CN116891364B - 增强型钢渣基地聚物及其制备方法 - Google Patents

增强型钢渣基地聚物及其制备方法 Download PDF

Info

Publication number
CN116891364B
CN116891364B CN202311164030.1A CN202311164030A CN116891364B CN 116891364 B CN116891364 B CN 116891364B CN 202311164030 A CN202311164030 A CN 202311164030A CN 116891364 B CN116891364 B CN 116891364B
Authority
CN
China
Prior art keywords
steel slag
base polymer
slag base
reinforced steel
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311164030.1A
Other languages
English (en)
Other versions
CN116891364A (zh
Inventor
胡其号
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Qichen Building Materials Co ltd
Original Assignee
Shijiazhuang Tiedao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shijiazhuang Tiedao University filed Critical Shijiazhuang Tiedao University
Priority to CN202311164030.1A priority Critical patent/CN116891364B/zh
Publication of CN116891364A publication Critical patent/CN116891364A/zh
Application granted granted Critical
Publication of CN116891364B publication Critical patent/CN116891364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/005Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/303Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/34Natural resins, e.g. rosin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/304Air-entrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明涉及低碳建筑材料技术领域,尤其是涉及一种增强型钢渣基地聚物及其制备方法。本发明通过将石英砂通过特有工艺研磨成微纳米级石英粉,利用微纳米级石英粉在聚合反应中填充孔隙、作为晶核、活性高的作用,并配合三聚磷酸钠的促进作用,共同提高钢渣地质聚合反应中C‑S‑H凝胶生成量,从而提升室温养护下钢渣基地聚物的力学性能,得到一种提升钢渣基地聚物力学性能的新方法。

Description

增强型钢渣基地聚物及其制备方法
技术领域
本发明涉及低碳建筑材料技术领域,尤其是涉及一种增强型钢渣基地聚物及其制备方法。
背景技术
硅酸盐水泥为大宗工业原料,近年来虽然生产工艺得到了改善,但生产过程仍是高污染高能耗的环节。为了贯彻绿色环保发展理念、推动生态环境良好发展、建设生态文明社会,从原料的角度出发,采用钢渣作为胶凝材料可实现利用工业固体废弃物、减少水泥用量、降低碳排放的目的。钢渣基地聚物的利用有助于实现节能减排,加快工业废料的循环利用,也有助于实现我国建筑行业的绿色发展。
钢渣基地聚物是以钢渣等富含硅铝物质为主要原料,虽自身具有水硬性,在碱性激发剂作用下可激发活性。但是,室温养护下钢渣的聚合反应速度很缓慢,导致钢渣基地聚物的力学性能较差,这限制了钢渣在固废基地聚物中的大量应用。
文献1(Bharat Bhushan Jindal,Rahul Sharma,The effect of nanomaterialson properties of geopolymersderived from industrial by-products: A state-of-the-art review,Construction and Building Materials 252 (2020) 119028)公布了一种纳米粘土改善地聚物力学性能的方法。该方法是在地聚物中掺入纳米粘土,加快室温下聚合反应速度和减小总孔隙率,进而提升地聚物在室温养护下的力学性能。
文献2(Shunfeng Wang,Long Yu, Liming Huang, et al.Incorporating steelslag in the production ofhigh heat resistant FA based geopolymer paste viapressure molding,Journal of Cleaner Production 325 (2021) 129265)公布了一种制备高耐热粉煤灰基地聚物浆料的方法。该方法向粉煤灰中加入钢渣,通过高压模压法使地聚物孔隙率降低,微观结构更致密,提升高温环境下地聚物的力学性能。
文献3(Xiaolu Guo, Xuejiao Pan, Mechanical properties and mechanismsof fiber reinforced fly ash–steel slag based geopolymer mortar, ConstructionandBuilding Materials 179 (2018) 633–641)公布了一种纤维增强粉煤灰-钢渣基地聚物砂浆力学性能的方法。该方法是向地聚物砂浆中加入钢纤维,由于钢纤维具有较高的弹性模量和拉伸强度,在基体中起到分散应力集中和承担部分应力的作用,提高了力学性能。
上述技术的不足在于:
(1)文献1中纳米粘土的掺量在一定范围内才能提升室温养护下地聚物的力学性能,并且其提高程度有限。由于纳米粘土拥有很高的火山灰活性和很低的细度,虽能够使C-S-H凝胶生成量增加,但大量的凝胶会覆盖未反应颗粒表面,导致基体发生自干燥进而诱发自收缩开裂。此外,制备地聚物时需根据实际环境对纳米粘土进行充分分散,使其均匀分布,否则会导致纳米粘土团聚,进而在地聚物基体中形成孔洞,造成基体的微观结构不致密,这不利于钢渣基地聚物力学性能的发展。
(2)文献2中通过高压模压法可以生产出较高强度的地聚物,但生产环境要求高,需要高温高压环境以及可承担一定压力的模具,因此该方法有一定的局限性,只适用于预制构件,而不适合大型预制构件和现浇结构。此外,当压力达到一定程度时,碱性激发剂在压力作用下被挤出,这会使聚合反应速率下降。挤出的激发剂需要特殊处理,否则会污染环境。与此同时,随着制备温度的升高,地聚物的收缩裂缝也随之增多,不利于后期强度发展。而在热处理之前,钢渣同样也会使地聚物的缩聚作用愈发明显。
(3)文献3中在地聚物砂浆配置过程中,钢纤维虽提高了地质聚合物的吸能特性和抗拉强度,但并没有提升地聚物砂浆基体的力学性能。若地聚物砂浆抗拉强度低于钢纤维抗拉强度,在一定拉力条件下钢纤维还未屈服,地聚物砂浆的基体便会出现裂缝甚至破坏。此外,添加纤维的方式对钢渣基地聚物力学性能的提升程度非常有限。同时,钢纤维的大量存在会产生纤维聚集,使其不能在基体中均匀分散。虽然搅拌前对钢纤维会进行分散处理,但搅拌时间太短钢纤维仍不能完成打开,搅拌时间太长钢纤维又易结团,从而降低了基体的密度;同时也会使地聚物砂浆的工作性降低,不利于早期强度发展。
发明内容
为了克服现有技术中存在的问题,本发明提供一种增强型钢渣基地聚物,具体的,本发明通过将石英砂通过特有工艺研磨成微纳米级石英粉,利用微纳米级石英粉在聚合反应中填充孔隙、作为晶核、活性高的作用,并配合三聚磷酸钠的促进作用,共同提高钢渣地质聚合反应中C-S-H凝胶生成量,从而提升室温养护下钢渣基地聚物的力学性能,得到一种提升钢渣基地聚物力学性能的新方法。
具体的,本发明增强型钢渣基地聚物的制备方法,包括如下制备步骤:
1)将钢渣进行研磨、筛分、干燥,获得粒径50-150μm的钢渣粉,
2)将α-氧化铝微粉与钛白粉质量比3:1的混合物按1-3%质量比掺入到石英砂中,搅拌均匀后利用纳米分散研磨机研磨,然后用负压筛析仪进行筛析,干燥,获得0.1-10μm微纳米级石英粉,
3)将调整模数后的水玻璃作为碱性激发剂,升温至50-70℃,
4)按质量份将100份钢渣粉和0.5-2份微纳米石英粉预热至50-70℃,加入3-5份碱性激发剂,搅拌,随后加入300-400份骨料、5-8份减水剂、1-2份三聚磷酸钠、0.5-1份引气剂、30-50份水,在58-63℃搅拌均匀,
5)将拌合物成型,表面覆盖薄膜后进行养护。
本发明采用钢渣粉和水玻璃制备地聚物,钢渣为转炉钢渣,钢渣的主要矿物为硅酸二钙,铁酸二钙及金属氧化物固溶体,还有少量游离氧化钙,二氧化硅相和金属铁相,经研磨提高水化活性。通过将石英砂进行研磨、筛析得到微纳米级石英粉,其属于坚硬、耐磨的硅酸盐超细粉,具备白度高、无杂质、铁量低等特点,不溶于酸,溶于强碱溶液,研磨过程中α-氧化铝微粉可以有效的加快石英砂的磨削速度,钛白粉提高了磨削厚度平整度,而且可以有效降低磨削过程中的热损伤,制备得到的微纳米级石英粉填充效应和火山灰效应最优。采用RISE-2012型激光粒度仪对石英粉的粒度进行测定,添加α-氧化铝微粉与钛白粉的微纳米级石英粉粒径很均匀且75%以上均在在400nm~600nm的区间,对比未掺组的研磨样品,石英粉的粒径分布在500nm~30μm的区间,且大多数集中在10μm~25μm的区间,之后对照的未掺入组继续进行研磨30min,此时石英粉的粒径分布在700nm~800nm的区间,掺入α-氧化铝和钛白粉的情况下,大幅度提升了研磨效率和研磨质量。
具体的,步骤1)筛分采用50μm和150μm筛,从而获得粒径50-150μm的钢渣粉。
优选的,步骤1)研磨采用行星式球磨机,型号为XQM-4L,转速为3000r/min,研磨时间为60-80min。
优选的,步骤1)干燥温度为100-110℃。
优选的,步骤2)研磨转速为14000r/min,研磨时间为30-40min。
优选的,步骤2)负压筛析仪型号为GMSD2000,孔径为45μm,筛析时间为2-3min。
优选的,水玻璃模数为1.4-1.6。
优选的,步骤4)骨料包括粗骨料和细骨料,粗骨料和细骨料质量比为2:3。更优选的,粗骨料选用碎石,粒径为5-16mm,细骨料选用河砂,粒径为0.5-2mm,级配骨料的选取在于提升钢渣基地聚物的工作性能。
优选的,步骤4)减水剂为聚羧酸高性能减水剂。
优选的, 步骤4)引气剂为松香酸钠。
优选的,步骤4)搅拌温度为60℃,通过设置不同拌合温度的对照组,温度分别为40℃、60℃和80℃,三组实验条件其他均相同,在进行拌合之后取样进行核磁共振技术测试分析,核磁共振技术可以用于定量分析混凝土中C-S-H凝胶的含量,并对C-S-H凝胶的特征峰进行定量分析,可以获得C-S-H凝胶的生成量信息。发现80℃组的C-S-H凝胶的含量最多,但是温度高也影响到样品的硬化时间,80℃的组凝结时间过快,难以应用于实际;40℃温度的组的C-S-H凝胶的含量较60℃组少40%,且60℃温度组的凝结时间合适,可以更好的应用推广。
优选的,步骤5)采用浇筑成型,标准养护。更优选的,所用模具尺寸为40mm×40mm×40mm,拌合物入模之前,试模内要刷一层矿物油,以便于脱模。
本发明还涉及增强型钢渣基地聚物,具体的,由上述制备方法制备得到。
当钢渣基地聚物在室温下聚合反应缓慢时,影响聚合反应程度的关键因素是如何引入额外的硅源来促进C-S-H凝胶的生成本发明通过引入微纳米级石英粉来提高胶凝材料的接触面积和反应活性,并通过三聚磷酸钠的分散于增强效果,使地聚物内部更多的纳米颗粒参与聚合反应,在一定温度下的进行拌合,提高养护地聚物中C-S-H凝胶的生成量。本方法操作简单易行,可对含微纳米级石英粉的钢渣基地聚物的聚合产物特性进行深度设计,从而进一步提升室温养护下钢渣基地聚物的力学性能。
本发明具有以下技术优势:
1)试验方法简单,操作易行。本发明采用钢渣粉与微纳米级石英粉干拌一次消除团聚,采用三聚磷酸钠作为改性剂,使得粉料在碱性激发剂中分布的更均匀,无需进行超声分散,
2)掺入α-氧化铝和钛白粉的石英粉研磨后微纳米石英粉的表面光滑,平整度良好,使得微纳米级石英粉获得良好的分散性,微纳米级石英粉的可设计性强,可通过改变微纳米级石英粉的粒径和掺量,对地质聚合产物的特性进行设计,进而调整不同环境下钢渣基地聚物的力学性能,
3)通过添加减水剂和引气剂,调整拌合物的流动性,获得兼具优异力学性能和工作性能的钢渣基地聚物。而且经试验证明一定温度的拌合可以更加有效发挥聚羧酸减水剂的效果,提高分散性,使得材料混合更加均匀,结构孔隙率降低,改善力学性能。
具体实施方式
为表征本发明技术效果,制备增强型钢渣基地聚物并进行力学性能检测。
实施例1
增强型钢渣基地聚物,制备方法包括如下制备步骤:
1)将钢渣进行研磨、筛分、干燥,获得粒径50-150μm的钢渣粉,
2)将α-氧化铝微粉与钛白粉质量比3:1的混合物按2%质量比掺入到石英砂中,搅拌均匀后利用纳米分散研磨机研磨,然后用负压筛析仪进行筛析,干燥,获得0.1-10μm微纳米级石英粉,
3)将模数1.4水玻璃作为碱性激发剂,升温至60℃,
4)按质量份将100份钢渣粉和2份微纳米石英粉预热至60℃,加入4.5份碱性激发剂,搅拌,随后加入144份碎石、216份河砂、7份减水剂、1.2份三聚磷酸钠、0.6份松香酸钠、45份水,在60℃搅拌均匀,
5)将拌合物成型,表面覆盖薄膜后进行标准养护至28d。
经检测,微纳米级石英粉粒径均匀,78%处于400nm~600nm的区间,研磨效果良好效率高,拌合物C-S-H凝胶的生成量有明显提升,28d抗压强度为52.3MPa。
对比例1
与实施例1相比,步骤2)未添加α-氧化铝微粉与钛白粉,其他条件相同。
经检测,微纳米级石英粉粒径分布在600nm~25μm的区间,且大多数集中在10μm~25μm的区间,28d抗压强度为15.6MPa。
对比例2
与实施例1相比,步骤4)在80℃搅拌均匀,其他条件相同。
经检测,拌合物凝结时间快速,虽然C-S-H凝胶的生成量有明显提升,相较于实施例1提升了近20%,但在工程实际中不易应用,28d抗压强度为23.4MPa。
对比例3
与实施例1相比,步骤4)在40℃搅拌均匀,其他条件相同。
经检测,拌合物凝结时间适中, C-S-H凝胶的生成量相较于实施例1降低近40%,但在工程实际中不易应用,28d抗压强度为19.5MPa。
对比例4
与实施例1相比,舍去步骤4)中三聚磷酸钠原料,其他条件相同。
经检测,拌合物和易性较差,28d抗压强度为32.2MPa。
综上,微纳米级石英粉研磨工艺、定温搅拌制度和助剂选择是本发明的关键,不同工艺得到的石英粉的研磨效果和提高养护地聚物中C-S-H凝胶的生成量不同,当石英粉的研磨效果不佳或外加剂选用不当时,钢渣和石英粉的分散性较差,不利于施工进行。
最后应说明的是:以上各实施方式仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施方式技术方案的范围。

Claims (10)

1.一种增强型钢渣基地聚物的制备方法,其特征在于,包括如下制备步骤:
1)将钢渣进行研磨、筛分、干燥,获得粒径50-150μm的钢渣粉,
2)将α-氧化铝微粉与钛白粉质量比3:1的混合物按1-3%质量比掺入到石英砂中,搅拌均匀后利用纳米分散研磨机研磨,然后用负压筛析仪进行筛析,干燥,获得0.1-10μm微纳米级石英粉,
3)将调整模数后的水玻璃作为碱性激发剂,升温至50-70℃,
4)按质量份将100份钢渣粉和0.5-2份微纳米石英粉预热至50-70℃,加入3-5份碱性激发剂,搅拌,随后加入300-400份骨料、5-8份减水剂、1-2份三聚磷酸钠、0.5-1份引气剂、30-50份水,在58-63℃搅拌均匀,
5)将拌合物成型,表面覆盖薄膜后进行养护。
2.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于,步骤1)研磨采用行星式球磨机,转速为3000r/min,研磨时间为60-80min。
3.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于,步骤1)干燥温度为100-110℃。
4.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于,步骤2)研磨转速为14000r/min,研磨时间为30-40min。
5.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于,步骤2)负压筛析仪孔径为45μm,筛析时间为2-3min。
6.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于,步骤4)骨料包括粗骨料和细骨料,粗骨料和细骨料质量比为2:3。
7.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于,步骤4)减水剂为聚羧酸高性能减水剂。
8.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于, 步骤4)引气剂为松香酸钠。
9.根据权利要求1所述增强型钢渣基地聚物的制备方法,其特征在于,步骤5)采用浇筑成型,标准养护。
10.增强型钢渣基地聚物,其特征在于,由权利要求1-9任一项所述制备方法制备得到。
CN202311164030.1A 2023-09-11 2023-09-11 增强型钢渣基地聚物及其制备方法 Active CN116891364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311164030.1A CN116891364B (zh) 2023-09-11 2023-09-11 增强型钢渣基地聚物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311164030.1A CN116891364B (zh) 2023-09-11 2023-09-11 增强型钢渣基地聚物及其制备方法

Publications (2)

Publication Number Publication Date
CN116891364A CN116891364A (zh) 2023-10-17
CN116891364B true CN116891364B (zh) 2023-11-14

Family

ID=88312485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311164030.1A Active CN116891364B (zh) 2023-09-11 2023-09-11 增强型钢渣基地聚物及其制备方法

Country Status (1)

Country Link
CN (1) CN116891364B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012111A (zh) * 2007-02-05 2007-08-08 徐宇晴 一种新的制备地聚合物材料的方法
WO2008113609A2 (en) * 2007-03-22 2008-09-25 Xuhong, Turella-Yuan Geopolymer composition, coating obtainable therefrom and methods
CN101492263A (zh) * 2008-06-04 2009-07-29 抚顺矿业集团有限责任公司 油页岩灰渣基地质聚合物胶凝材料
CN108164192A (zh) * 2017-12-12 2018-06-15 华南理工大学 一种地聚物基胶黏剂及其制备方法和应用
CN113880473A (zh) * 2021-11-16 2022-01-04 江西理工大学 一种钨尾矿基地聚物的制备方法
CN115819048A (zh) * 2023-02-16 2023-03-21 山东交通学院 陈化钢渣骨料仿大理石基材及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012111A (zh) * 2007-02-05 2007-08-08 徐宇晴 一种新的制备地聚合物材料的方法
WO2008113609A2 (en) * 2007-03-22 2008-09-25 Xuhong, Turella-Yuan Geopolymer composition, coating obtainable therefrom and methods
CN101492263A (zh) * 2008-06-04 2009-07-29 抚顺矿业集团有限责任公司 油页岩灰渣基地质聚合物胶凝材料
CN108164192A (zh) * 2017-12-12 2018-06-15 华南理工大学 一种地聚物基胶黏剂及其制备方法和应用
CN113880473A (zh) * 2021-11-16 2022-01-04 江西理工大学 一种钨尾矿基地聚物的制备方法
CN115819048A (zh) * 2023-02-16 2023-03-21 山东交通学院 陈化钢渣骨料仿大理石基材及其制备方法

Also Published As

Publication number Publication date
CN116891364A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
CN112125584B (zh) 一种低水化热绿色自流平混凝土的制备方法
CN111205003B (zh) 一种再生胶凝材料的制备方法
CN112250355A (zh) 一种碱激发粉煤灰/矿渣再生混凝土及其制备方法
CN111747722B (zh) 一种基于钠水玻璃改性的水泥基免烧高强板材及其制备方法
CN109896808B (zh) 一种基于菱镁尾矿制备的硅酸镁体系胶凝材料及其应用
CN113185219A (zh) 一种环保型抗裂混凝土及其制备方法
CN116354679B (zh) 一种应变硬化型再生粗骨料混凝土及其制备方法
CN111423180A (zh) 一种高流动性环保型超高性能混凝土及其制备方法
CN114804774A (zh) 一种基于废弃砖再生微粉的超高性能混凝土及其制备方法
Shen et al. The influence of curing methods on the performance of recycled concrete powder artificial aggregates and concrete
CN111393106B (zh) 一种高力学性能的硼化铁改性水泥砂浆及其制备方法
CN112408875A (zh) 一种再生地聚物砂浆及其制备方法和应用
CN116891364B (zh) 增强型钢渣基地聚物及其制备方法
CN115448647B (zh) 一种高延性再生粉体地聚合物基加固修补材料及其制备方法
CN116283100A (zh) 一种采用纳米SiO2改性地聚物混凝土断裂性能的混凝土配合比及制备方法
CN114249567B (zh) 一种超高性能混凝土及其制备方法
CN114956773A (zh) 一种快硬早强的超高性能磷酸镁水泥基材料
CN112209641B (zh) 一种利用废弃烧结页岩制备水泥的方法
CN115010433A (zh) 一种高硅含量铁尾矿混凝土及其制备方法
CN114956707A (zh) 一种框架结构房屋用混凝土及其制备方法
CN116986857B (zh) 高强抗裂型钢渣基地聚物及其制备方法
CN117510143B (zh) 自激发地聚物混凝土及其制备方法
CN118184274B (zh) 一种盾构泥浆资源化再生利用制备无机生态石的方法
CN117819926B (zh) 钛酸钾晶须增强超高性能再生混凝土及其制备方法
NL2030488B1 (en) Multi-solid waste activated concrete with high-silicon iron ore tailings and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240424

Address after: 553000 Jiangsu Industrial Park, Panbei Economic Development Zone, Panzhou City, Liupanshui City, Guizhou Province

Patentee after: Guizhou Qichen Building Materials Co.,Ltd.

Country or region after: China

Address before: 050043 No. 17, North Second Ring Road, Hebei, Shijiazhuang

Patentee before: SHIJIAZHUANG TIEDAO University

Country or region before: China