CN115007185A - Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和应用 - Google Patents

Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和应用 Download PDF

Info

Publication number
CN115007185A
CN115007185A CN202210671079.5A CN202210671079A CN115007185A CN 115007185 A CN115007185 A CN 115007185A CN 202210671079 A CN202210671079 A CN 202210671079A CN 115007185 A CN115007185 A CN 115007185A
Authority
CN
China
Prior art keywords
ultrathin porous
doped
porous nanosheet
nanosheet material
ultrathin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210671079.5A
Other languages
English (en)
Inventor
庄赞勇
颜家伟
韩昀晖
于岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210671079.5A priority Critical patent/CN115007185A/zh
Publication of CN115007185A publication Critical patent/CN115007185A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明采用了一锅法原位掺杂的方法制备了Mn/O共掺杂的g‑C3N4超薄多孔纳米片材料,以氯化锰、尿素、甲酸和水合成反应前驱体,然后经过程序煅烧,得到Mn/O共掺杂的g‑C3N4超薄多孔纳米片材料。本发明的Mn/O共掺杂的g‑C3N4超薄多孔纳米片,可见光下,表现出优异的助催化作用,用作芬顿反应中的助催化剂以降解抗生素污染物在水系统中,不仅可以将废水处理拓展至中性pH条件,而且可以在极低的Fe(II)浓度(0.26 mg/L)下即可引发高效的芬顿反应,由于反应所用Fe(II)浓度直接低于《城镇污水处理厂污染物排放标准》中铁的排放标准1 mg/L,因此,不会造成铁淤泥问题且无需进行后处理。

Description

Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和 应用
技术领域
本发明属于材料技术领域,具体涉及一种Mn/O共掺杂的g-C3N4超薄多孔纳米片材料及其制备方法和应用。
背景技术
自 1894 年以来,基于芬顿化学的高效 AOP 已被广泛用于环境治理,酸性条件下能够实现污染物的完全矿化。尽管如此,芬顿技术仍存在Fe(II) 回收动力学缓慢和 H2O2消耗高的问题。更不幸的是,由于 Fe(III)/Fe(II)只有在酸性pH条件下才能抑制水解沉淀,导致上述缺点在近中性或中性条件下被无限放大。最终造成大量铁淤泥产生且酸性条件腐蚀反应容器,并需要为此花费高昂的后处理和维护费用。为此,付出了巨大的努力来研究解决上述挑战的新方法。引入助催化剂在加强芬顿或类芬顿系统方面显示出独特的优势。早期通过添加有机铁螯合剂和还原剂(例如乙二胺四乙酸(EDTA) 和抗坏血酸(AA))解决了上述缺点。然而,这些有机试剂均为一次性药品,毫无可再生性。另外又会引入额外的有机碳造成二次污染。
光生电荷载流子可以作为还原剂实现高效的 Fe(III)/Fe(II) 循环,与有机或无机助催化剂相比,是一种更经济、绿色、高效可持续的助催化方法。石墨氮化碳材料(g-C3N4)是一种 π 共轭聚合物、无金属半导体,具有优异的化学稳定性且廉价。它具有适合 Fe(III)/Fe(II) 循环的能级结构,这在热力学上非常利于电子向 Fe(III) 的传输。
目前,通过传统热解方法获得的 g-C3N4 具有高聚集度、大粒径和小比表面积,导致光催化活性相对较低,为实现高效的 Fe(III)/Fe(II) 循环并推进助催化强化芬顿技术工业化发展仍具有挑战,为解决这一难点,设计一种简单的工艺,实现具有优异光催化活性石墨氮化碳材料的制备具有重要意义。
发明内容
本发明的目的在于针对现有技术的不足,提供一种Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备方法。本发明以石墨氮化碳材料(g-C3N4)为前驱体,通过加入酸可实现 O的掺杂进入g-C3N4中,引入了氧基团。金属离子的加入在高温下成键同时会另外再放出大量热实现对g-C3N4的减薄,另外金属离子团聚的地方会产生大量的热烧穿g-C3N4产生孔洞,而分散的金属离子能够均匀的分散于g-C3N4表面并与g-C3N4中的N配位成键。该方法具有一定普适性,能够引入除Mn以外的其它金属元素。首先将金属离子(Mn)和尿素加入到甲酸和超纯水的混合液中,充分混合形成胶体并干燥使晶体再析出。进而高温煅烧下,在g-C3N4引入了氧基团,分散的Mn离子能够与g-C3N4中的N配位成键,最终形成Mn/O-C3N4超薄多孔纳米片材料。本发明提供了一种工艺简单、通用性和适用性强的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的绿色合成方法。而且所制得的Mn/O共掺杂的g-C3N4在可见光下表现出优异的助催化作用强化芬顿技术,助催化芬顿系统无需调节pH中性条件且极低 Fe(II) 浓度存在条件下即可产生高效降解氧化能力,不会造成铁淤泥问题且无需进行后处理。成本低廉,方法简单,具有良好的经济效益和环境效益,而且还可以进行大规模生产应用。
为实现上述目的,本发明采用如下技术方案:
一种一锅法Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备及其应用,包括以下原料:氯化锰(MnCl2)、尿素(CH4N2O)、甲酸(CH3COOH)。
一种一锅法Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备及其应用:将氯化锰和尿素加入到甲酸和超纯水的混合液中,充分混合形成胶体,然后将胶体干燥得到反应前驱体。将反应前驱体煅烧,得到Mn/O共掺杂的g-C3N4超薄多孔纳米片材料。
所述Mn/O共掺杂的g-C3N4超薄多孔纳米片材料,具体包括以下步骤:
(1) 将二价锰盐和氮源加入到一价酸和超纯水的混合液中,充分混合,制成均匀分散的胶体;
(2)然后将均匀分散的胶体,经干燥得到反应前驱体;
(3) 然后将反应前驱体煅烧,形成锰掺杂的g-C3N4超薄多孔纳米片材料;
进一步地,步骤(1)所述的二价锰盐为氯化锰(MnCl2);所述的氮源为尿素(CH4N2O);一价酸为甲酸(CH3COOH)。
进一步地,步骤(1)中二价锰盐与氮源的质量比为1:500 - 1:2000,一价酸与超纯水的体积比为1:5-1:20。
进一步地,步骤(1)所述的混合具体为:超声分散;超声时间为5-30 min。
进一步地,步骤(2)所述的干燥具体为:干燥方式为60℃下烘干;干燥时间为6 -12 h。
进一步地,步骤(2)所述的反应前驱体具体为Mn/O CO(NH2)2
进一步地,步骤(3)所述的煅烧具体为:煅烧温度为520-550℃;升温速率为2-10℃/min;煅烧时间为1-5 h。
本发明还提供了上述Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的应用:将Mn/O-C3N4超薄多孔纳米片材料、过氧化氢溶液和硫酸亚铁溶液,加入恩若沙星溶液,在光照下剧烈搅拌,进行降解。
本发明的有益效果在于:
(1)本发明采用一锅法,引入金属离子与氧基团,为构建超薄多孔g-C3N4纳米片材料提供了新思路。
(2)本发明制备的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料,具有极高的光催化活性和电子传输能力。
(3)本发明制备的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料,由于具有合适的能级结构和优异的电子-空穴对分离能力,助催化能力得到大幅度提升。实现了高效的 Fe(III)/Fe(II) 循环,在极低的Fe(II)浓度(0.26 mg/L)下即可引发高效的芬顿反应。另外由于材料表面带负电位,因此能够吸引游离于液相中带正电的Fe(III)与Fe(II)并于材料表面发生络合抑制Fe(III)与Fe(II)的沉淀,实现中性条件下的芬顿氧化持续高效进行。
(4)本发明的制备方法所需要原材料和设备简单易取,流程工艺简单、易操作和安全,成本相对低廉,可大规模工业化生产;将所制得的材料用于构建助催化芬顿系统,具有极好的工业化实用性前景,遵循经济、环保、可持续的理念。由于反应所用Fe(II)浓度直接低于《城镇污水处理厂污染物排放标准》中铁的排放标准1 mg/L,因而,无需顾虑铁淤泥问题且无需进行后处理。而无需调节酸性pH,中性条件下依旧能实现芬顿反应的正常运行,也能够减缓芬顿反应器的损耗。因此能够节省一大笔的后处理及维护费用。
附图说明
图1是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的X射线衍射(XRD)图;
图2是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的红外光谱(FT-IR)图;
图3是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片的扫描电子显微镜(SEM)图;
图4是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片的透射电子显微镜(TEM)图;
图5是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片的能量色散X射线光谱(EDX)图;
图6是本发明对比例1制得的Cu/O-C3N4超薄多孔纳米片的SEM图;
图7是本发明对比例1制得的Cu/O-C3N4超薄多孔纳米片的EDX图;
图8是本发明对比例2制得的Ni/O-C3N4超薄多孔纳米片的SEM图;
图9是本发明对比例2制得的Ni/O-C3N4超薄多孔纳米片的EDX图;
图10是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料降解恩若沙星的性能图;
图11是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的N2的吸脱附曲线(BET)图;
图12是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的孔径分布图;
图13为本发明对实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料助催化芬顿系统中的Fe(Ⅱ)浓度变化图;
图14为本发明对实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的瞬态光电流响应图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图即实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以结合。
实施例1
Mn/O-C3N4超薄多孔纳米片材料的制备:
(1)用电子天平称取0.016 g氯化锰(MnCl2)和10.0 g尿素(CH4N2O),用移液枪量取0.25 ml甲酸、2.5ml水,将二者混合;
(2)然后将混合液超声10 min,得到均匀混合胶体;
(3)将均匀混合胶体于60℃下干燥10 h,得到Mn/O CO(NH2)2 前驱体。
(4)将Mn/O CO(NH2)2 前驱体于马弗炉中,以2℃/min的升温速率升温至520℃,并保温2 h,得到Mn/O -C3N4纳米框架材料。
对比例1
Cu/O-C3N4超薄多孔纳米片材料的制备:
(1)用电子天平称取0.017g 二水合氯化铜(CuCl2·2H20)和10.0 g尿素(CH4N2O),用移液枪量取0.25 ml甲酸、2.5ml水,将二者混合;
(2)然后将混合液超声10 min,得到均匀混合胶体;
(3)将均匀混合胶体于60℃下干燥10 h,得到Cu /O CO(NH2)2 前驱体。
(4)将Cu /O CO(NH2)2 前驱体于马弗炉中,以2℃/min的升温速率升温至520℃,并保温2h,得到Cu/O-C3N4纳米框架材料。
对比例2
Ni/O-C3N4超薄多孔纳米片材料的制备:
(1)用电子天平称取0.030 g六水合氯化镍(NiCl2·6H20)和10.0 g尿素(CH4N2O),用移液枪量取0.25 ml甲酸、2.5 ml水,将二者混合;
(2)然后将混合液超声10 min,得到均匀混合胶体;
(3)将均匀混合胶体于60℃下干燥10 h,得到Ni/O CO(NH2)2 前驱体。
(4)将Ni/O CO(NH2)2 前驱体于马弗炉中,以2℃/min的升温速率升温至520 ℃,并保温2 h,得到Ni/O -C3N4纳米框架材料。
对比例3
g-C3N4纳米片材料的制备:
(1)用电子天平称取10.0 g尿素(CH4N2O),用移液枪量取0.25 ml甲酸、2.5ml水,将二者混合;
(2)然后将混合液超声10 min,得到均匀混合胶体;
(3)将均匀混合胶体于60℃下干燥10 h,得到CO(NH2)2 前驱体。
(4)将CO(NH2)2 前驱体于马弗炉中,以2℃/min的升温速率升温至520℃,并保温2h,得到g-C3N4纳米片材料。
可见光光照条件下恩若沙星降解实验
应用实施例1
将实施例1中得到的Mn/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液和1.28 ppm的硫酸亚铁溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取5 mg的Mn/O-C3N4超薄多孔纳米片材料、5 μl 过氧化氢溶液(30%)和40 μl的硫酸亚铁溶液,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例2
将实施例1中得到的Mn/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液和1.28 ppm的硫酸亚铁溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取10 mg的Mn/O-C3N4超薄多孔纳米片材料、5 μl 过氧化氢溶液(30%)和40 μl的硫酸亚铁溶液,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例3
将实施例1中得到的Mn/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm的恩若沙星溶液和1.28 ppm的硫酸亚铁溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取20 mg的Mn/O-C3N4超薄多孔纳米片材料、5 μl过氧化氢溶液(30%)和40 μl的硫酸亚铁溶液,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例4
将实施例1中得到的Mn/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液和1.28 ppm的硫酸亚铁溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取0 mg的Mn/O-C3N4超薄多孔纳米片材料、5 μl过氧化氢溶液(30%)和40 μl的硫酸亚铁溶液,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例5
将实施例1中得到的Mn/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取5 mg的Mn/O-C3N4超薄多孔纳米片材料,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例6
将实施例1中得到的Mn/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取5 mg的Mn/O-C3N4超薄多孔纳米片材料和5 μl 过氧化氢溶液(30%),加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例7
将对比例1中得到的Cu/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取5 mg的Cu/O-C3N4超薄多孔纳米片材料、5 μl 过氧化氢溶液(30%)和40 μl的硫酸亚铁溶液,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例8
将对比例2中得到的Ni/O-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液和1.28 ppm的硫酸亚铁溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取5 mg的Ni/O-C3N4超薄多孔纳米片材料、5 μl 过氧化氢溶液(30%)和40 μl的硫酸亚铁溶液,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
应用实施例9
将对比例3中得到的g-C3N4超薄多孔纳米片材料用于光降解恩若沙星,具体步骤如下:
(1)配置10 ppm 的恩若沙星溶液和1.28 ppm的硫酸亚铁溶液;
(2)用量筒称取50 ml的恩若沙星溶液;
(3)取5 mg的g-C3N4超薄多孔纳米片材料、5 μl 过氧化氢溶液(30%)和40 μl的硫酸亚铁溶液,加入到上述的混合液中,在光照下剧烈搅拌;
(4)经过不同的时间段,用紫外-可见光分光光度计测试水中恩若沙星的紫外吸收值,计算恩若沙星的去除率。
图1是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的XRD图,可以看出Mn/O-C3N4、Cu/O-C3N4、Ni/O-C3N4和g-C3N4材料物相均为g-C3N4
图2为四种材料的红外图,可以进一步说明经过掺杂后的g-C3N4 超薄多孔纳米片材料没有发生太大变化;
图3为本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片的SEM图,说明Mn/O-C3N4由不规则的褶皱纳米片组成,呈现出块状多孔结构;
图4为本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片的TEM图和SAED图,TEM图说明Mn/O-C3N4 呈现不规则的多孔超薄褶皱纳米片。另外,图像中没有发现纳米晶体和清晰的晶格条纹,进一步说明材料中没有形成其他锰物种,而SAED图中呈现微弱衍射环,说明Mn/O-C3N4具有非晶结构和较差的结晶度;
图5为本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片的EDX图,说明Mn和O成功掺杂进入到g-C3N4中;
图6为本发明对比例1制得的Cu/O-C3N4超薄多孔纳米片的SEM图,说明Cu/O-C3N4具有与Mn/O-C3N4相同的形貌特征;
图7为本发明对比例1制得的Cu/O-C3N4超薄多孔纳米片的EDX图,说明Cu和O成功掺杂进入到g-C3N4中;
图8为本发明对比例2制得的Ni/O-C3N4超薄多孔纳米片的SEM图,说明Ni/O-C3N4也具有与Mn/O-C3N4相同的形貌特征;
图9为本发明对比例2制得的Mn/O-C3N4超薄多孔纳米片的EDX图,说明Ni和O成功掺杂进入到g-C3N4中;
图10是本发明实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的性能图,当无光照、无过氧化氢溶液、无硫酸亚铁溶液添加时,恩若沙星基本不发生降解。但当光照下,助催化剂、硫酸亚铁溶液和过氧化氢同时存在时,恩若沙星发生不同程度的降解,而相对于铜和镍掺杂,锰的掺杂可以大大提高降解性能,并且随着催化剂的用量增加,其催化性能更加优异;
图11为本发明对实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的 N2的吸脱附曲线(BET)图,显示出典型的 IV 等温线,揭示了所有材料具有2D介孔结构,H3型磁滞回线证明了所有材料的孔是狭缝形介孔结构的集合;
图12为本发明对实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的孔径分布曲线,揭示了所有材料中 1 到 10 nm 之间的孔体积都显着增加,其中Mn/O-C3N4增加的最多。Mn/O-C3N4、Ni/O-C3N4、Cu/O-C3N4和g-C3N4的比面积分别为66.356、51.305、54.415和37.892 m2/g,说明Mn/O-C3N4具有最大的比表面积;
图13为本发明对实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料助催化芬顿系统中的Fe(Ⅱ)浓度变化图,在中性条件下,常规 Fenton 反应(Fe(Ⅱ)+H2O2),近 90% 的 Fe(II) 迅速(< 10 分钟)转化为 Fe(III),并且在接下来的 10 分钟内Fe(II)浓度未发生改变。光照后,由于铁泥(中性条件下铁发生沉淀)的不可逆积累,没有观察到 Fe(III) 的还原。而在助催化系统中,光照后,观察到不同程度的Fe(II)生成,Fe(II)生成效率遵从Cu/O-C3N4 < Ni/O-C3N4 < g-C3N4 < Mn/O-C3N4的顺序,说明氮化碳材料可以在一定程度上缓解Fe(III)与Fe(II)的沉淀,可能是液相中的Fe(III)与Fe(II)能够在助催化材料表面发生络合从而抑制了Fe(III)与Fe(II)的沉淀。特别是在 Mn/O-C3N4 助催化系统中,超过 50% 的 Fe(II) (约0.28mg/L) 被迅速还原(< 10 min),然后达到饱和状态。另外,Fe(Ⅱ)/Fe(Ⅲ)的循环效率也很好的符合了各助催化系统中对恩诺沙星的降解效率,说明助催化剂的引入尤其是Mn/O-C3N4显著加强了Fe(Ⅱ)与H2O2之间的反应从而产生了更多的活性物种(羟基自由基和超氧自由基);
图14为本发明对实施例1制得的Mn/O-C3N4超薄多孔纳米片、对比例1制得的Cu/O-C3N4超薄多孔纳米片、对比例2制得的Ni/O-C3N4超薄多孔纳米片和对比例3制得的g-C3N4纳米片材料的瞬态光电流响应图,半导体的光生电子具有还原能力,因此推测助催化剂产生了光生电子促进了Fe(III)还原为Fe(II)。瞬态光电流强度遵从Cu/O-C3N4 < Ni/O-C3N4 <g-C3N4 < Mn/O-C3N4,说明Mn/O-C3N4相比于其它助催化剂具有更优异的电荷转移和低的光生电子-空穴的复合率,因此能够产生更多的光生电子促进了Fe(III)还原为Fe(II),符合Fe(Ⅱ)/Fe(Ⅲ)的循环效率及助催化芬顿氧化性能的结果。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,均应包含在本发明的保护范围之内。

Claims (8)

1.一种Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备方法,其特征在于:包括以下步骤:
(1)将二价锰盐和氮源加入到一价酸和超纯水中,充分混合溶解,形成胶体;
(2)然后将胶体干燥直至水分完全挥发,获得反应前驱体;
(3)将反应前驱体煅烧得到Mn/O共掺杂的g-C3N4超薄多孔纳米片材料。
2.根据权利要求1所述的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备方法,其特征在于:步骤(1)所述的二价锰盐为氯化锰;所述的氮源为尿素,所述的一价酸为甲酸。
3.根据权利要求1所述的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备方法,其特征在于:步骤(1)中二价锰盐、氮源的质量比为1:500-1:2000,一价酸和超纯水的体积比为1:5- 1:20。
4.根据权利要求1所述的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备方法,其特征在于:步骤(1)所述的混合溶解具体为:超声分散,超声分散时间为5 - 30 min。
5.根据权利要求1所述的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备方法,其特征在于:步骤(2)所述的干燥具体为:干燥方式为60 ℃下烘干,干燥时间为6 - 12 h。
6.根据权利要求1所述的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料的制备方法,其特征在于:步骤(2)所述的煅烧具体为:煅烧温度为520℃;升温速率为5-10 ℃/min;煅烧时间为1- 4 h。
7.一种如权利要求1-6任一项所述的制备方法制得的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料。
8.一种如权利要求7所述的Mn/O共掺杂的g-C3N4超薄多孔纳米片材料在降解抗生素污染物上的应用。
CN202210671079.5A 2022-06-15 2022-06-15 Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和应用 Pending CN115007185A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210671079.5A CN115007185A (zh) 2022-06-15 2022-06-15 Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210671079.5A CN115007185A (zh) 2022-06-15 2022-06-15 Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115007185A true CN115007185A (zh) 2022-09-06

Family

ID=83074451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210671079.5A Pending CN115007185A (zh) 2022-06-15 2022-06-15 Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115007185A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773219A (zh) * 2019-10-30 2020-02-11 中国海洋大学 一种光-Fenton脱硫脱硝催化剂及其制备方法
CN111495407A (zh) * 2020-04-03 2020-08-07 三峡大学 一种制备Co/MnO/氮掺杂碳复合电催化剂的方法
CN113877618A (zh) * 2021-09-28 2022-01-04 安徽元琛环保科技股份有限公司 氧掺杂石墨相氮化碳负载锰基低温脱硝催化剂的制备方法、制得的脱硝催化剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773219A (zh) * 2019-10-30 2020-02-11 中国海洋大学 一种光-Fenton脱硫脱硝催化剂及其制备方法
CN111495407A (zh) * 2020-04-03 2020-08-07 三峡大学 一种制备Co/MnO/氮掺杂碳复合电催化剂的方法
CN113877618A (zh) * 2021-09-28 2022-01-04 安徽元琛环保科技股份有限公司 氧掺杂石墨相氮化碳负载锰基低温脱硝催化剂的制备方法、制得的脱硝催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIUQUAN XU ET AL.,: "Fabrication of Mn/O co-doped g-C3N4: Excellent charge separation and transfer for enhancing photocatalytic activity under visible light irradiation" *

Similar Documents

Publication Publication Date Title
Liu et al. Heterogeneous catalytic ozonation of oxalic acid with an effective catalyst based on copper oxide modified g-C3N4
Ding et al. Mesoporous structure and amorphous Fe-N sites regulation in Fe-g-C3N4 for boosted visible-light-driven photo-Fenton reaction
CN111495367B (zh) 一种磁性聚苯胺-多孔碳-Fe3O4光芬顿催化剂的制备方法及其应用
CN111054417B (zh) 一种高效铁单原子芬顿催化剂、其合成方法及应用
Wang et al. Bimetallic Fe/In metal-organic frameworks boosting charge transfer for enhancing pollutant degradation in wastewater
Sun et al. Preparation of the additive-modified α-Fe2O3/g-C3N4 Z-scheme composites with improved visible-light photocatalytic activity
CN104445508A (zh) 铁酸锰或其碳复合材料的双效光芬顿脱氮方法
CN112718009B (zh) 一种pdi/mof异质结光催化剂及其制备方法与使用方法
Yang et al. Two-dimensional layered organic hybrid selenidostannate coupled with polyaniline for high efficient photocatalytic Cr (VI) reduction
CN106732741A (zh) 一种降解废水中染料的可见光催化剂及其制备和应用
Xiang et al. Synergistic photocatalysis-fenton reaction of flower-shaped CeO2/Fe3O4 magnetic catalyst for decolorization of high concentration congo red dye
Cheng et al. Construction of hollow In 2 S 3/CdIn 2 S 4 heterostructures with high efficiency for Cr (vi) reduction
Liu et al. A novel amorphous CoS x/NH 2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light
Chen et al. Construction of NH2-MIL-101 (Fe)/g-C3N4 hybrids based on interfacial Lewis acid-base interaction and its enhanced photocatalytic redox capability
CN110743602A (zh) 一种复合光催化剂及其制备方法和应用
CN110787826B (zh) 一种Ag负载WO3纳米纤维-多孔碳光催化材料及其制法
CN112619682A (zh) 一种双金属氧化物量子点和氮化碳纳米片的复合材料和制备方法及其应用
CN113457745B (zh) 一种选择性还原硝酸盐为n2的光催化剂制备方法及应用
Zhang et al. Embedded iron and nitrogen co-doped carbon quantum dots within g-C3N4 as an exceptional PMS photocatalytic activator for sulfamethoxazole degradation: The key role of FeN bridge
Yu et al. Self-templated synthesis of core-shell Fe3O4@ ZnO@ ZIF-8 as an efficient visible-light-driven photocatalyst
Wang et al. Fabrication of nitrogen-deficient gC 3 N 4 nanosheets via an acetaldehyde-assisted hydrothermal route and their high photocatalytic performance for H 2 O 2 production and Cr (vi) reduction
CN115722251B (zh) 异原子掺杂藻基生物炭负载纳米零价金属催化剂的制备方法及应用
CN104858425B (zh) 一种减弱金属纳米颗粒氧化的方法
CN115007185A (zh) Mn/O共掺杂的氮化碳超薄多孔纳米片材料及其制备方法和应用
Su et al. Sustainable hydrogen production from electroplating wastewater over a solar light responsive photocatalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination