CN114991974A - 一种改善柴油机低温启动过程的多次喷射控制策略 - Google Patents

一种改善柴油机低温启动过程的多次喷射控制策略 Download PDF

Info

Publication number
CN114991974A
CN114991974A CN202210553696.5A CN202210553696A CN114991974A CN 114991974 A CN114991974 A CN 114991974A CN 202210553696 A CN202210553696 A CN 202210553696A CN 114991974 A CN114991974 A CN 114991974A
Authority
CN
China
Prior art keywords
injection
diesel engine
temperature
low
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210553696.5A
Other languages
English (en)
Inventor
吴晗
薄亚卿
石智成
黎一锴
王字满
李向荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202210553696.5A priority Critical patent/CN114991974A/zh
Publication of CN114991974A publication Critical patent/CN114991974A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本发明公开了一种改善柴油机低温启动过程的多次喷射控制策略,属于内燃机技术领域。当柴油机上止点温度较高时采用单次喷射;当柴油机上止点温度较低时,采用预喷射+主喷射的喷油策略;随着柴油机上止点温度降低,采用的喷油间隔时间越长。本发明能够提高不同环境下发动机起动性能,同时减少排气损失,提高热效率。

Description

一种改善柴油机低温启动过程的多次喷射控制策略
技术领域
本发明属于内燃机技术领域,具体涉及一种改善柴油机低温启动过程的多次喷射控制策略。
背景技术
柴油机以其高燃油效率和高马力而广泛应用于军事和日常生活中。然而,柴油发动机尤其是在低环境温度条件下仍存在许多点火和排放问题。在低环境温度下,由于温度对燃料汽化过程和化学动力学的影响,燃烧不稳定性增加。此外,低温环境也会影响燃料的热力学性能,进而导致冷启动困难。当压缩比为18时,若环境温度低于-11℃则柴油机将难以正常启动。随着压缩比的减小,冷启动变得更加困难。而多喷策略可显著改善柴油机的冷起动性能以及柴油机低温环境的工作性能。
多次喷射是指在柴油机工作过程中,针对某一气缸而言,在一个周期内将燃料分成两次或多次将燃料陆续喷入气缸内,而非一次性全部喷入气缸。通过对燃料的喷射次数、间隔以及比例进行控制,进而改变缸内油气混合过程。多次喷射策略可以有效降低冷启动的极限环境温度,缩短启动周期。对于压缩比为19.5的柴油机,优化后的多次喷射策略可使冷启动极限环境温度从-10℃降至-20℃。合适的预喷射有助于空燃混合,使燃烧更加均匀,但是过早的预喷射会使燃烧稳定性变差。实验表明初始温度为253K时两次喷射缸内压力升高较单次喷射提高了20%,但293k时并没有明显提升。此外,当进气温度为293K时,单次喷射燃烧放热更加集中,有利于增加发动机燃烧等容度,提高作功能力。这说明多次喷射技术并非总是能够给柴油机性能带来帮助,对于不同工况、不同环境,需要选择合适的喷油策略。
但由于同时受到各种因素的影响,其过程和原理极其复杂,因此,为了获得不同条件下的最优注入策略,需要研究预喷射燃料对主喷射燃料的作用规律,并找到当前条件下合适的预-主喷射间隔。
发明内容
有鉴于此,本发明提供了一种改善柴油机低温启动过程的多次喷射控制策略,能够提高不同环境下发动机起动性能,同时减少排气损失,提高热效率。
一种改善柴油机低温启动过程的多次喷射控制策略,当柴油机上止点温度较高时采用单次喷射;当柴油机上止点温度较低时,采用预喷射+主喷射的喷油策略;随着柴油机上止点温度降低,采用的喷油间隔时间越长。
进一步地,所述发动机喷油间隔时间控制过程中以曲轴转角为参照进行控制。
进一步地,对于缸径为80-90mm,压缩比为15-18的柴油机,当采用80MPa喷油压力时,柴油机上止点温度为850K以上时,采用单次喷射的形式;柴油机上止点温度为800K-850K之间时,采用预喷射+主喷射的形式,低转速喷油间隔为3-7°CA,中高转速喷油间隔为7-12°CA。;柴油机上止点温度小于800K时,采用预喷射+主喷射的形式,低转速喷油间隔为5-10°CA,中高转速喷油间隔为10-18°CA。
进一步地,所述低转速是指转速小于1500rpm,中高转速是指转速大于1500rpm。
有益效果:
1、本发明在低温环境冷启动过程中,采用较长预-主喷油间隔的喷油策略,能够有效提高发动机启动成功率以及燃烧效率。燃料的滞燃期直接影响了柴油机的冷启动能力,若滞燃期过长,则可能出现失火现象或活塞膨胀过程才开始燃烧导致燃烧不充分的现象。在低温环境下,燃料单次喷射的滞燃期较长,采用预+主喷射的喷油策略,预喷射燃料被提前注入气缸中,被环境加热并发生部分低温反应,在发生高温反应前与主喷射燃料混合,一方面使燃料整体温度较高,另一方面主喷射燃料也可以继承部分预喷射燃料的低温反应,进而缩短主喷射燃料的滞燃期。因此,在低温环境下采用多次喷射的方式能够有效缩短滞燃期,进而提高冷启动性能。
2、本发明随着温度的升高,预-主喷油间隔缩短,直至采用单次喷射,有利于提高燃烧等容度,提高热效率。当缸内温度较高时,滞燃期短,不需要担心发生因滞燃期过长导致的失火现象。除此之外,因起滞燃期较短,采用多次喷射策略很容易出现两次喷射的燃料分别燃烧或燃烧连续性差的现象,相同燃料时多次喷射的燃烧持续期大于单次喷射。因此,在高温环境下采用单次喷射能够使放热更加集中,让燃料在上止点附近快速燃烧放热,进而提高燃烧等容度,使工作过程更加接近奥托循环,减少排气损失,提高热效率。
3、本发明的发动机喷油间隔时间控制过程中以曲轴转角为参照进行控制,化学反应过程中低温反应以时间为衡量标准,因此转速越高,预喷射与主喷射喷油间隔的曲轴转角越大。因此,以曲轴转角为参照进行控制的方式能够使控制更加精准,有助于多次喷射控制策略的实现。
附图说明
图1为不同喷油间隔的两次喷射贯穿距离随时间变化的曲线图;
图2为预-主喷射喷油间隔曲轴转角控制方法示意图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明提供了一种改善柴油机低温启动过程的多次喷射控制策略,图1表示不同喷油策略下预、主喷射燃料贯穿距离随时间的变化。图1采用的多次喷油策略均为15%预喷射+85%主喷射。图中方块为采用单次喷油策略时的贯穿距离,从图中可以看出燃料发展速度随时间逐渐降低。图中圆形符号表示采用多次喷油策略时的预喷射燃料贯穿距离,从图中可以看出发展初期几乎与单次喷射重合。对于间隔0.6ms情况下,在喷油开始0.5ms之后预喷射由于没有持续的推力相比于单次喷射略有下降。图中三角符号为主喷射燃料的贯穿距离。图1结果重点说明了因空气阻力等原因,主喷射燃料均可追赶上预喷射燃料并与其混合,混合点出现的时间随着喷油间隔的增加而推迟。混合点出现的时间是喷油间隔选取的重要依据。
当采用预喷射+主喷射的喷油策略时,预喷射与主喷射之间喷油间隔越长,二者混合越晚。根据化学反应分析,在甲醛大量生成前的低温反应过程中的预喷射燃料能够有效促进主喷射燃料反应,缩短主喷射燃料滞燃期。但是温度升高、甲醛生成后的预喷射燃料对主喷射燃料无明显促进作用。随着温度的升高,化学反应速度加快,预-主喷射需要更早混合,因此需要匹配更短的喷油间隔,甚至单次喷射效果更好。
因此,温度较高时采用单次喷射,有利于提高燃烧等容度,提高作功能力;温度较低时,可采用预喷射+主喷射的喷油策略,能够有效提高燃烧效率;随着温度降低,采用的喷油间隔时间延长;发动机控制过程中以曲轴转角为参照进行控制,而化学反应过程中低温反应以时间为衡量标准,因此转速越高,预喷射与主喷射喷油间隔的曲轴转角越大,如图2所示,当温度较高时采用单次喷射,随着温度降低和转速提高,采用的喷油时间间隔越大。
对于不同机型的柴油机具体喷油策略有所不同,具体来说,对于缸径为80-90mm,压缩比为15-18的柴油机而言,当采用80MPa喷油压力时,上止点温度为850K以上时,采用单次喷射的形式;上止点温度为800K-850K之间时,采用预喷射+主喷射的形式,低转速喷油间隔为3-7°CA,中高转速喷油间隔为7-12°CA;上止点温度小于800K时,采用预喷射+主喷射的形式,低转速喷油间隔为5-10°CA,中高转速喷油间隔为10-18°CA。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种改善柴油机低温启动过程的多次喷射控制策略,其特征在于,当柴油机上止点温度较高时采用单次喷射;当柴油机上止点温度较低时,采用预喷射+主喷射的喷油策略;随着柴油机上止点温度降低,采用的喷油间隔时间越长。
2.如权利要求1所述的改善柴油机低温启动过程的多次喷射控制策略,其特征在于,所述发动机喷油间隔时间控制过程中以曲轴转角为参照进行控制。
3.如权利要求2所述的改善柴油机低温启动过程的多次喷射控制策略,其特征在于,对于缸径为80-90mm,压缩比为15-18的柴油机,当采用80MPa喷油压力时,柴油机上止点温度为850K以上时,采用单次喷射的形式;柴油机上止点温度为800K-850K之间时,采用预喷射+主喷射的形式,低转速喷油间隔为3-7°CA,中高转速喷油间隔为7-12°CA。;柴油机上止点温度小于800K时,采用预喷射+主喷射的形式,低转速喷油间隔为5-10°CA,中高转速喷油间隔为10-18°CA。
4.如权利要求3所述的改善柴油机低温启动过程的多次喷射控制策略,其特征在于,所述低转速是指转速小于1500rpm。
5.如权利要求3或4所述的改善柴油机低温启动过程的多次喷射控制策略,其特征在于,所述中高转速是指转速大于1500rpm。
CN202210553696.5A 2022-05-20 2022-05-20 一种改善柴油机低温启动过程的多次喷射控制策略 Pending CN114991974A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210553696.5A CN114991974A (zh) 2022-05-20 2022-05-20 一种改善柴油机低温启动过程的多次喷射控制策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210553696.5A CN114991974A (zh) 2022-05-20 2022-05-20 一种改善柴油机低温启动过程的多次喷射控制策略

Publications (1)

Publication Number Publication Date
CN114991974A true CN114991974A (zh) 2022-09-02

Family

ID=83026673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210553696.5A Pending CN114991974A (zh) 2022-05-20 2022-05-20 一种改善柴油机低温启动过程的多次喷射控制策略

Country Status (1)

Country Link
CN (1) CN114991974A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200934A (ja) * 1998-01-08 1999-07-27 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
US6032642A (en) * 1998-09-18 2000-03-07 Detroit Diesel Corporation Method for enhanced split injection in internal combustion engines
JP2001055947A (ja) * 1999-08-18 2001-02-27 Isuzu Motors Ltd ディーゼルエンジンの燃料噴射装置
JP2001193463A (ja) * 1999-10-29 2001-07-17 Yanmar Diesel Engine Co Ltd 直接噴射式ディーゼル機関
JP2006250047A (ja) * 2005-03-10 2006-09-21 Toyota Motor Corp ディーゼル機関の燃料噴射制御装置
CN101939524A (zh) * 2007-12-07 2011-01-05 丰田自动车株式会社 内燃机的燃料喷射控制装置
EP2392808A1 (en) * 2009-02-02 2011-12-07 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN112282956A (zh) * 2020-09-17 2021-01-29 潍柴动力股份有限公司 柴油机喷油的控制方法、装置及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200934A (ja) * 1998-01-08 1999-07-27 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
US6032642A (en) * 1998-09-18 2000-03-07 Detroit Diesel Corporation Method for enhanced split injection in internal combustion engines
JP2001055947A (ja) * 1999-08-18 2001-02-27 Isuzu Motors Ltd ディーゼルエンジンの燃料噴射装置
JP2001193463A (ja) * 1999-10-29 2001-07-17 Yanmar Diesel Engine Co Ltd 直接噴射式ディーゼル機関
JP2006250047A (ja) * 2005-03-10 2006-09-21 Toyota Motor Corp ディーゼル機関の燃料噴射制御装置
CN101939524A (zh) * 2007-12-07 2011-01-05 丰田自动车株式会社 内燃机的燃料喷射控制装置
EP2392808A1 (en) * 2009-02-02 2011-12-07 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN112282956A (zh) * 2020-09-17 2021-01-29 潍柴动力股份有限公司 柴油机喷油的控制方法、装置及系统

Similar Documents

Publication Publication Date Title
Yan et al. Study of combustion and emission characteristics of a diesel engine fueled with diesel, butanol-diesel and hexanol-diesel mixtures under low intake pressure conditions
Işik et al. Investigation on the effects of gasoline reactivity controlled compression ignition application in a diesel generator in high loads using safflower biodiesel blends
RU2457350C1 (ru) Способ запуска двигателя внутреннего сгорания с воспламенением при низких температурах
Natarajan et al. Early injected PCCI engine fuelled with bio ethanol and diesel blends–an experimental investigation
Chaichan Effect of injection timing and coolant temperatures of DI diesel engine on cold and hot engine startability and emissions
Mukhopadhyay et al. Direct injection compression ignition engine: cold start on gasoline and diesel
Huang et al. Study on cycle-by-cycle variations of combustion in a natural-gas direct-injection engine
CN114991974A (zh) 一种改善柴油机低温启动过程的多次喷射控制策略
Wakil et al. Influence of engine operating variable on combustion to reduce exhaust emissions using various biodiesels blend
Kar et al. Development of a single cylinder CNG direct injection engine and its performance, emissions and combustion characteristics
US11603808B2 (en) Engine management system and method
Huang et al. Correlation of ignitability with injection timing for direct injection combustion fuelled with compressed natural gas and gasoline
YH et al. Combustion characteristics, emissions and engine performances of a split injection diesel engine fueled with biodiesel blended fuels/YH Teoh...[et al.]
Jung et al. Effects of mixture stratification on HCCI combustion of DME in a rapid compression and expansion machine
Setiawan et al. Investigation on pilot injection with various Start of Injection two and fuel injection pressure in common rail direct injection diesel engine
Karwade et al. Investigations on premixed charge compression ignition type combustion using butanol-diesel blends
Saraei et al. Diesel combustion in heavy-duty engine with single-and double-injection strategies
Maksum et al. The effect of waste cooking oil biodiesel to the diesel engine performance
Oung et al. H2 efficient and near zero emissions operation on a pfi hd single cylinder dieselice
Senthil et al. Influence of injection pressure on performance, emission and combustion characteristics of annona methyl ester operated DI diesel engine
Soloiu et al. Investigation of RCCI Characteristics of Combustion and emissions with PFI of N-Butanol and direct injection of high linoleic content biodiesel
Jiangjian et al. An Experimental Study on Fuel Injection System and Emission of a Small GDI Engine
Setiawan et al. COMBUSTION CHARACTERISTIC OF GASOLINE-BIODIESEL ON RAPID COMPRESSION EXPANSION MACHINE USING VARIOUS FUEL INJECTION PRESSURE
Hissa et al. Combustion and emission studies of a common-rail direct injection diesel engine with various injector nozzles
Kumar et al. Experimental investigation of six cylinder turbocharged Di-diesel engine cold startability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination