然冷却,得到刀具棒材。
B.将刀具棒材的一端磨出切削刃,通过银电极将导线分别连接在测温模块和刀具主体上,然后将导线连接在数字源表上,得到铣削测温刀具。
铣削测温刀具的结构图见图1和图2,铣削测温刀具由刀具主体1、测温模块2、导线3和导线4组成;刀具主体1的芯部为测温模块2,导线3连接在测温模块2上,单线4连接在刀具主体1上。
铣削测温刀具的刀具长度为30mm,刀具主体的直径为12mm,测温模块的直径为4mm。
本实施例制备得到的铣削测温刀具的相对密度为100%,维氏硬度为19.6±0.2GPa,断裂韧性为6.9±0.2MPa·m1/2,抗弯强度为1121±42MPa,切削温度测量范围为150~1000℃,温度测量灵敏度为14415K。
测量灵敏度是指单位温度引起的热敏陶瓷阻值变化范围,用B来表示(单位K),B越大,温度测量灵敏度越高。
对比例1
(1)金属陶瓷原始粉末的制备
A.按质量百分比计,由以下原料组成:69%Ti(C0.7N0.3)、15%Mo2C、5%WC、3%NbC、2%Ni、6%Co。
B.将以上原料混合后得到混合粉末,将混合粉末和乙醇以质量比1:3混合放入烧杯中,烧杯在超声波振荡器中进行机械搅拌和超声震荡2h,得到浆体;然后将浆体在120℃下真空干燥,将干燥冷却后的粉末过100目筛,得到金属陶瓷原始粉末(Ti(C,N)金属陶瓷刀具主体的原始粉末)。
(2)刀具素坯的制备
在内直径为12.6mm、高为60mm的石墨模具内壁上覆盖石墨纸,把金属陶瓷原始粉末填入石墨模具中,然后给粉末施加10MPa的轴向压力,保压2min,得到刀具素坯。
(3)立铣刀的制备
A.将含有刀具素坯的石墨模具用碳毡包裹,放入放电等离子烧结炉中,抽真空至10Pa,向模具压头施加40MPa的轴向压力,在1500℃下烧结,保温时间为5min,保温结束后立即卸掉压力,随炉自然冷却,得到刀具棒材。
B.将刀具棒材的一端磨出切削刃,得到立铣刀。
本对比例制备得到的立铣刀的相对密度为100%,维氏硬度为19.5±0.3GPa,断裂韧性为6.7±0.2MPa·m1/2,抗弯强度,980±30MPa,该刀具仅能用来切削,不具备切削温度测量功能。
切削过程中刀具达到热平衡,内部和外部温度一致。
实施例2
同实施例1,区别在于,步骤(2)中Al2O3、LaCrO3和Y2O3粉末的摩尔比例为0.7:0.2:0.1。
本对比例制备得到的铣削测温刀具的相对密度为100%,维氏硬度为19.6±0.2GPa,断裂韧性为6.9±0.2MPa·m1/2,抗弯强度为1121±42MPa,切削温度测量范围为150~1000℃,温度测量灵敏度为12310K。
对比例2
同实施例1,区别在于,步骤(2)中Al2O3、LaCrO3和Y2O3粉末的摩尔比例为0.2:0.7:0.1。
本对比例制备得到的铣削测温刀具的相对密度为100%,维氏硬度为19.6±0.2GPa,断裂韧性为6.9±0.2MPa·m1/2,抗弯强度为1121±42MPa,切削温度测量范围为150~635℃,温度测量灵敏度为4419K。
对比例3
同实施例1,区别在于,步骤(2)中Al2O3、LaCrO3和Y2O3粉末的摩尔比例为0.1:0.8:0.1。
本对比例制备得到的铣削测温刀具的相对密度为100%,维氏硬度为19.6±0.2GPa,断裂韧性为6.9±0.2MPa·m1/2,抗弯强度为1121±42MPa,切削温度测量范围为150~420℃,温度测量灵敏度为3207K。
对比例4
同实施例1,区别在于,步骤(2)中Al2O3、LaCrO3和Y2O3粉末的摩尔比例为0.3:0.7:0。
本对比例制备得到的铣削测温刀具的相对密度为100%,维氏硬度为19.6±0.2GPa,断裂韧性为6.9±0.2MPa·m1/2,抗弯强度为1121±42MPa,切削温度测量范围为150~300℃,温度测量灵敏度为2587K。
对比例5
同实施例1,区别在于,步骤(2)中在行星球磨机中以氮化硅磨球球磨6h。
本对比例制备得到的铣削测温刀具的相对密度为100%,维氏硬度为19.6±0.2GPa,断裂韧性为6.9±0.2MPa·m1/2,抗弯强度为1121±42MPa,切削温度测量范围为220~500℃,温度测量灵敏度为4283K。
对比例6
同实施例1,区别在于,步骤(1)中按质量百分比计,金属陶瓷原始粉末由以下原料组成:73%Ti(C0.7N0.3)、15%Mo2C、5%WC、3%NbC、2%Ni、2%Co。
本对比例制备得到的铣削测温刀具的相对密度为98%,维氏硬度为19.3±0.2GPa,断裂韧性为6.4±0.2MPa·m1/2,抗弯强度为925±42MPa,切削温度测量范围为150~1000℃,温度测量灵敏度为14415K。
对比例7
同实施例1,区别在于,步骤(1)中按质量百分比计,金属陶瓷原始粉末由以下原料组成:67%Ti(C0.7N0.3)、15%Mo2C、5%WC、3%NbC、4%Ni、6%Co。
本对比例制备得到的铣削测温刀具的相对密度为98%,维氏硬度为19.6±0.2GPa,断裂韧性为6.6±0.2MPa·m1/2,抗弯强度为906±34MPa,切削温度测量范围为150~1000℃,温度测量灵敏度为14415K。
对比例8
同实施例1,区别在于,步骤(1)中,按质量百分比计,金属陶瓷原始粉末由以下原料组成:74%Ti(C0.7N0.3)、15%Mo2C、5%WC、3%NbC、2%Ni、4%Co。
本对比例制备得到的铣削测温刀具的相对密度为97.6%,维氏硬度为19.0±0.3GPa,断裂韧性为6.0±0.2MPa·m1/2,抗弯强度为911±32MPa,切削温度测量范围为150~1000℃,温度测量灵敏度为14415K。
对比例9
同实施例1,区别在于,步骤(3)中,把金属陶瓷原始粉末填入石墨模具中,未给粉末施加5MPa的轴向压力。
本对比例制备得到的铣削测温刀具的相对密度为98.6%,维氏硬度为19.1±0.3GPa,断裂韧性为6.4±0.2MPa·m1/2,抗弯强度为9201±35MPa,切削温度测量范围为150~700℃,温度测量灵敏度为10131K。
对比例10
同实施例1,区别在于,步骤(4)中,在1400℃下烧结。
本对比例制备得到的铣削测温刀具的相对密度为98.4%,维氏硬度为17.6±0.3GPa,断裂韧性为5.3±0.2MPa·m1/2,抗弯强度为635±32MPa,切削温度测量范围为220~1000℃,温度测量灵敏度为11017K。
对比例11
同实施例1,区别在于,步骤(4)中,在1600℃下烧结。
本对比例制备得到的铣削测温刀具的相对密度为99%,维氏硬度为19.0±0.4GPa,断裂韧性为6.4±0.3MPa·m1/2,抗弯强度为721±36MPa,切削温度测量范围为220~1000℃,温度测量灵敏度为12165K。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种铣削测温刀具,其特征在于,包括刀具主体和嵌在刀具主体芯部的测温模块;
所述测温模块为热敏陶瓷xAl2O3-yLaCrO3-0.1Y2O3,其中0.3≤x≤0.7,x+y=0.9,x和y均为摩尔数。
2.根据权利要求1所述的铣削测温刀具,其特征在于,所述刀具主体的长度为20~35mm,直径为4~20mm;所述测温模块的直径为2~16mm。
3.根据权利要求1所述的铣削测温刀具,其特征在于,所述刀具主体为金属陶瓷或硬质合金。
4.根据权利要求3所述的铣削测温刀具,其特征在于,所述金属陶瓷,以重量百分比计,包括以下原料:65%Ti(C0.7N0.3)、15%Mo2C、5%WC、3%NbC、6%Ni、6%Co。
5.根据权利要求4所述的铣削测温刀具,其特征在于,所述金属陶瓷由金属陶瓷原始粉末制备而成;所述金属陶瓷原始粉末的制备具体包括:按质量百分比称取各个原料,与乙醇混合后同时进行机械搅拌和超声震荡2h,真空干燥过筛,得到所述金属陶瓷原始粉末。
6.根据权利要求1所述的铣削测温刀具,其特征在于,所述热敏陶瓷由热敏陶瓷原始粉末制备而成;所述热敏陶瓷原始粉末的制备具体包括:按摩尔数称取Al2O3、LaCrO3和Y2O3粉末,与乙醇混合后球磨,真空干燥过筛,得到所述热敏陶瓷原始粉末。
7.一种权利要求1~6任一项所述的铣削测温刀具的制造方法,其特征在于,包括以下步骤:
(1)将刀具主体原料粉末装入中心腔设置有圆棒的模具中,施加轴向压力固定刀具主体原料粉末后抽出中心腔设置的圆棒,在中心腔设置的圆棒形成的孔道中填充测温模块原料粉末,再次施加轴向压力,得到刀具素坯;
(2)将带有模具的刀具素坯进行真空烧结,过程中施加轴向压力,得到所述铣削测温刀具。
8.根据权利要求7所述的制造方法,其特征在于,步骤(1)中所述轴向压力为5~10MPa,保压时间为2min。
9.根据权利要求7所述的制造方法,其特征在于,步骤(2)中所述真空烧结压力≤10Pa;所述轴向压力为40MPa;所述真空烧结温度为1500℃,保温时间为5min。
10.一种权利要求1~6任一项所述的铣削测温刀具在热敏感构件中的应用。
CN202210634750.9A 2022-06-06 2022-06-06 一种铣削测温刀具及其制造方法 Active CN115026340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210634750.9A CN115026340B (zh) 2022-06-06 2022-06-06 一种铣削测温刀具及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210634750.9A CN115026340B (zh) 2022-06-06 2022-06-06 一种铣削测温刀具及其制造方法

Publications (2)

Publication Number Publication Date
CN115026340A true CN115026340A (zh) 2022-09-09
CN115026340B CN115026340B (zh) 2024-01-05

Family

ID=83122252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210634750.9A Active CN115026340B (zh) 2022-06-06 2022-06-06 一种铣削测温刀具及其制造方法

Country Status (1)

Country Link
CN (1) CN115026340B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060589A (zh) * 2012-12-20 2013-04-24 华南理工大学 一种梯度多孔NiTi形状记忆合金的制备方法
CN104878267A (zh) * 2015-05-29 2015-09-02 南京理工大学 一种TiCN基金属陶瓷刀具材料及其微波烧结工艺
US20180178293A1 (en) * 2015-06-27 2018-06-28 Yamamoto Metal Technos Co., Ltd. Rotary machine tool equipped with sensor for real-time detection of state
CN108889950A (zh) * 2018-06-21 2018-11-27 深圳市富优驰科技有限公司 一种中空散热器的制备方法及中空散热器
CN112876232A (zh) * 2021-01-26 2021-06-01 南京理工大学 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN112893842A (zh) * 2021-01-15 2021-06-04 中国矿业大学 一种钢基MoFeB金属陶瓷螺杆的制备方法
CN113000841A (zh) * 2021-02-24 2021-06-22 西北有色金属研究院 一种带螺纹深孔的多孔镍元件制备方法
CN113732332A (zh) * 2021-10-18 2021-12-03 南京理工大学 一种温度感知智能切削刀具及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060589A (zh) * 2012-12-20 2013-04-24 华南理工大学 一种梯度多孔NiTi形状记忆合金的制备方法
CN104878267A (zh) * 2015-05-29 2015-09-02 南京理工大学 一种TiCN基金属陶瓷刀具材料及其微波烧结工艺
US20180178293A1 (en) * 2015-06-27 2018-06-28 Yamamoto Metal Technos Co., Ltd. Rotary machine tool equipped with sensor for real-time detection of state
CN108889950A (zh) * 2018-06-21 2018-11-27 深圳市富优驰科技有限公司 一种中空散热器的制备方法及中空散热器
CN112893842A (zh) * 2021-01-15 2021-06-04 中国矿业大学 一种钢基MoFeB金属陶瓷螺杆的制备方法
CN112876232A (zh) * 2021-01-26 2021-06-01 南京理工大学 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN113000841A (zh) * 2021-02-24 2021-06-22 西北有色金属研究院 一种带螺纹深孔的多孔镍元件制备方法
CN113732332A (zh) * 2021-10-18 2021-12-03 南京理工大学 一种温度感知智能切削刀具及其制造方法

Also Published As

Publication number Publication date
CN115026340B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
CN113732332A (zh) 一种温度感知智能切削刀具及其制造方法
EP1813926B1 (en) Method for manufacture of a physical quantity detector
US4490319A (en) Rapid rate sintering of ceramics
CA1314908C (en) Whisker reinforced ceramics and a method of clad/hot isostatic pressing same
EP0164930B1 (en) Molding method for producing optical glass element
KR100993136B1 (ko) 세라믹 광학 부품의 제조방법
JP2015520661A (ja) 超硬質構造物の製造方法
CN101850502A (zh) 一种氮化硅陶瓷刀片的制备方法
CN105772733A (zh) 一种超厚金刚石层的聚晶金刚石复合片的制造方法
EP0516164B1 (en) Watch exterior part
CN106513675A (zh) 一种钛合金薄壁构件激光增材制造成形方法
CN115026340B (zh) 一种铣削测温刀具及其制造方法
CN113601732A (zh) 一种陶瓷材料风洞模型的加工方法
CN103203448A (zh) 一种金属基陶瓷复合材料零件的制造方法
CN102680502A (zh) 一种测量金属棒材织构的方法
CN107716926B (zh) 一种用于放电等离子烧结的校温模具
CN116493652A (zh) 一种铣削测温刀具及其制备方法
CN115074589B (zh) 一种热敏/结构材料复合叠层测温刀具及其制备方法
CN109608204A (zh) 一种高硬度Si3N4陶瓷天线罩高效精密加工制备方法
CN101269972B (zh) 超重力场中制备致密块体陶瓷材料的装置
CN104108936B (zh) 一种碳化锆复合陶瓷温度传感器的制备方法
CN114905075A (zh) 一种具有温度测量功能的立铣刀及其制备方法
JP6443207B2 (ja) 超硬合金及び切削工具
JP3606311B2 (ja) 超硬質粒子含有複合材料
殷增斌 et al. Study on a new type of cutting temperature sensing smart tool

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yin Zengbin

Inventor after: Zheng Dietong

Inventor after: Chen Weiyou

Inventor before: Zheng Dietong

Inventor before: Yin Zengbin

Inventor before: Chen Weiyou

GR01 Patent grant
GR01 Patent grant