CN115010385A - 一种SiC增强硅酸盐水泥熟料及其快速制备方法 - Google Patents

一种SiC增强硅酸盐水泥熟料及其快速制备方法 Download PDF

Info

Publication number
CN115010385A
CN115010385A CN202210779854.9A CN202210779854A CN115010385A CN 115010385 A CN115010385 A CN 115010385A CN 202210779854 A CN202210779854 A CN 202210779854A CN 115010385 A CN115010385 A CN 115010385A
Authority
CN
China
Prior art keywords
portland cement
cement clinker
sic reinforced
sic
reinforced portland
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210779854.9A
Other languages
English (en)
Other versions
CN115010385B (zh
Inventor
张锐
关莉
王海龙
王高远
李明亮
高前程
张新月
崔高宁
范冰冰
董宾宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202210779854.9A priority Critical patent/CN115010385B/zh
Publication of CN115010385A publication Critical patent/CN115010385A/zh
Priority to NL2033387A priority patent/NL2033387B1/en
Application granted granted Critical
Publication of CN115010385B publication Critical patent/CN115010385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4453Burning; Melting using plasmas or radiations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/121Energy efficiency measures, e.g. improving or optimising the production methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明属于硅酸盐水泥熟料生产技术领域,具体涉及一种SiC增强硅酸盐水泥熟料及其快速制备方法。制备方法包括以下步骤:S1、称取原料碳酸钙、二氧化硅、碳粉装入容器中,然后加入水后采用湿式球磨方式均匀混合,获得混合粉体;S2、将S1得到的混合粉体预压制坯后,采用微波烧结得到SiC增强硅酸盐水泥熟料。本发明提供了一种微波快速制备SiC增强硅酸盐水泥熟料的方法,该方法有效降低了传统制备硅酸盐水泥方法的合成时间和温度,并且SiC粉体的存在有效提高了水泥水化硬度。

Description

一种SiC增强硅酸盐水泥熟料及其快速制备方法
技术领域
本发明属于硅酸盐水泥熟料生产技术领域,具体涉及一种SiC增强硅酸盐水泥熟料及其快速制备方法。
背景技术
硅酸盐水泥在世界上发展了接近200年,水泥混凝土是现代社会中发展中需求最多的基础设施建筑材料,广泛用于民事和工业等各种基础设施建设。水泥是将熟料和石膏等各种混合材磨细搅拌均匀后制得的,其中熟料是水泥的重要组成成份。熟料中相的组成和含量,各相的结构,晶粒尺寸和发育程度都会影响水泥的活性和强度。由于阿利特具有早强快硬的特性,而贝利特的早期活性较低,人们一直致力于生产高含量阿利特来满足水泥早强高强的要求。
硅酸盐水泥熟料制备目前有许多传统的制备方法,如采用立式窑,或者采用回转窑等,这些烧结方式存在以下几个问题:方法困难,程序复杂,温度要求高,成本高,污染大,制备周期长,这一生产过程越来越不能满足社会生产的需要,也不符合“双碳”战略发展规划,因此需要寻求全新先进的制备方式,力求新的制备方式在节能减排减少成本生产的同时,减少熟料烧结所需要的时间、缩短烧结熟料所需水化时间并提升水泥硬度。
发明内容
为了解决上述问题,本发明提供一种SiC增强硅酸盐水泥熟料及其快速制备方法,该方法有效的降低了传统硅酸盐水泥熟料的合成成本,提高了合成效率;并且SiC粉体的存在有效提高了水泥水化硬度。
本发明是通过以下技术方案解决上述技术问题的。
本发明提供了一种SiC增强硅酸盐水泥熟料的快速制备方法,包括以下步骤:
S1、称取碳酸钙、二氧化硅、碳粉原料装入容器中,加入水后采用湿式球磨方式均匀混合,获得混合粉体;
S2、将S1得到的混合粉体预压制坯后,采用微波烧结得到SiC增强硅酸盐水泥熟料。
优选的,S1中,所述碳酸钙、二氧化硅和碳粉的摩尔比为2~5:1:3~5,所述碳酸钙、二氧化硅和碳粉的粒径均为80~100μm。
优选的,S1中,所述水与原料总量的质量比为1:1~2。
优选的,S1中,所述湿式球磨中球料比为3~6:1,转速为250~310r/min,球磨的时间为8-12h,球磨后混合粉体的平均粒径为80~100μm。
优选的,S2中,所述预压制坯是在2~5MPa的压力下预压1~3min,坯体的厚度为6~8mm。
优选的,S2中,所述微波烧结的频率为915MHz和2450GHz,功率为500~800w/min。
优选的,S2中,所述烧结时的升温速率为10~100℃/min。
优选的,S2中,所述烧结的温度为1300~1800℃,时间为0.2~1.5h。
本发明还提供了上述的快速制备方法制备SiC增强硅酸盐水泥熟料。
本发明与现有技术相比具有如下有益效果:
(1)本发明采用烧结机制为微波烧结,利用微波和微波耦合外热源的共同作用可实现坯体内外的快速烧结,混合加热机制在低温下使样品更容易加热,而在高温下可保证样品稳定加热;微波烧结过程中,碳酸钙分解所排出的二氧化碳与碳粉反应生成一氧化碳,碳粉和二氧化硅反应生成氧化硅和一氧化碳,一氧化碳和氧化硅反应生成碳化硅和氧气,从而通过碳化硅增强硅酸盐水泥熟料,有效提高了水泥水化硬度,减少了制备硅酸盐水泥熟料过程中废气排放。
(2)本发明选择的烧结方式为微波烧结,相对于传统的烧结方式,微波加热是对材料整体的均匀性加热,摆脱了传统加热中材料表面受热不均匀的缺点,且微波加热时间短、效率高、环保节能,有效的降低了传统硅酸盐水泥熟料的矿物材料的合成成本,提高了合成效率。
附图说明
图1为本发明实施例1制备的SiC增强硅酸盐水泥熟料的微波快速的微波烧结升温曲线;
图2为本发明实施例1制备的SiC增强硅酸盐水泥熟料的X射线衍射图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围,除非另有特别说明,本发明以下各实施例中用到的各种原料、试剂、仪器和设备均可通过市场购买得到或者通过现有方法制备得到。
实施例1
一种SiC增强硅酸盐水泥熟料的微波快速制备方法,包括以下步骤:
S1、按照摩尔比为3:1:3分别称取原料碳酸钙(CaCO3)、二氧化硅(SiO2)、和碳(C)粉加入研磨管中,然后加入原料总量相同的水后采用湿式球磨的方式对原料进行混合,球磨的球料比为3:1,转速为300r/min,球磨10h后获得混合粉体;其中混合粉体中CaCO3、SiO2、C粉颗粒的粒径为80~100μm;经球磨后混合粉体的平均粒径为80~100μm;
S2、称取混合粉体100g,室温下在磨具中压制块体坯料,压力为3MPa,保压1.5min后卸压,坯体的厚度为8mm,直径为60mm,利用微波烧结,烧结温度为1800℃,保温1min,微波频率为2450GHz,功率设定为700w/min,升温速率为80℃/min;即得一种SiC增强硅酸盐水泥熟料。
实施例2
一种SiC增强硅酸盐水泥熟料的微波快速制备方法,包括以下步骤:
S1、按照摩尔比为5:1:5分别称取原料CaCO3、SiO2、C粉粉体加入研磨管中,然后加入原料总量相同的水后采用湿式球磨的方式对原料进行混合,球磨的球料比为5:1,转速为300r/min,球磨8h后获得混合粉体;其中混合粉体中CaCO3、SiO2、C粉粉体颗粒的粒径为80~100μm;经球磨后混合粉体的平均粒径为80~100μm;
S2、称取混合粉体100g,室温下在磨具中压制块体坯料,压力为3.5MPa,保压1.5min后卸压,坯体的厚度为6mm,直径为60mm,利用微波烧结,烧结温度为1500℃,保温5min,微波的频率为915GHz,功率设定为500w/min,升温速率为50℃/min;即得一种SiC增强硅酸盐水泥熟料。
实施例3
一种SiC增强硅酸盐水泥熟料的微波快速制备方法,包括以下步骤:
S1、按照摩尔比为4:1:4分别称取原料CaCO3、SiO2、C粉粉体加入研磨管中,然后加入原料总量两倍的水后采用干式球磨的方式对原料进行混合,球磨的球料比为4:1,转速为300r/min,球磨12h获得混合粉体;其中混合粉体中CaCO3、SiO2、C粉粉体颗粒的粒径为80~100μm;经球磨后混合粉体的平均粒径为80~100μm;
S2、称取混合粉体100g,室温下在磨具中压制块体坯料,压力为3MPa,保压1.5min后卸压,坯体的厚度为8mm,直径为60mm,利用微波烧结,烧结温度为1300℃,保温10min,微波的频率范围为2450GHz,功率设定为600w/min,升温速率为60℃/min;即得SiC增强硅酸盐水泥熟料。
对比例1
S1、按照摩尔比为3:1分别称取原料CaCO3、SiO2粉体加入研磨管中,然后加入原料总量相同的水后采用湿式球磨的方式对原料进行混合,球磨的球料比为3:1,转速为300r/min,球磨10h获得混合粉体;其中混合粉体中CaCO3、SiO2粉体颗粒的粒径为80~100μm;经球磨后混合粉体的平均粒径为80~100μm;
S2、称取混合粉体100g,室温下在磨具中压制块体坯料,压力为3MPa,保压1.5min后卸压,坯体的厚度为8mm,直径为60mm,利用微波烧结,烧结温度为1500℃,保温10min,微波的频率范围为2450GHz,功率设定为600w/min,升温速率为30℃/min;即得普通硅酸盐水泥熟料。
图1为实施例1中制备的SiC增强硅酸盐水泥熟料的微波烧结升温曲线,如图1所示,在600℃到1500℃这个区间,硅酸盐水泥熟料处于快速升温阶段,这个过程中SiC已经形成且辅助原料加速合成硅酸钙,当温度达到1500℃后反射功率呈现一个下降趋势,说明已经合成部分硅酸三钙并且开始吸波,此时由于输入功率不变,所以反射功率有所下降,并且升温速度变得相对缓慢。
为了说明本发明提供的一种SiC增强硅酸盐水泥熟料的制备方法制得的矿物材料的相关性能,对实施例1提供的矿物材料进行测试。
其中,采用日本理学电机株式会社的SmartLab型X射线衍射分析仪(XRD)对实施例1的SiC增强硅酸盐水泥熟料矿物材料进行物相表征,进而分析SiC增强硅酸盐水泥熟料矿物材料的物相组成,如图2所示,图2实施例1中制备的SiC增强硅酸盐水泥熟料的XRD示意图,从图2中可以看出,SiC增强硅酸盐水泥熟料的微波快速矿物材料中几乎无其他杂峰,主晶相明显,烧结出的样品中明显生成了Ca3SiO5、SiC,且峰值高,同时未观察到其他相的生成,说明已经开始合成了SiC增强硅酸盐水泥熟料矿物材料。
此外,实施例1与对比例1微波烧结得到硅酸盐水泥熟料后,对比例1制备的SiC增强硅酸盐水泥熟料对比烧结前原料质量只减少了0.16%,而对比例1制备的硅酸盐水泥熟料对比烧结前原料质量减少了36.52%,可见,本发明在微波烧结制备SiC增强硅酸盐水泥熟料过程中,碳酸钙分解所排出的二氧化碳与碳粉反应生成一氧化碳,碳粉和二氧化硅反应生成氧化硅和一氧化碳,一氧化碳和氧化硅反应生成碳化硅和氧气,减少了制备硅酸盐水泥熟料过程中废气排放,有利于环境。
将实施例1和对比例1制备的硅酸盐水泥熟料与水以质量比2.5:1的比例使用标准胶砂搅拌机搅拌进行混合,慢速搅拌30s后慢速搅拌并自动加砂30s,快速搅拌30s,再快速搅拌30s,然后停止搅拌90s后快速搅拌60s得到水泥砂浆,将水泥砂浆装入40x40x160mm的不锈钢三联模中,自然环境下进行晾干,然后在3d、7d和28d分别测试实施例1和对比例1硅酸盐水泥的抗压强度,结果表明,本发明制备的增强硅酸盐水泥熟料对比例4微波制备普通硅酸盐水泥熟料在3d、7d和28d的抗压强度分别提升了31.78%、14.81%和25.90%,因此,本发明制备的增强硅酸盐水泥熟料,通过碳酸钙分解所排出的二氧化碳与碳粉反应生成一氧化碳,碳粉和二氧化硅反应生成氧化硅和一氧化碳,一氧化碳和氧化硅反应生成碳化硅和氧气,碳化硅增强硅酸盐水泥熟料,有效提高了水泥水化硬度。
需要说明的是,本发明中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,由于采用的步骤方法与实施例相同,为了防止赘述,本发明描述了优选的实施例。尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (9)

1.一种SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,包括以下步骤:
S1、称取原料碳酸钙、二氧化硅、碳粉装入容器中,然后加入水后采用湿式球磨方式均匀混合,获得混合粉体;
S2、将S1得到的混合粉体预压制坯后,采用微波烧结得到SiC增强硅酸盐水泥熟料。
2.根据权利要求1所述的SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,S1中,所述碳酸钙、二氧化硅和碳粉的摩尔比为2~5:1:3~5,所述碳酸钙、二氧化硅和碳粉的粒径均为80~100μm。
3.根据权利要求1所述的SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,S1中,所述水与原料总量的质量比为1:1~2。
4.根据权利要求1所述的SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,S1中,所述湿式球磨中球料比为3~6:1,转速为250~310r/min,球磨的时间为8-12h,球磨后混合粉体的平均粒径为80~100μm。
5.根据权利要求1所述的SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,S2中,所述预压制坯是在2~5MPa的压力下预压1~3min,坯体的厚度为6~8mm。
6.根据权利要求1所述的SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,S2中,所述微波烧结的频率为915MHz和2450GHz,功率为500~800w/min。
7.根据权利要求1所述的SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,S2中,所述烧结时的升温速率为10~100℃/min。
8.根据权利要求1所述的SiC增强硅酸盐水泥熟料的快速制备方法,其特征在于,S2中,所述烧结的温度为1300~1800℃,时间为0.2~1.5h。
9.一种根据权利要求1-8任一项所述的快速制备方法制备的SiC增强硅酸盐水泥熟料。
CN202210779854.9A 2022-07-04 2022-07-04 一种SiC增强硅酸盐水泥熟料及其快速制备方法 Active CN115010385B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210779854.9A CN115010385B (zh) 2022-07-04 2022-07-04 一种SiC增强硅酸盐水泥熟料及其快速制备方法
NL2033387A NL2033387B1 (en) 2022-07-04 2022-10-24 SiC-REINFORCED SILICATE CEMENT CLINK AND RAPID PREPARATION METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210779854.9A CN115010385B (zh) 2022-07-04 2022-07-04 一种SiC增强硅酸盐水泥熟料及其快速制备方法

Publications (2)

Publication Number Publication Date
CN115010385A true CN115010385A (zh) 2022-09-06
CN115010385B CN115010385B (zh) 2023-12-12

Family

ID=83079392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210779854.9A Active CN115010385B (zh) 2022-07-04 2022-07-04 一种SiC增强硅酸盐水泥熟料及其快速制备方法

Country Status (2)

Country Link
CN (1) CN115010385B (zh)
NL (1) NL2033387B1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1201254A1 (ru) * 1983-10-05 1985-12-30 Белгородский технологический институт строительных материалов им.И.А.Гришманова Способ производства портландцементного клинкера
CN105883812A (zh) * 2014-12-09 2016-08-24 任海涛 一种碳化硅的微波烧结生产工艺
DE102017205996A1 (de) * 2017-04-07 2018-10-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Herstellung von Zement-Klinkerphasen mit Hilfe von Siliciden, intermetallischen Verbindungen oder Legierung als Vorstufe
CN111762785A (zh) * 2020-04-01 2020-10-13 郑州航空工业管理学院 一种双频微波制备颗粒状碳化硅的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1201254A1 (ru) * 1983-10-05 1985-12-30 Белгородский технологический институт строительных материалов им.И.А.Гришманова Способ производства портландцементного клинкера
CN105883812A (zh) * 2014-12-09 2016-08-24 任海涛 一种碳化硅的微波烧结生产工艺
DE102017205996A1 (de) * 2017-04-07 2018-10-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Herstellung von Zement-Klinkerphasen mit Hilfe von Siliciden, intermetallischen Verbindungen oder Legierung als Vorstufe
CN111762785A (zh) * 2020-04-01 2020-10-13 郑州航空工业管理学院 一种双频微波制备颗粒状碳化硅的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
王亮: "以Al2O3和SiC增强的熟料机械性能和强度", 《国外耐火材料》 *
王亮: "以Al2O3和SiC增强的熟料机械性能和强度", 《国外耐火材料》, no. 5, 31 October 1997 (1997-10-31), pages 31 - 34 *
王亮: "以Al2O3和SiC增强的熟料机械性能和强度", 国外耐火材料, no. 5, pages 31 - 34 *
马保国等: "单矿C_3S的电热辅助微波制备技术", 《材料导报》 *
马保国等: "单矿C_3S的电热辅助微波制备技术", 《材料导报》, vol. 25, no. 02, 25 January 2011 (2011-01-25), pages 100 - 103 *
马宝国等: "单矿C3S的电热辅助微波制备技术", 材料导报, vol. 25, no. 1, pages 100 - 103 *

Also Published As

Publication number Publication date
NL2033387B1 (en) 2024-01-05
NL2033387A (en) 2022-11-15
CN115010385B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
Wang et al. Hydration and mechanical properties of cement-marble powder system incorporating triisopropanolamine
Jiao et al. Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate
CN111253139B (zh) 一种基于碳酸化的高性能结构材料的制备方法
CN103539417B (zh) 一种利用铁尾矿、钢渣制蒸压砖的方法
CN108569859A (zh) 一种具有自修复功能的防水抗渗混凝土添加剂及其制备方法
CN115925299B (zh) 一种全固废自激发碱性胶凝材料及其制备方法
CN115259818B (zh) 一种多元固废选铁后尾渣制备固废基高性能混凝土的方法
CN116675509A (zh) 一种全固废免蒸养混凝土及其应用
CN114804782A (zh) 一种利用水泥窑尾烟气制备的碳化钢渣建材制品及其方法
CN112551957A (zh) 一种氧化石墨烯增强碳化硬化复合材料及其制备方法
CN108751863B (zh) 一种基于盐渍土的胶凝材料及其制备方法
Feng et al. Coupling effects of steel slag powder and electromagnetic waves on the microstructure and hydration kinetics evolution of cementitious materials with ultra low water/binder ratio
Wongpattanawut et al. Effect of curing temperature on mechanical properties of sanitary ware porcelain based geopolymer mortar
CN109912244A (zh) 一种改性蒙脱土基水泥熟料的制备方法
CN108863292A (zh) 一种基于磷镁材料的混凝土裂缝修补材料及其施工工艺
CN115010385B (zh) 一种SiC增强硅酸盐水泥熟料及其快速制备方法
CN115745447B (zh) 废弃混凝土再生制备混凝土及其制备方法
Liao et al. Compressive strength development and microstructure evolution of mortars prepared using reactivated cementitious materials under carbonation curing
Mucsi et al. Synergetic use of lignite fly ash and metallurgical converter slag in geopolymer concrete
CN115504761B (zh) 一种高强碳酸化钢渣板的制备方法
CN115259809B (zh) 一种碳化石材及其制备方法
CN116874225B (zh) 一种减胶型混凝土减水剂及其制备方法与应用
CN116891364B (zh) 增强型钢渣基地聚物及其制备方法
CN113501680B (zh) 一种高性能清水混凝土及其预制构件的制备方法
CN117550818A (zh) 一种微波规模化制备的水泥熟料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant