CN115021525A - 考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路 - Google Patents

考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路 Download PDF

Info

Publication number
CN115021525A
CN115021525A CN202210952793.1A CN202210952793A CN115021525A CN 115021525 A CN115021525 A CN 115021525A CN 202210952793 A CN202210952793 A CN 202210952793A CN 115021525 A CN115021525 A CN 115021525A
Authority
CN
China
Prior art keywords
active
transient
bridge converter
parasitic
parasitic parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210952793.1A
Other languages
English (en)
Other versions
CN115021525B (zh
Inventor
孙媛媛
徐恭德
李亚辉
许庆燊
孙凯祺
李博文
张安彬
徐龙威
刘振
王超凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210952793.1A priority Critical patent/CN115021525B/zh
Publication of CN115021525A publication Critical patent/CN115021525A/zh
Application granted granted Critical
Publication of CN115021525B publication Critical patent/CN115021525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明属于有源桥变换器暂态振荡抑制技术领域,具体公开了一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路,所述方法包括:在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路;所述吸收电阻阻值的计算方法为:分别获取开关器件和高频变压器的寄生参数,基于所述寄生参数计算多有源桥变换器交流端口暂态电压振荡阻尼系数,令暂态过程处于临界阻尼状态,进而计算得到保证暂态过程不发生超调的最小电阻,即为吸收电阻阻值。本发明能够降低暂态电压振荡幅值,减小交流方波电压畸变问题。

Description

考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路
技术领域
本发明涉及有源桥变换器暂态振荡抑制技术领域,尤其涉及一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
随着可再生能源发电渗透率的日益增加,电动汽车等不确定性负载及轨道交通、高铁等负荷的大规模接入,使得直流微网和交直流混合微网等新型供用电主体得到了广泛关注。为实现直流微网和交直流混合微网中可再生能源、储能环节、交直流负荷以及并网等环节的主动调控,电力电子变压器和电能路由器的应用随着发展要求应运而生。
基于双有源桥(Double active bridge,DAB)变换器提出的多有源桥变换器(MultipleActiveBridge,MAB)在电能路由器、电动汽车、储能以及直流微网等领域扮演着重要的角色,MAB通过高频变压器(High Frequency Transformer, HFT)的副边绕组并联形成交流公共母线,保证端口之间电气隔离的同时实现功率多向流动,端口模块化的实现提高了变换器的可拓展性。为提高变换器的传输效率,变换器采用了更快开关速度、更高耐压耐温等级、更加优越的功率密度特性、更小的导通损耗和关断损耗的碳化硅-金属-氧化物半导体场效应晶体管(SiCMetal-Oxide-Semiconductor Field-Effect Transistor, SiCMOSFET)。但是,由于SiC MOSFET开通关断仅有几十纳秒,高速的开关动作具有极高的电压变化率(dv/dt),上下管死区和器件开关过程上升、下降时间等非理想因素,会造成DAB变换器高频方波电压脉冲含有大量的高次谐波,种种行为对寄生参数十分敏感。高频变压器分布电容在高频脉冲激励下可能会出现极高的电压过冲,与电路中其他感性元件构成谐振网络,在功率开关器件的开通和关断过程中,可能会引起电压过冲和远高于开关频率的超高频振荡现象。
超高频振荡问题不仅增加了变换器额外的应力,甚至会加速器件老化,而且会产生额外损耗和电磁干扰,影响变换器的稳定运行。
发明内容
为了解决上述问题,本发明提出了一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路,在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路,有效实现暂态振荡过程的抑制。
在一些实施方式中,采用如下技术方案:
一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法,包括:在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路;
所述吸收电阻阻值的计算方法为:
分别获取开关器件和高频变压器的寄生参数,基于所述寄生参数计算多有源桥变换器交流端口暂态电压振荡阻尼系数,令暂态过程处于临界阻尼状态,进而计算得到保证暂态过程不发生超调的最小电阻,即为吸收电阻阻值。
作为可选的方案,所述开关器件的寄生参数包括:漏极寄生电感,源极寄生电感,栅极电感,栅极驱动电阻,栅源电容,栅漏电容和漏源电容。
作为可选的方案,所述高频变压器寄生参数包括高频变压器原边绕组的寄生电容,高频变压器副边绕组的寄生电容,高频变压器原副边绕组之间的等效寄生电容;高频变压器等效在原边绕组和副边绕组的漏感,高频变压器等效在原边绕组和副边绕组的电阻;高频变压器励磁电感和励磁电阻。
作为可选的方案,计算多有源桥变换器交流端口暂态电压振荡阻尼系数,具体为:
Figure 165945DEST_PATH_IMAGE001
其中,
Figure 508065DEST_PATH_IMAGE002
Figure 825914DEST_PATH_IMAGE003
为高频变压器原边绕组的寄生电容,
Figure 544471DEST_PATH_IMAGE004
是高频变压器副边绕组的寄生电容,
Figure 747656DEST_PATH_IMAGE005
是原副边绕组之间的等效寄生电容,
Figure 526256DEST_PATH_IMAGE006
是高频变压器变比;
Figure 65821DEST_PATH_IMAGE007
为等效移相电感,
Figure 588070DEST_PATH_IMAGE008
等效串联寄生电阻,
Figure 896691DEST_PATH_IMAGE009
为变压器励磁电阻。
作为可选的方案,暂态过程实现临界阻尼的条件为:
Figure 846193DEST_PATH_IMAGE010
作为可选的方案,计算得到保证暂态过程不发生超调的最小电阻
Figure 607475DEST_PATH_IMAGE011
,具体为:
Figure 933414DEST_PATH_IMAGE012
其中,
Figure 96543DEST_PATH_IMAGE013
是变压器励磁电阻,
Figure 216945DEST_PATH_IMAGE014
为变换器的移相电感。
在另一些实施方式中,采用如下技术方案:
一种考虑寄生参数的多有源桥变换器暂态振荡抑制电路,其特征在于,包括:在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路;吸收电阻串联在半桥不控整流电路中。
作为可选的方案,所述吸收电阻的阻值计算过程为:
分别获取开关器件和高频变压器的寄生参数,基于所述寄生参数计算多有源桥变换器交流端口暂态电压振荡阻尼系数,令暂态过程处于临界阻尼状态,进而计算得到保证暂态过程不发生超调的最小电阻,即为吸收电阻阻值。
作为可选的方案,所述吸收电阻的阻值具体为:
Figure 731103DEST_PATH_IMAGE015
其中,
Figure 595154DEST_PATH_IMAGE013
是变压器励磁电阻,
Figure 612789DEST_PATH_IMAGE016
为变换器的移相电感。
与现有技术相比,本发明的有益效果是:
(1)本发明在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路,结合开关器件和高频变压器的寄生参数,计算吸收电阻的阻值,能够降低暂态电压振荡幅值,减小交流方波电压畸变问题;减小高频暂态振荡引发的额外损耗,提高变换器的效率;降低振荡幅值引起的额外电压应力,降低高频变压器的绝缘损耗,延长高频变压器的使用寿命,对变换器的可靠稳定运行具有重要意义。
(2)本发明计算吸收电阻的方法,对寄生参数下有源桥交流端口暂态振荡电压问题得到了明显的抑制,减小交流方波电压畸变问题,减小高频暂态振荡引发的额外损耗,提高变换器的效率。
本发明的其他特征和附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本方面的实践了解到。
附图说明
图1为高频变压器三电容等效模型;
图2为多有源桥变换器拓扑示意图;
图3为两端口有源桥变换器等效简化拓扑示意图;
图4为本发明实施例中的考虑寄生参数的多有源桥变换器暂态振荡抑制电路结构示意图;
图5为未进行振荡抑制的多有源桥变换器交流端口电压波形图;
图6为采用本发明抑制方法后的多有源桥变换器交流端口电压波形图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一
当有源桥变换器工作时,在高频开关下H桥输出极高的电压脉冲,引起移相电感与高频变压器寄生参数构成的网络发生超高频暂态振荡;下面对变换器暂态振荡过程进行分析。
高频变压器三电容分布参数模型如图1所示,
Figure 169672DEST_PATH_IMAGE017
是高频变压器原边绕组的寄生电容,
Figure 171126DEST_PATH_IMAGE018
是高频变压器F副边绕组的寄生电容,
Figure 838868DEST_PATH_IMAGE019
是原副边绕组之间的等效寄生电容,
Figure 708079DEST_PATH_IMAGE020
是变压器励磁电感,
Figure 435864DEST_PATH_IMAGE021
是变压器励磁电阻,Lp是变压器等效在原边的漏感,
Figure 659035DEST_PATH_IMAGE022
为变压器等效在原边的绕组电阻,n是高频变压器变比。
通过仿真或阻抗扫描仪获得多有源桥变换器中高频变压器的寄生参数,包括:
Figure 130467DEST_PATH_IMAGE023
Figure 122694DEST_PATH_IMAGE024
Figure 21380DEST_PATH_IMAGE025
Figure 466268DEST_PATH_IMAGE026
Figure 475812DEST_PATH_IMAGE027
Figure 853704DEST_PATH_IMAGE028
Figure 392132DEST_PATH_IMAGE029
在单侧激励下,任意端口外的等效电路可等效为其他端口有源桥电路的并联形式;通过图2的多端口有源桥变换器,将端口1之外的3个端口等效并联,推导得到图3所示的等效两端口有源桥变换器的等效电路模型。
根据图3所示等效电路模型,可以推导得到暂态电压振荡表达式如公式(1)所示:
Figure 855475DEST_PATH_IMAGE030
(1)
式中,
Figure 137552DEST_PATH_IMAGE031
(2)
Figure 104371DEST_PATH_IMAGE032
Figure 79280DEST_PATH_IMAGE033
(3)
Figure 764339DEST_PATH_IMAGE034
(4)
其中,
Figure 115686DEST_PATH_IMAGE035
为暂态振荡过程的衰减系数,
Figure 939941DEST_PATH_IMAGE036
为在暂态振荡电压的振荡角频率,
Figure 351331DEST_PATH_IMAGE037
为有源桥变换器H桥输出电压的阶跃时间,U为有源桥变换器直流侧电压,
Figure 992528DEST_PATH_IMAGE038
为变换器的移相电感,
Figure 147566DEST_PATH_IMAGE039
为变压器等效在原边的绕组电阻,
Figure 88977DEST_PATH_IMAGE040
Figure 405689DEST_PATH_IMAGE041
为简化电路的等效电感与电阻。
交流端口暂态电压振荡频率
Figure 799761DEST_PATH_IMAGE042
满足:
Figure 492910DEST_PATH_IMAGE043
(5)
可以看出,寄生参数下有源桥换器交流端口电压振荡表达式的振荡幅值和振荡频率由电路自身参数决定,反映了谐振电路的固有性质。
本实施例在原本的高频交流方波上叠加了兆赫兹级振荡波形,在多有源桥变换器交流端口通过并联含有吸收电阻的半桥不控整流电路,能够增大暂态振荡的阻尼过程,有效实现暂态振荡过程的抑制。
其中,吸收电阻阻值的计算方法为:
分别获取开关器件和高频变压器的寄生参数,基于所述寄生参数计算多有源桥变换器交流端口暂态电压振荡阻尼系数,令暂态过程处于临界阻尼状态,进而计算得到保证暂态过程不发生超调的最小电阻,即为吸收电阻阻值。
具体地,如图4所示,根据等效电路暂态振荡计算交流端口并联吸收电阻R snubber。首先通过公式(2)计算多有源桥变换器交流端口暂态电压振荡阻尼系数
Figure 288828DEST_PATH_IMAGE044
Figure 307600DEST_PATH_IMAGE045
(6)
则:
Figure 923389DEST_PATH_IMAGE046
(7)
其中,
Figure 154650DEST_PATH_IMAGE047
Figure 805074DEST_PATH_IMAGE048
为等效移相电感,
Figure 729168DEST_PATH_IMAGE049
等效串联寄生电阻,
Figure 97832DEST_PATH_IMAGE050
为阻尼系数,
Figure 398364DEST_PATH_IMAGE013
分别为变压器等效电阻与励磁电阻,且满足
Figure 903294DEST_PATH_IMAGE051
步骤5:令暂态过程处于临界阻尼状态,本实施例中,暂态过程实现临界阻尼的条件为:
Figure 729780DEST_PATH_IMAGE052
进而根据公式(8)计算得到保证暂态过程不发生超调的最小电阻:
Figure 585741DEST_PATH_IMAGE053
(8)
由此得到能够实现多有源桥变换器交流端口的暂态振荡抑制的最佳吸收电阻阻值。
图5所示为现有技术下多有源桥变换器中交流端口暂态电压波形图;图6所示为采用本发明的暂态电压振荡抑制方法后,多有源桥变换器交流端口电压波形图。图5可以看出目前高频工作下多有源桥变换器交流端口电压振荡问题显著。图6可以看出电压的暂态振荡问题得到了明显的抑制,暂态振荡问题得到解决。
实施例二
在一个或多个还是方式中,公开了一种考虑寄生参数的多有源桥变换器暂态振荡抑制电路,结合图4,具体包括:在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路;吸收电阻串联在半桥不控整流电路中。
与实施例一中相同,吸收电阻的阻值计算过程为:
分别获取开关器件和高频变压器的寄生参数,基于所述寄生参数计算多有源桥变换器交流端口暂态电压振荡阻尼系数,令暂态过程处于临界阻尼状态,进而计算得到保证暂态过程不发生超调的最小电阻,即为吸收电阻阻值。
吸收电阻的阻值具体为:
Figure 158805DEST_PATH_IMAGE054
其中,
Figure 49400DEST_PATH_IMAGE055
是变压器励磁电阻,
Figure 49717DEST_PATH_IMAGE056
吸收电阻的具体计算过程已经在实施例一中进行了详细的说明,此处不再详述。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (9)

1.一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法,其特征在于,包括:在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路;
所述吸收电阻阻值的计算方法为:
分别获取开关器件和高频变压器的寄生参数,基于所述寄生参数计算多有源桥变换器交流端口暂态电压振荡阻尼系数,令暂态过程处于临界阻尼状态,进而计算得到保证暂态过程不发生超调的最小电阻,即为吸收电阻阻值。
2.如权利要求1所述的一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法,其特征在于,所述开关器件的寄生参数包括:漏极寄生电感,源极寄生电感,栅极电感,栅极驱动电阻,栅源电容,栅漏电容和漏源电容。
3.如权利要求1所述的一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法,其特征在于,所述高频变压器寄生参数包括高频变压器原边绕组的寄生电容,高频变压器副边绕组的寄生电容,高频变压器原副边绕组之间的等效寄生电容;高频变压器等效在原边绕组和副边绕组的漏感,高频变压器等效在原边绕组和副边绕组的电阻;高频变压器励磁电感和励磁电阻。
4.如权利要求1所述的一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法,其特征在于,计算多有源桥变换器交流端口暂态电压振荡阻尼系数,具体为:
Figure 642857DEST_PATH_IMAGE001
其中,
Figure 409300DEST_PATH_IMAGE002
Figure 179810DEST_PATH_IMAGE003
为高频变压器原边绕组的寄生电容,
Figure 9226DEST_PATH_IMAGE004
是高频变压器副边绕组的寄生电容,
Figure 865187DEST_PATH_IMAGE005
是原副边绕组之间的等效寄生电容,n是高频变压器变比;
Figure 438250DEST_PATH_IMAGE006
为等效移相电感,
Figure 532108DEST_PATH_IMAGE007
等效串联寄生电阻,
Figure 798005DEST_PATH_IMAGE008
为变压器励磁电阻。
5.如权利要求4所述的一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法,其特征在于,暂态过程实现临界阻尼的条件为:
Figure 875682DEST_PATH_IMAGE009
6.如权利要求4所述的一种考虑寄生参数的多有源桥变换器暂态振荡抑制方法,其特征在于,计算得到保证暂态过程不发生超调的最小电阻
Figure 518016DEST_PATH_IMAGE010
,具体为:
Figure 263118DEST_PATH_IMAGE011
7.一种考虑寄生参数的多有源桥变换器暂态振荡抑制电路,其特征在于,包括:在多有源桥变换器交流端口并联含有吸收电阻的半桥不控整流电路;吸收电阻串联在半桥不控整流电路中。
8.如权利要求7所述的一种考虑寄生参数的多有源桥变换器暂态振荡抑制电路,其特征在于,所述吸收电阻的阻值计算过程为:
分别获取开关器件和高频变压器的寄生参数,基于所述寄生参数计算多有源桥变换器交流端口暂态电压振荡阻尼系数,令暂态过程处于临界阻尼状态,进而计算得到保证暂态过程不发生超调的最小电阻,即为吸收电阻阻值。
9.如权利要求7所述的一种考虑寄生参数的多有源桥变换器暂态振荡抑制电路,其特征在于,所述吸收电阻的阻值具体为:
Figure 434336DEST_PATH_IMAGE012
其中,
Figure 999310DEST_PATH_IMAGE013
是变压器励磁电阻,
Figure 179755DEST_PATH_IMAGE014
为变换器的移相电感。
CN202210952793.1A 2022-08-10 2022-08-10 考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路 Active CN115021525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210952793.1A CN115021525B (zh) 2022-08-10 2022-08-10 考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210952793.1A CN115021525B (zh) 2022-08-10 2022-08-10 考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路

Publications (2)

Publication Number Publication Date
CN115021525A true CN115021525A (zh) 2022-09-06
CN115021525B CN115021525B (zh) 2022-11-01

Family

ID=83065690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210952793.1A Active CN115021525B (zh) 2022-08-10 2022-08-10 考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路

Country Status (1)

Country Link
CN (1) CN115021525B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347174A (zh) * 2018-04-24 2018-07-31 福建星云电子股份有限公司 一种Boost全桥隔离型变换器及其复合有源箝位电路
US20190028035A1 (en) * 2016-05-23 2019-01-24 Foundation Of Soongsil University-Industry Cooperation Active clamp full bridge converter and driving method thereof
CN112865494A (zh) * 2021-01-19 2021-05-28 清华大学 一种直流变压器交流分布参数网络中高频振荡抑制方法
CN114123823A (zh) * 2021-12-06 2022-03-01 国网山东省电力公司电力科学研究院 共高频交流母线电能路由器高频振荡分析方法和系统
CN114553002A (zh) * 2022-01-18 2022-05-27 北京智芯微电子科技有限公司 高频链换流器及其振荡抑制方法与装置
CN114818572A (zh) * 2022-03-30 2022-07-29 西北工业大学 高频等效电路、高频等效电路的建模方法及建模装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190028035A1 (en) * 2016-05-23 2019-01-24 Foundation Of Soongsil University-Industry Cooperation Active clamp full bridge converter and driving method thereof
CN108347174A (zh) * 2018-04-24 2018-07-31 福建星云电子股份有限公司 一种Boost全桥隔离型变换器及其复合有源箝位电路
CN112865494A (zh) * 2021-01-19 2021-05-28 清华大学 一种直流变压器交流分布参数网络中高频振荡抑制方法
CN114123823A (zh) * 2021-12-06 2022-03-01 国网山东省电力公司电力科学研究院 共高频交流母线电能路由器高频振荡分析方法和系统
CN114553002A (zh) * 2022-01-18 2022-05-27 北京智芯微电子科技有限公司 高频链换流器及其振荡抑制方法与装置
CN114818572A (zh) * 2022-03-30 2022-07-29 西北工业大学 高频等效电路、高频等效电路的建模方法及建模装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
文武松,等: ""电能路由器公共高频母线超瞬态过程机理及抑制措施"", 《中国电机工程学报》 *

Also Published As

Publication number Publication date
CN115021525B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN111490683B (zh) 双变压器串联谐振双有源桥dc-dc变换器拓扑的轨迹控制方法
Tripathi et al. Design considerations of a 15-kV SiC IGBT-based medium-voltage high-frequency isolated DC–DC converter
Beiranvand et al. Using LLC resonant converter for designing wide-range voltage source
Liu et al. An optimized hybrid modulation scheme for reducing conduction losses in dual active bridge converters
Li et al. An optimized DPS control for dual-active-bridge converters to secure full-load-range ZVS with low current stress
WO2023098826A1 (zh) 谐振型双有源桥式变换电路的控制方法、控制器及变换器
US11437915B2 (en) Converter
Kazemtarghi et al. Asymmetric half-frequency modulation in DAB to optimize the conduction and switching losses in EV charging applications
Ren et al. A closed-loop modulation scheme for duty cycle compensation of PWM voltage distortion at high switching frequency inverter
CN112928919A (zh) 宽输出电压范围的隔离型高频谐振式直流-直流变换器及方法
Forouzesh et al. Interleaved SCC-LCLC converter with TO-220 GaN HEMTs and accurate current sharing for wide operating range in data center application
CN111835204B (zh) 谐振式双有源桥的零回流功率软开关调制方法及变换器
CN113659852A (zh) 开关电容谐振倍压整流变换器及其控制方法、控制系统
CN115021525B (zh) 考虑寄生参数的多有源桥变换器暂态振荡抑制方法及电路
CN112865494B (zh) 一种直流变压器交流分布参数网络中高频振荡抑制方法
Wang et al. Phase-shift soft-switching power amplifier with lower EMI noise
CN114268234B (zh) 高效低谐波的混合型模块化多电平换流器及其控制方法
Serban et al. Bidirectional parallel low-voltage series high-voltage dab-based converter analysis and design
CN114696625A (zh) 一种适用于单移相控制的双有源桥电感范围确定方法
RU2727622C1 (ru) Квазирезонансный преобразователь напряжения с улучшенной электромагнитной совместимостью
Menger et al. Loss Estimation of a Dual Active Bridge as part of a Solid State Transformer using Frequency Domain Modelling
Yang et al. Extension of zero-voltage switching region of wide volage ratio range dual-active-bridge converter by LC antiresonant network
Siemaszko et al. Description and efficiency comparison of two 25 kVA DC/AC isolation modules
Karkaragh et al. A High-frequency Compact Zero-Voltage-Transition GaN-based Single-phase Inverter
Yin et al. An Online Efficiency Optimization Strategy Based on Variable-Frequency Phase-Shift Modulation for Dual-Active-Bridge Converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant