CN115010960A - 一种金属基自固化墨水及其制备方法 - Google Patents

一种金属基自固化墨水及其制备方法 Download PDF

Info

Publication number
CN115010960A
CN115010960A CN202210634019.6A CN202210634019A CN115010960A CN 115010960 A CN115010960 A CN 115010960A CN 202210634019 A CN202210634019 A CN 202210634019A CN 115010960 A CN115010960 A CN 115010960A
Authority
CN
China
Prior art keywords
metal
curing ink
based self
point solvent
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210634019.6A
Other languages
English (en)
Inventor
庄林
肖丽
王晓晨
黄碧柔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202210634019.6A priority Critical patent/CN115010960A/zh
Publication of CN115010960A publication Critical patent/CN115010960A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/093Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2293Oxides; Hydroxides of metals of nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/12Hydrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)

Abstract

本发明公开了一种金属基自固化墨水及其制备方法,首先将聚甲基丙烯酸甲酯溶于混合溶剂中,得到无色透明液体的聚合物溶液,所述混合溶剂包括作为分散剂的低沸点溶剂、作为稀释剂的中沸点溶剂和作为保湿剂的高沸点溶剂;然后取金属基化合物加入到上述聚合物溶液中,搅拌置于通风橱中挥发至混合物变为半固体状态;最后利用搅拌器匀浆处理得到用于直写成型的金属基自固化墨水。本发明制备的金属基自固化墨水,可以采用3D打印技术制备水电解的气体扩散层,具有可控孔径的直通孔,能够使得气泡快速排出,减少气液传输阻力。

Description

一种金属基自固化墨水及其制备方法
技术领域
本发明属于材料领域,涉及一种用于3D直写成型技术墨水的制备,具体涉及一种金属基自固化墨水的制备方法。
背景技术
在保护我们的环境的同时为未来创造一个全球范围的可持续能源系统是当今人类面临的最关键的挑战之一。人们对能源供应,特别是与使用化石燃料有关的气候变化,提出了重大关切。一个重要的方向是使我们的能源多样化,通过转向太阳能、风能和水力发电等可再生能源,减少我们对化石燃料的依赖。在双碳目标下,氢能在以可再生能源为主导的能源体系中发挥着至关重要的作用,传统的化石燃料制氢的方法不仅能耗较高还会带来二氧化碳的排放。电解水制氢不仅操作简单且无有害副产物,被认为是未来发展潜力的制氢方法。
经过几十年的发展,水电解领域已经基本形成了一个完整的体系。然而,高电流密度将产生大量气泡,这是一个在低电流密度下工作时可能无法观察到的问题。设计一种可以便于气泡快速排出,减少气液传输阻力的气体扩散层,成为了未来水电解发展的一个重要挑战。采用具有有序孔道的三维电极结构是一种理想的使气泡的快速逸出的策略,但使用传统的制造方法构建如此复杂的电极是极其困难的。3D直写成型技术是一种典型的挤出型沉积技术,通过计算机编程设计结构,在受控压力下,通过计算机控制三轴机械臂的定向移动,从而生成设计的三维结构。那么,具有适当高粘度和弹性行为的可打印油墨的制备对于3D打印直写成型技术的成功至关重要,尤其是那些表现出剪切稀化行为的油墨,其中粘度随着剪切速率的增加而降低。因此,从工艺的角度上如何获得一个具有高粘度、剪切稀化特性、弹性模量大于损耗模量、高度浓缩且均匀的体系则成为了技术上的关键难点。
发明内容
针对上述挑战,本发明为了获得具有高粘度、剪切稀化特性、弹性模量大于损耗模量、高度浓缩且均匀的体系,采用了多溶剂分级挥发的方法制备了金属基自固化墨水,使用该墨水和先进的3D打印技术(墨水直写成型技术),制备了具有直通孔和可控孔径的新型气体扩散层。通过上述方法得到的气体扩散层,更有利于气液传输,可以减小传质阻力。这一类具有直通孔和可控孔径的新型气体扩散层,在未来很有望应用于碱性聚合物膜燃料电池,二氧化碳电还原,碱性水体系水电解等领域。
为了解决上述技术问题,本发明采用以下技术方案:
一种金属基自固化墨水的制备方法,其特征在于,包括以下步骤
步骤1、将聚甲基丙烯酸甲酯溶于混合溶剂中,得到无色透明液体,所述混合溶剂包括作为分散剂的低沸点溶剂、作为稀释剂的中沸点溶剂和作为保湿剂的高沸点溶剂;
步骤2、取金属基化合物加入到上述无色透明液体中,搅拌置于通风橱中挥发至混合物变为半固体状态,所述金属基化合物为金属基氧化物或者氢化物;
步骤3、最后利用搅拌器匀浆处理得到用于直写成型的金属基自固化墨水。
优选的,所述低沸点溶剂为乙醚、丙酮及二氯甲烷中的任意一种或几种。
优选的,所述中沸点溶剂为乙二醇丁醚,苯甲醚,N,N-二甲基甲酰胺中的任意一种或几种。
优选的,所述高沸点溶剂为邻苯二甲酸二丁酯。
优选的,所述金属基化合物为CuO、Cu2O、TiH2、Fe2O3、FeO、Fe3O4、Ni2O3、NiO、Co2O3、Co3O4、CoO、MoO3、MoO2及WO3中的任意一种或者几种混合物。
优选的,步骤1中,聚甲基丙烯酸甲酯溶于混合溶剂时采用超声震荡分散直至完全溶解。
优选的,步骤2中,金属基化合物加入到无色透明液体中后,先超声分散,后磁力搅拌4-48小时,保证分散程度。
优选的,步骤3中,所得到的金属基自固化墨水的固体含量不低于74%,对于直写成型技术来说,在满足流动性要求前提下,浓度越高越好。
优选的,步骤3中,所得到的金属基自固化墨水中,聚甲基丙烯酸甲酯与金属的质量比为0.10-0.18。
本发明还保护一种金属基自固化墨水,其特征在于:采用上述任意一项所述方法做制得。
本发明还保护一种金属基自固化墨水的用途,其特征在于:用于制备水电解的气体扩散层。
本发明有益效果如下:
本发明采用多溶剂分级挥发的方法,制备了一种具有高粘度、剪切稀化特性、弹性模量大于损耗模量、高度浓缩且均匀的金属基自固化墨水,该方法通用性高、重现性好且可大批量制备。使用这种金属基自固化墨水和3D打印直写成型技术可以制备水电解的气体扩散层,采用本发明制备的气体扩散层具有可控孔径的直通孔,能够气泡快速排出,减少气液传输阻力。
附图说明
图1为本实施例1钛基自固化墨水的粘度随剪切速率的变化关系。
图2为本实施例1钛基自固化墨水的储能模量和损耗模量随剪切应力的变化关系。
图3为本实施例2铜基自固化墨水的粘度随剪切速率的变化关系。
图4为本实施例2铜基自固化墨水的储能模量和损耗模量随剪切应力的变化关系。
图5为本发明采用实施例4中墨水3D打印得到的气体扩散层的光学显微镜图。
图6为本发明实施例4中打印得到的气体扩散层用于碱性聚电解质水电解测试的电压电流曲线。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,其目的在于帮助更好的理解本发明的内容,但这些具体实施方案不以任何方式限制本发明的保护范围。本实施方案所用的原料均为常见已知化合物,均可在市场上购得。
实施例1
称取1.44g聚甲基丙烯酸甲酯(Mw~35000)于试剂瓶中,加入11.2g二氯甲烷、1.2g乙二醇丁醚和0.6g邻苯二甲酸二丁酯组成的混合溶剂,超声30min至完全溶解,得到无色透明液体的聚合物溶液。
称取9g氢化钛加入到上述聚合物溶液,超声10min后磁力搅拌12h,再将其置于通风橱中挥发至混合物变为半固体状态,随后利用Thinky公司生产的搅拌器匀浆处理得到固体质量分数为84.8%(TiH2+PMMA)的钛基自固化墨水,可用于3D的直写成型技术制备气体扩散层。
对本实施案例中的钛基自固化墨水进行流变性能表征,流变性能测试采用应力控制型旋转流变仪(HAAKE RheoStress 600,Thermo Scientific,USA)进行测量,分别对样品进行稳态流动性测试和振荡测试。图1为钛基自固化墨水的粘度随剪切速率的变化关系,从图中可知,该墨水粘度随剪切速率增加而降低,呈现出非牛顿流体的剪切稀化特性。该墨水具有高粘度和剪切稀化特性,满足3D打印要求。当施加一定压力时,墨水在管内流动时,由于剪切稀化特性,墨水可以顺利流出不堵塞针头;当墨水打印在基底上时,由于剪切力为0,粘度最大,可以使打印形状得到保持。图2为钛基自固化墨水的储能模量和损耗模量随剪切应力的变化关系,从图中可以看出,在低剪切力区域,该墨水的储能模量大于损耗模量,对于多层打印而言,底层形状不会塌陷,具有良好自支撑和形状保持效果。
实施例2
称取1.05g聚甲基丙烯酸甲酯(Mw~35000)于试剂瓶中,加入11.2g二氯甲烷、1.2g乙二醇丁醚和0.6g邻苯二甲酸二丁酯组成的混合溶剂,超声30mim至完全溶解,得到无色透明液体的聚合物溶液。
称取8.2g氧化铜加入到上述聚合物溶液,超声10min后磁力搅拌12h,再将其置于通风橱中挥发至混合物变为半固体状态,随后利用Thinky公司生产的搅拌器匀浆处理得到固体质量分数为83.7%(CuO+PMMA)的铜基自固化墨水,可用于3D的直写成型技术制备气体扩散层。
对本实施案例中的铜基自固化墨水进行流变性能表征,流变性能测试采用应力控制型旋转流变仪(HAAKE RheoStress 600,Thermo Scientific,USA)进行测量,分别对样品进行稳态流动性测试和振荡测试。图3为铜基自固化墨水的粘度随剪切速率的变化关系,从图中可知,该墨水粘度随剪切速率增加而降低,呈现出非牛顿流体的剪切稀化特性。该墨水具有高粘度和剪切稀化特性,满足3D打印要求。当施加一定压力时,墨水在管内流动时,由于剪切稀化特性,墨水可以顺利流出不堵塞针头;当墨水打印在基底上时,由于剪切力为0,粘度最大,可以使打印形状得到保持。图4为铜基自固化墨水的储能模量和损耗模量随剪切应力的变化关系,从图中可以看出,在低剪切力区域,该墨水的储能模量大于损耗模量,对于多层打印而言,底层形状不会塌陷,具有良好自支撑和形状保持效果。
实施例3
称取1.05g聚甲基丙烯酸甲酯(Mw~35000)于试剂瓶中,加入11.2g二氯甲烷、1.2g乙二醇丁醚和0.6g邻苯二甲酸二丁酯组成的混合溶剂,超声30mim至完全溶解,得到无色透明液体的聚合物溶液。
称取4.68g氧化铁和4.17g氧化镍加入到上述聚合物溶液,超声10min后磁力搅拌12h,再将其置于通风橱中挥发至混合物变为半固体状态,随后利用Thinky公司生产的搅拌器匀浆处理得到固体质量分数为84.6%(NiO/Fe2O3+PMMA)的镍铁基自固化墨水,可用于3D的直写成型技术制备气体扩散层。
实施例4
称取1.05g聚甲基丙烯酸甲酯(Mw~35000)于试剂瓶中,加入11.2g二氯甲烷、1.2g乙二醇丁醚和0.6g邻苯二甲酸二丁酯组成的混合溶剂,超声30mim至完全溶解,得到无色透明液体的聚合物溶液。
称取8.35g氧化镍加入到上述聚合物溶液,超声10min后磁力搅拌12h,再将其置于通风橱中挥发至混合物变为半固体状态,随后利用Thinky公司生产的搅拌器匀浆处理得到固体质量分数为83.9%(NiO+PMMA)的镍基自固化墨水,可用于3D的直写成型技术制备气体扩散层。
实施例5
称取1.05g聚甲基丙烯酸甲酯(Mw~35000)于试剂瓶中,加入10.4g乙醚、1.3g苯甲醚和0.6g邻苯二甲酸二丁酯组成的混合溶剂,超声30mim至完全溶解,得到无色透明液体的聚合物溶液。
称取8.35g氧化镍加入到上述聚合物溶液,超声10min后磁力搅拌12h,再将其置于通风橱中挥发至混合物变为半固体状态,随后利用Thinky公司生产的搅拌器匀浆处理得到固体质量分数为83.2%(NiO+PMMA)的镍基自固化墨水,可用于3D的直写成型技术制备气体扩散层。
实施例6
称取1.05g聚甲基丙烯酸甲酯(Mw~35000)于试剂瓶中,加入10g丙酮、1.2g N,N-二甲基甲酰胺和0.7g邻苯二甲酸二丁酯组成的混合溶剂,超声30mim至完全溶解,得到无色透明液体的聚合物溶液。
称取8.35g氧化镍加入到上述聚合物溶液,超声10min后磁力搅拌12h,再将其置于通风橱中挥发至混合物变为半固体状态,随后利用Thinky公司生产的搅拌器匀浆处理得到固体质量分数为83.2%(NiO+PMMA)的镍基自固化墨水,可用于3D的直写成型技术制备气体扩散层。
利用实施例4中的镍基自固化墨水制备气体扩散层具体方法如下:
该墨水装入针筒,针筒下方连接一个锥形的210μm针头。随后将针筒固定在Musashi公司生产的Shotmaster 200DS.S型三轴机械臂上。通过仪器自带软件设置机械臂运动轨迹,线中心位置间距为300μm,单层面积为1.6cm*1.6cm;Z轴抬升距离为210μm,第二层方向和第一层相互垂直,总层数为6层。设置点胶机气压为500Kpa,打印速度为3~5mm/s。将镍基自固化墨水打印到干净平整的石英玻璃基板上。
将打印的样品在350℃下H2气氛中热处理2.5小时,随后升温至600℃下热处理2小时,最后,样品在1000℃下在Ar中热处理4小时。得到的样品为10mm×10mm×6mm,收缩率为63%,用作阳极的气体扩散层,气体扩散层的光学显微镜图如图5所示。
利用上述阳极气体扩散层封装制备水电解装置方法如下:
将60%铂碳催化剂以15mg/ml分散到异丙醇中,使用已发表论文(Peng,H.;Li,Q.;Hu,M.;Xiao,L.;Lu,J.;Zhuang,L.Journal of Power Sources 2018,390,165-167.)中的QAPPT作为ionomer(离聚物),催化剂和ionomer之比为4:1;超声分散半小时配置成无明显沉淀的墨水。用美术喷笔将墨水均匀喷涂至固定在80℃加热板上1.5cm*1.5cm大小的碳纸表面,烘干后得到阴极,催化剂载量为0.5mg/cm2,阴极电极制备完成后备用。
将NiFe催化剂刮涂在3D打印制备的气体扩散层上,得到阳极,NiFe催化剂载量为15mg/cm2。在阳极的催化剂层上负载离子聚合物,具体方法如下:
使用自制尺寸为3*3*1cm3 PTFE(聚四氟乙烯)模具,模具中间刻有尺寸为1.75*1.75*0.5cm3的凹槽,将气体扩散层倒扣在凹槽中(催化剂层朝下),在凹槽中加入适量QAPPT溶液,使得阳极的催化层中ionomer的含量为4.5mg/cm2;随后将模具放在60℃的真空干燥箱中干燥2小时至溶液烘干,烘干后可轻松将电极与PTFE底板剥离,电极制备完成后备用。
将制备的阴极、阳极和商业化25微米的QAPPT膜(季胺化聚芳基哌啶共聚物,亿纬公司购买)置于80℃,1M KOH浸泡12h,进行离子交换,再将换完碱的阴、阳极和QAPPT膜放入超纯水中浸泡,尽可能洗净其中K+。随后对碱性聚电解质水电解器件进行组装,在装配过程中,整个夹具在油压机加压2Mpa的条件下用扳手拧紧。
对本实施例所得气体扩散层进行碱性聚电解质水电解器性能测试,使用的测试仪器为Neware电化学测试,测试条件为80℃,两端供超纯水的方式,电压电流曲线如图6所示。当电压为1.9V时,可以达到500mA/cm2电流密度。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种金属基自固化墨水的制备方法,其特征在于,包括以下步骤
步骤1、将聚甲基丙烯酸甲酯溶于混合溶剂中,得到无色透明液体的聚合物溶液,所述混合溶剂包括作为分散剂的低沸点溶剂、作为稀释剂的中沸点溶剂和作为保湿剂的高沸点溶剂;
步骤2、取金属基化合物加入到上述聚合物溶液中,搅拌置于通风橱中挥发至混合物变为半固体状态,所述金属基化合物为金属基氧化物或者氢化物;
步骤3、最后利用搅拌器匀浆处理得到用于直写成型的金属基自固化墨水。
2.根据权利要求1所述的制备方法,其特征在于:所述低沸点溶剂为乙醚、丙酮及二氯甲烷中的任意一种或几种。
3.根据权利要求1所述的制备方法,其特征在于:所述中沸点溶剂为乙二醇丁醚,苯甲醚,N,N-二甲基甲酰胺中的任意一种或几种。
4.根据权利要求1所述的制备方法,其特征在于:所述高沸点溶剂为邻苯二甲酸二丁酯。
5.根据权利要求1所述的制备方法,其特征在于:所述金属基化合物为CuO、Cu2O、TiH2、Fe2O3、FeO、Fe3O4、Ni2O3、NiO、Co2O3、Co3O4、CoO、MoO3、MoO2及WO3中的任意一种或者几种混合物。
6.根据权利要求1所述的制备方法,其特征在于:步骤1中,聚甲基丙烯酸甲酯溶于混合溶剂时采用超声震荡分散直至完全溶解。
7.根据权利要求1所述的制备方法,其特征在于:步骤2中,金属基化合物加入到无色透明液体中后,先超声分散,后磁力搅拌4-48小时。
8.根据权利要求1所述的制备方法,其特征在于:步骤3中,所得到的金属基自固化墨水的固体含量不低于74%;所得到的金属基自固化墨水中,聚甲基丙烯酸甲酯与金属的质量比为0.10-0.18。
9.一种金属基自固化墨水,其特征在于:采用权利要求1-8任意一项所述制备方法制备。
10.一种金属基自固化墨水的用途,其特征在于:用于制备水电解的气体扩散层。
CN202210634019.6A 2022-06-06 2022-06-06 一种金属基自固化墨水及其制备方法 Pending CN115010960A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210634019.6A CN115010960A (zh) 2022-06-06 2022-06-06 一种金属基自固化墨水及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210634019.6A CN115010960A (zh) 2022-06-06 2022-06-06 一种金属基自固化墨水及其制备方法

Publications (1)

Publication Number Publication Date
CN115010960A true CN115010960A (zh) 2022-09-06

Family

ID=83073966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210634019.6A Pending CN115010960A (zh) 2022-06-06 2022-06-06 一种金属基自固化墨水及其制备方法

Country Status (1)

Country Link
CN (1) CN115010960A (zh)

Similar Documents

Publication Publication Date Title
Browne et al. 3D printing for electrochemical energy applications
CN102459085B (zh) 导电的金属氧化物和金属氮化物纳米颗粒
Li et al. Superwetting behaviors at the interface between electrode and electrolyte
CN102887478B (zh) 基于电化学微纳体系的功能材料的微纳加工方法及其装置
CN107680821B (zh) 一种双金属氢氧化物@钼酸镍@石墨烯纳米复合材料、制备方法及其应用
CN103537280A (zh) 制造燃料电池用的钯-铂核壳型催化剂的方法
CN115012001A (zh) 一种用于水电解气液传输的气体扩散层及其制备方法
Liu et al. Effect of catalyst ink and formation process on the multiscale structure of catalyst layers in PEM fuel cells
CN109686593A (zh) 一种基于二次激光辐照制备MnO2/石墨烯复合电极的方法
JP7203850B2 (ja) 還元された酸化グラフェン、還元された酸化グラフェン-機能性物質複合体、及びそれらの製造方法
CN109560310A (zh) 一种燃料电池超低铂载量自增湿膜电极及其制备方法
CN106571474A (zh) 铂镍合金纳米团簇的制备方法及采用其的燃料电池
CN106362767A (zh) 一种纳米尺寸铂铜合金电解水催化材料
CN106252670A (zh) 使用加有晶种的电极借助核壳催化剂对高性能燃料电池电极的卷对卷制造
Gui et al. Preparation and electrocatalytic performance of nanosphere array PbO2 electrode on stainless steel-based grid-like ZnO film
Huang et al. Accelerating Gas Escape in Anion Exchange Membrane Water Electrolysis by Gas Diffusion Layers with Hierarchical Grid Gradients
KR101678943B1 (ko) 저온형 고분자 전해질 연료전지 양극용 금속간 화합물 FePt 나노튜브의 제조 방법
CN101578726A (zh) 燃料电池触媒、燃料电池阴极与包含该阴极的高分子电解质燃料电池
CN115010960A (zh) 一种金属基自固化墨水及其制备方法
CN110137430A (zh) 三维多孔阵列结构的Co3O4/rGO/Ni foam复合电极材料及其制备方法
CN110112423B (zh) 一种用于制备铂基核壳结构催化剂的微通道循环流动式脉冲电沉积装置及其使用方法
CN114959763B (zh) 一种宏观阵列电极及其制备方法和应用
Wang et al. Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode
CN115011985B (zh) 一种水电解装置的制备方法
CN210092222U (zh) 一种用于制备铂基核壳结构催化剂的微通道循环流动式脉冲电沉积装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination