CN114966230A - 电磁场探头 - Google Patents

电磁场探头 Download PDF

Info

Publication number
CN114966230A
CN114966230A CN202210377170.6A CN202210377170A CN114966230A CN 114966230 A CN114966230 A CN 114966230A CN 202210377170 A CN202210377170 A CN 202210377170A CN 114966230 A CN114966230 A CN 114966230A
Authority
CN
China
Prior art keywords
electromagnetic field
signal
field coil
layer
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210377170.6A
Other languages
English (en)
Inventor
邵伟恒
方文啸
黄云
路国光
易志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electronic Product Reliability and Environmental Testing Research Institute
Original Assignee
China Electronic Product Reliability and Environmental Testing Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electronic Product Reliability and Environmental Testing Research Institute filed Critical China Electronic Product Reliability and Environmental Testing Research Institute
Priority to CN202210377170.6A priority Critical patent/CN114966230A/zh
Publication of CN114966230A publication Critical patent/CN114966230A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/0675Needle-like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Abstract

本申请涉及一种电磁场探头。所述探头由依次堆叠的第一接地层、第一信号层、第二信号层、第二接地层组成,探头包括:第一电磁场探测部,包括布线在第一信号层上的第一电磁场线圈。第二电磁场探测部,包括布线在第二信号层上的第二电磁场线圈。其中,第一电磁场线圈在第二电磁场线圈所在平面上的正投影在第二电磁场线圈的范围内,且第一电磁场线圈和第二电磁场线圈在第一接地层所在平面上的正投影均在第一接地层和第二接地层的范围外。连接通孔,贯穿第一信号层和第二信号层,分别与第一电磁场线圈和第二电磁场线圈连接。从而增大了电、磁场转换的电信号的幅值。能够同时探测更加低频的电场和磁场信号。

Description

电磁场探头
技术领域
本申请涉及电磁检测技术领域,特别是涉及一种电磁场探头。
背景技术
随着科技的发展,芯片的集成度越来越高,而随着芯片集成度的提高,芯片中各个元件的功耗、尺寸、电压也越来越小。从而导致芯片辐射出的电磁信号越来越微弱。而为了检测芯片的电磁可靠性,需要捕获芯片辐射出的电、磁场信号进行可靠性分析。因此,如何检测芯片辐射出的电、磁场信号,是目前需要解决的问题。
传统技术中,通过复合探头探测电场和磁场。
然而,随着芯片辐射出的电磁信号越来越微弱,传统技术的探头捕获到的电、磁场信号的幅值过小,难以满足可靠性分析的需求。
发明内容
基于此,有必要针对上述技术问题,提供一种能够对测量到的电、磁场信号进行高增益,增大电、磁场信号的幅值,从而能测量更加微弱的电、磁场的电磁场探头。
一种电磁场探头,所述探头由依次堆叠的第一接地层、第一信号层、第二信号层、第二接地层组成,所述探头包括:第一电磁场探测部,包括布线在所述第一信号层上的第一电磁场线圈,用于感应外界磁场和电场共同产生的第一电信号;第二电磁场探测部,包括布线在所述第二信号层上的第二电磁场线圈,用于感应外界磁场和电场共同产生的第二电信号,其中,所述第一电磁场线圈在所述第二电磁场线圈所在平面上的正投影在所述第二电磁场线圈的范围内,且所述第一电磁场线圈和所述第二电磁场线圈在所述第一接地层所在平面上的正投影均在所述第一接地层的范围外、且所述第一电磁场线圈和所述第二电磁场线圈在所述第二接地层所在平面上的正投影均在所述第二接地层的范围外;连接通孔,贯穿所述第一信号层和所述第二信号层,分别与所述第一电磁场线圈和所述第二电磁场线圈连接,用于连通所述第一电磁场线圈和所述第二电磁场线圈。
在其中一个实施例中,所述探头还包括:第一信号传输部,包括布线在相应布线层上的第一带状线、第一转换通孔、第一共面波导线,所述第一带状线的第一端与所述第一电磁场线圈连接,所述第一带状线的第二端通过所述第一转换通孔与所述第一共面波导线的第一端连接;第二信号传输部,包括布线在相应布线层上的第二带状线、第二转换通孔、第二共面波导线,所述第二带状线的第一端与所述第二电磁场线圈连接,所述第二带状线的第二端通过所述第二转换通孔与所述第二共面波导线的第一端连接。
在其中一个实施例中,所述探头还包括:测量设备,分别与所述第一共面波导线的第二端、所述第二共面波导线的第二端连接,用于根据所述第一电信号和所述第二电信号,确定所述外界磁场的强度和所述外界电场的强度。
在其中一个实施例中,所述测量设备用于,根据所述第一电信号与所述第二电信号之和,确定所述外界电场的强度;根据所述第一电信号与所述第二电信号之差,确定所述外界磁场的强度。
在其中一个实施例中,所述第一转换通孔包括第一信号通孔,以及若干个以预设距离环绕所述第一信号通孔的第一环绕接地通孔;所述第一带状线的第二端通过所述第一信号通孔的导电孔壁连接所述第一共面波导线的第一端;所述第二转换通孔包括第二信号通孔,以及若干个以所述预设距离环绕所述第二信号通孔的第二环绕接地通孔;所述第二带状线的第二端通过所述第二信号通孔的导电孔壁连接所述第二共面波导线的第一端。
在其中一个实施例中,所述第一信号传输部的传输特性阻抗为50欧姆;所述第二信号传输部的传输特性阻抗为50欧姆。
在其中一个实施例中,所述第一带状线包括:第一导体带,布线在所述第一信号层;第一接地带,布线在所述第一接地层;第二接地带,布线在所述第二接地层;所述第二带状线包括:第二导体带,布线在所述第二信号层;第三接地带,布线在所述第一接地层;第四接地带,布线在所述第二接地层。
在其中一个实施例中,所述第一共面波导线包括:第一中心导体带,布线在所述第一接地层;第一接地导体带,布线在所述第一接地层;第一金属接地层,布线在所述第一信号层;所述第二共面波导线包括:第二中心导体带,布线在所述第一接地层;第二接地导体带,布线在所述第一接地层;第二金属接地层,布线在所述第二信号层。
在其中一个实施例中,所述测量设备为频谱分析仪或网络分析仪。
在其中一个实施例中,所述第一电磁场线圈所围成的区域与所述第二电磁场线圈所围成的区域形状相同,且中轴线共线。
上述电磁场探头,由依次堆叠的第一接地层、第一信号层、第二信号层、第二接地层组成,通过第一电磁场探测部感应外界电场和磁场共同在第一电磁场线圈上产生的第一电信号,通过第二电磁场探测部感应外界电场和磁场共同在第二电磁场线圈上产生的第二电信号。从而通过第一电信号和第二电信号共同组成差分信号,能够滤除抑制在探测过程中产生的干扰信号,提高探测的精确度,并且,通过第一磁场线圈和第二磁场线圈的叠加,增大了磁场探测的面积,使得外界磁场转换得到的电信号的幅值更大,对于外界磁场产生的电信号具备更大的增益,能够探测到更加微弱的磁场信号。并且,第一磁场线圈和第二磁场线圈均设置在接地层的外侧,未被接地层覆盖住,从而能够感应与线圈垂直方向的电场信号,通过两个磁场线圈的结构,实现了电场和磁场的同时测量,并且增大了电、磁场转换的电信号的幅值。从而能够同时探测更加低频的电场和磁场信号。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中电磁场探头的结构示意图;
图2为一个实施例中电磁场探头的局部结构示意图;
图3为一个实施例中电磁场探头第一信号层的结构示意图;
图4为一个实施例中电磁场探头第二信号层的结构示意图;
图5为一个实施例中示例磁场线圈的结构示意图;
图6为一个实施例中信号传输部的结构示意图;
图7为一个实施例中转换通孔的结构示意图;
图8为一个实施例中带状线的结构示意图;
图9为一个实施例中共面波导线的结构示意图;
图10为另一个实施例中电磁场探头的结构示意图;
图11为一个实施例中电磁场探头的完整结构示意图。
附图标记说明:10-第一电磁场线圈,20-第二电磁场线圈,30-连接通孔,40-第一带状线,50-第二带状线,60-第一转换通孔,70-第二转换通孔,80-第一共面波导线,90-第二共面波导线,100-测量设备。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述语相应地被解释。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。此外,以下实施例中的“连接”,如果被连接的对象之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。
正如背景技术所述,现有技术中的探头存在无法检测到较为微弱的电磁信号的问题。经发明人研究发现,出现这种问题的原因在于,现有技术中的探头对于电磁场信号的增益较小,转换得到的电信号的幅值过小。
基于以上原因,本发明提供了一种能够对测量到的电、磁场信号进行高增益,增大电、磁场信号的幅值,从而能测量更加微弱的电、磁场的电磁场探头。
在一个实施例中,如图1所示,提供了一种电磁场探头,探头由依次堆叠的第一接地层、第一信号层、第二信号层、第二接地层组成,探头包括:第一电磁场探测部、第二电磁场探测部、连接通孔,其中:
第一电磁场探测部,包括布线在第一信号层上的第一电磁场线圈10,用于感应外界磁场和电场共同产生的第一电信号。
具体地,通过如下公式,确定外界磁场产生的电信号:
Figure BDA0003591161220000051
其中,I1为外界磁场在第一电磁场线圈上产生的电信号,B1为外界磁场的强度,S1为第一电磁场线圈的面积,R1为第一电磁场线圈的电阻值。
通过如下公式,确定外界电场产生的电信号:
Figure BDA0003591161220000061
其中,I2为外界电场在第一电磁场线圈上产生的电信号,E1为外界电场的强度,d1为第一电磁场线圈与外界电场强度方向垂直的部分的长度,R1为第一电磁场线圈的电阻值。
将外界电场和外界磁场在第一电磁场线圈上产生的电信号相加,即可得到第一电信号。
第二电磁场探测部,包括布线在第二信号层上的第二电磁场线圈20,用于感应外界磁场和电场共同产生的第二电信号。
具体地,第二电信号也通过上述方式求得。
具体地,第一电磁场线圈在第二电磁场线圈所在平面上的正投影在第二电磁场线圈的范围内,且第一电磁场线圈和第二电磁场线圈在第一接地层所在平面上的正投影均在第一接地层的范围外、且第一电磁场线圈和第二电磁场线圈在第二接地层所在平面上的正投影均在第二接地层的范围外。由于第一电磁场线圈在第二电磁场线圈所在平面上的正投影在第二电磁场线圈的范围内,因此,第一电磁场线圈的面积与第二电磁场线圈的面积能够叠加,测量得到的磁场信号能叠加,增加测量到的磁场信号的幅值。由于第一电磁场线圈和第二电磁场线圈均未被接地层覆盖,因此能够暴露在电场中,能够感应到电场信号。
示例性地,如图2所示,为电磁场探头的立体图,其中,第一电磁场线圈和第二电磁场线圈在接地层的范围外,且第一电磁场线圈所围成的区域与第二电磁场线圈所围成的区域形状相同,中轴线共线设置。如图3所示为第一电磁场线圈的俯视图,图4所示为第二电磁场线圈的俯视图,可以看到第一电磁场线圈和第二电磁场线圈都在接地层的范围外。
具体地,磁场感应区域不被接地层屏蔽,可用于通过磁场线,感应磁通量的变化;磁场感应线沿磁场感应区域布线,可根据磁场感应区域中的磁通量变化生成射频信号。进一步地,各开口轴向对齐排列,即,在垂直于电路板板面的方向设有连接磁场感应区域的开口,可用于通过电场线。磁场感应线可通过从开口中通过的电场线,生成互感电场信号,从而抑制信号干扰,提高电场抑制比以及探头探测数据的准确性。
示例性地,磁场线圈的面积越大,测量到的磁场信号的幅值也越大,如图5所示,图5所示的电路为一个磁场线圈,包括电感、电阻、以及由外界磁场通过电磁感应在线圈上产生的电源,其中,电阻两端的电压通过如下公式确定:
Figure BDA0003591161220000071
其中,V0为电阻两端的电压值,j为虚数,ω为频率,u0为系数,H为磁场线圈上的磁场强度,s为磁场线圈面积,L为电感值,ZL为电阻值。
由上述公式可以看出,在磁场强度不变时,磁场线圈的面积越大,电阻两端的电压就越大。因此,通过第一电磁场线圈和第二电磁场线圈的叠加,增大了磁场线圈的面积,使得相同的磁场强度生成的电信号的幅值更大,更容易被测量到。从而能够探测更加低频的芯片,例如STM32等低频的MCU(微控制单元,Microcontroller Unit)芯片产生的电磁干扰信号。
示例性地,可通过HFSS(High Frequency Structure Simulator,高频结构仿真)仿真软件进行仿真,确定使得探测效果最佳化的具体的磁场线圈的面积。
连接通孔30,贯穿第一信号层和第二信号层,分别与第一电磁场线圈10和第二电磁场线圈20连接,用于连通第一电磁场线圈和第二电磁场线圈。
示例性地,如图2所示,第一电磁场线圈10和第二电磁场线圈20均绕设在连接通孔30上,通过连接通孔30传输电信号。-
具体地,通过连接通孔,将第一电磁场线圈和第二电磁场线圈连通,使得第一电信号和第二电信号能够叠加。
具体地,第一接地层和第二接地层为屏蔽层,用于屏蔽外界干扰信号对传输中的第一电信号和第二电信号所产生的影响,即,屏蔽外界干扰信号对传输线上的信号的影响。
具体地,本申请提及的通孔是穿过整个印制电路板的孔,可用于实现内部互连或作为元件的安装定位孔;其孔壁圆柱面上可用化学沉积的方法镀上一层金属,用以连通中间各层需要连通的铜箔,可以起到电气连接、固定或定位器件的作用。
在本实施例中,通过第一电磁场探测部感应外界电场和磁场共同在第一电磁场线圈上产生的第一电信号,通过第二电磁场探测部感应外界电场和磁场共同在第二电磁场线圈上产生的第二电信号。从而通过第一电信号和第二电信号共同组成差分信号,能够滤除抑制在探测过程中产生的干扰信号,提高探测的精确度,并且,通过第一磁场线圈和第二磁场线圈的叠加,增大了磁场探测的面积,使得外界磁场转换得到的电信号的幅值更大,对于外界磁场产生的电信号具备更大的增益,能够探测到更加微弱的磁场信号。并且,第一磁场线圈和第二磁场线圈均设置在接地层的外侧,未被接地层覆盖住,从而能够感应与线圈垂直方向的电场信号,通过两个磁场线圈的结构,实现了电场和磁场的同时测量,并且增大了转换到的电信号的幅值。从而能够同时探测更加低频的电场和磁场信号。增加了探测的灵敏度。
在一个实施例中,如图1所示,探头还包括:第一信号传输部、第二信号传输部,其中:
第一信号传输部,包括布线在相应布线层上的第一带状线40、第一转换通孔60、第一共面波导线80,第一带状线40的第一端与第一电磁场线圈10连接,第一带状线40的第二端通过第一转换通孔60与第一共面波导线80的第一端连接。
第二信号传输部,包括布线在相应布线层上的第二带状线50、第二转换通孔70、第二共面波导线90,第二带状线50的第一端与第二电磁场线圈20连接,第二带状线50的第二端通过第二转换通孔70与第二共面波导线90的第一端连接。
具体地,转换通孔可用于将带状线传输结构转换为CB-CPW(Conductor-backedcoplanar waveguide,共面波导)传输线结构,通过导电孔壁实现带状线的导体带与CB-CPW传输线的中心导体带之间的导通,并保证传输特性阻抗匹配,抑制信号衰减、降低传输谐振。
具体地,如图6所示为信号传输部的局部放大图,图6为第一接地层或第二接地层的俯视图,其中,第一带状线(图中未示出)连接第一转换通孔和第一电磁场线圈,第二带状线(图中未示出)连接第二转换通孔和第二电磁场线圈。
具体地,第一转换通孔包括第一信号通孔,以及若干个以预设距离环绕第一信号通孔的第一环绕接地通孔;第一带状线的第二端通过第一信号通孔的导电孔壁连接第一共面波导线的第一端。
第二转换通孔包括第二信号通孔,以及若干个以预设距离环绕第二信号通孔的第二环绕接地通孔;第二带状线的第二端通过第二信号通孔的导电孔壁连接第二共面波导线的第一端。
环绕接地通孔的个数以及与信号通孔的预设距离可根据探头的结构、传输结构的尺寸、基板的介质基片厚度等参数进行调整。
示例性地,如图7所示,环绕接地通孔的数量为六个,通过六个同轴通孔阵列,可补偿中心的信号通孔引起的阻抗失配,保证传输特性阻抗是50欧,提高探头的传输效率。各层之间的间隔以及导线的尺寸和材料等因素决定了导线的阻抗,可以通过一些成熟的商业软件进行计算,计算出在预设阻抗下层间间隔、导线尺寸以及材料等因素所需要的设计。通过合理设计使得信号传输部的特性阻抗为50欧姆。由于通常外设分析设备的特性阻抗一般都为50欧姆,因此在本实施例中选择将特性阻抗设计为50欧姆,便于与外设分析设备进行阻抗匹配,同时保证传输过程中的信号损耗低、信号反射低。
具体地,第一带状线包括:第一导体带,布线在第一信号层。第一接地带,布线在第一接地层。第二接地带,布线在第二接地层。第二带状线包括:第二导体带,布线在第二信号层。第三接地带,布线在第一接地层。第四接地带,布线在第二接地层。
示例性地,图8为一个实施例中带状线的结构示意图,带状线可由两块接地金属带与中间一块宽度ω、厚度t的矩形截面导体带构成;由于两边都有接地金属带,因此,其阻抗容易控制,同时屏蔽较好;磁场带状线与电场带状线可位于不同布线层,通过各自的接地金属带屏蔽干扰,保证各自信号传输的低损耗、低反射。
具体地,第一共面波导线包括:第一中心导体带,布线在第一接地层;第一接地导体带,布线在第一接地层;第一金属接地层,布线在第一信号层;第二共面波导线包括:第二中心导体带,布线在第一接地层;第二接地导体带,布线在第一接地层;第二金属接地层,布线在第二信号层。
示例性地,如图9所示,CB-CPW传输线可由介质基片、介质基片上表面的三条导带和介质基片下表面的金属接地层组成。中间为薄的中心导体带,两侧平行中心导体带且与中心导体带距离很近的为接地导带;中心导体带与接地导带之间的小间距可实现电路的低阻抗,且通过调节该间距可以改变CB-CPW的传输特性阻抗;接地导带的金属面是半无限的,但在实际加工中其面积都是有限的;介质基片上表面的接地导带通过金属填充过孔和介质基片下表面的金属接地层相连接,实现一致的接地性能;由于增强的接地结构,可以降低接地平面的阻抗,有助于CB-CPW的阻抗设计和射频信号的传输,可将将射频信号以50欧阻抗的形式传输出去。
在本实施例中,通过设置信号传输部,将电磁场探测部捕获的电信号传输出去,并且在传输的过程中,尽量保证电信号不受到干扰,并尽量提高传输的质量。
在一个实施例中,如图6所示,该探头还包括多个安装通孔,各安装通孔贯穿探头的各层,用于固定探头,或者将探头与外界测量设备固定连接。
具体地,安装通孔用于将传输线安装到外部检测设备的接口上,以使传输线与外部检测设备的接口更好的接触,以便将电信号更好地传输到外部检测设备。在一个示例中,在共面波导线的两侧分别开设两个安装通孔,且两侧的安装通孔对称。
具体地,探头还包括屏蔽通孔,起到屏蔽作用,能够增强探头对电场的屏蔽效果,屏蔽通孔的数量可根据实际探头的尺寸而定,以及相邻屏蔽通孔之间的间隔距离根据实际屏蔽电场的效果而定。
在本实施例中,通过设置安装通孔,能够固定探头各层之间的结构,也能便于探头与外部设备连接,还能起到屏蔽的作用,增强对传输部的屏蔽效果。
在一个实施例中,如图10所示,探头还包括:
测量设备100,分别与第一共面波导线的第二端、第二共面波导线的第二端连接,用于根据第一电信号和第二电信号,确定外界磁场的强度和外界电场的强度。
具体地,测量设备用于,根据第一电信号与第二电信号之和,确定外界电场的强度,再乘上相应的校准因子;根据第一电信号与第二电信号之差,再乘上相应的校准因子,确定外界磁场的强度。
示例性地,测量设备为频谱分析仪或网络分析仪。信号传输部可焊接SMA(Small AType,微波高频连接器)连接器,SMA连接器的一端与CB-CPW传输线连接,另一端与测量设备连接。
具体地,可用网络分析仪和微带线搭建电磁场探头的校准系统。校准用的所述微带线可被认为是一个可用来发射标准场的外部标准件。该微带线可产生一定的准TEM(Transverse Electric and Magnetic Field,电磁场)射频电场,使用所述电磁场探头对该标准件进行Y方向的扫描(垂直于微带线走线方向),可以得到所述电磁场无源探头的空间分辨率。具体的扫描方法包括:用探头在不同的位置进行探测,探测出场强大小,用网络分析仪绘制不同位置场强大小随位置的关系图,进而得出空间分辨率。另外,通过逐步调小标准源电磁信号可以对探头的探测灵敏度进行标定。借助该校准系统及扫描方法,可对所述电磁场探头的测量结果进行探测校准。
在本实施例中,通过测量设备,能够根据第一电信号和第二电信号,确定外界电、磁场的强度。
示例性地,如图11所示,将图1所示的电磁场探头的四层布线层依次堆叠起来,即可得到如图11所示的完整的电磁场探头。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种电磁场探头,其特征在于,所述探头由依次堆叠的第一接地层、第一信号层、第二信号层、第二接地层组成,所述探头包括:
第一电磁场探测部,包括布线在所述第一信号层上的第一电磁场线圈,用于感应外界磁场和电场共同产生的第一电信号;
第二电磁场探测部,包括布线在所述第二信号层上的第二电磁场线圈,用于感应外界磁场和电场共同产生的第二电信号,其中,所述第一电磁场线圈在所述第二电磁场线圈所在平面上的正投影在所述第二电磁场线圈的范围内,且所述第一电磁场线圈和所述第二电磁场线圈在所述第一接地层所在平面上的正投影均在所述第一接地层的范围外、且所述第一电磁场线圈和所述第二电磁场线圈在所述第二接地层所在平面上的正投影均在所述第二接地层的范围外;
连接通孔,贯穿所述第一信号层和所述第二信号层,分别与所述第一电磁场线圈和所述第二电磁场线圈连接,用于连通所述第一电磁场线圈和所述第二电磁场线圈。
2.根据权利要求1所述的探头,其特征在于,所述探头还包括:
第一信号传输部,包括布线在相应布线层上的第一带状线、第一转换通孔、第一共面波导线,所述第一带状线的第一端与所述第一电磁场线圈连接,所述第一带状线的第二端通过所述第一转换通孔与所述第一共面波导线的第一端连接;
第二信号传输部,包括布线在相应布线层上的第二带状线、第二转换通孔、第二共面波导线,所述第二带状线的第一端与所述第二电磁场线圈连接,所述第二带状线的第二端通过所述第二转换通孔与所述第二共面波导线的第一端连接。
3.根据权利要求2所述的探头,其特征在于,所述探头还包括:
测量设备,分别与所述第一共面波导线的第二端、所述第二共面波导线的第二端连接,用于根据所述第一电信号和所述第二电信号,确定所述外界磁场的强度和所述外界电场的强度。
4.根据权利要求3所述的探头,其特征在于,所述测量设备用于,
根据所述第一电信号与所述第二电信号之和,确定所述外界电场的强度;
根据所述第一电信号与所述第二电信号之差,确定所述外界磁场的强度。
5.根据权利要求2所述的探头,其特征在于,
所述第一转换通孔包括第一信号通孔,以及若干个以预设距离环绕所述第一信号通孔的第一环绕接地通孔;所述第一带状线的第二端通过所述第一信号通孔的导电孔壁连接所述第一共面波导线的第一端;
所述第二转换通孔包括第二信号通孔,以及若干个以所述预设距离环绕所述第二信号通孔的第二环绕接地通孔;所述第二带状线的第二端通过所述第二信号通孔的导电孔壁连接所述第二共面波导线的第一端。
6.根据权利要求2所述的探头,其特征在于,所述第一信号传输部的传输特性阻抗为50欧姆;
所述第二信号传输部的传输特性阻抗为50欧姆。
7.根据权利要求2所述的探头,其特征在于,
所述第一带状线包括:
第一导体带,布线在所述第一信号层;
第一接地带,布线在所述第一接地层;
第二接地带,布线在所述第二接地层;
所述第二带状线包括:
第二导体带,布线在所述第二信号层;
第三接地带,布线在所述第一接地层;
第四接地带,布线在所述第二接地层。
8.根据权利要求2所述的探头,其特征在于,
所述第一共面波导线包括:
第一中心导体带,布线在所述第一接地层;
第一接地导体带,布线在所述第一接地层;
第一金属接地层,布线在所述第一信号层;
所述第二共面波导线包括:
第二中心导体带,布线在所述第一接地层;
第二接地导体带,布线在所述第一接地层;
第二金属接地层,布线在所述第二信号层。
9.根据权利要求3所述的探头,其特征在于,所述测量设备为频谱分析仪或网络分析仪。
10.根据权利要求1-9任一项所述的探头,其特征在于,所述第一电磁场线圈所围成的区域与所述第二电磁场线圈所围成的区域形状相同,且中轴线共线。
CN202210377170.6A 2022-04-12 2022-04-12 电磁场探头 Pending CN114966230A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210377170.6A CN114966230A (zh) 2022-04-12 2022-04-12 电磁场探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210377170.6A CN114966230A (zh) 2022-04-12 2022-04-12 电磁场探头

Publications (1)

Publication Number Publication Date
CN114966230A true CN114966230A (zh) 2022-08-30

Family

ID=82977475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210377170.6A Pending CN114966230A (zh) 2022-04-12 2022-04-12 电磁场探头

Country Status (1)

Country Link
CN (1) CN114966230A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554710A (zh) * 2024-01-11 2024-02-13 深圳市航顺芯片技术研发有限公司 近场探头以及近场探测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554710A (zh) * 2024-01-11 2024-02-13 深圳市航顺芯片技术研发有限公司 近场探头以及近场探测装置

Similar Documents

Publication Publication Date Title
CN108226656B (zh) 电磁场复合无源探头
CN109061320B (zh) 电磁场复合探头和探测系统
US6856131B2 (en) Magnetic sensor, side-opened TEM cell, and apparatus using such magnetic sensor and side-opened TEM cell
Chou et al. Magnetic near-field probes with high-pass and notch filters for electric field suppression
CN108184306B (zh) 电场无源探头
CN108152606B (zh) 电场无源探头
US6686812B2 (en) Miniature directional coupler
Chou et al. Space difference magnetic near-field probe with spatial resolution improvement
CN109655770B (zh) 差分磁场探头
CN109596897A (zh) 电磁场复合无源探头
CN109884562B (zh) 差分磁场检测模块及磁场探头
CN109884561B (zh) 磁场检测模块及磁场探头
CN112526221A (zh) 电磁场复合探头和探测系统
CN114966230A (zh) 电磁场探头
CN114966231A (zh) 电磁场复合近场探头
CN115327453A (zh) 电磁场复合探头
CA1269134A (en) Near field probe
CN112213565B (zh) 电磁场无源探头和探测系统
US11946953B2 (en) Electromagnetic field sensor
CN110095656B (zh) 探测模块及探头
CN115327454A (zh) 磁场探头
CN113295932B (zh) 一种分段式金属条磁场探头
CN112379312B (zh) 一种电路表面宽带磁场的垂直测量方法
CN113238098B (zh) 可同时测量双分量电场的宽频电场探头
KR100241362B1 (ko) 평면형 자계프로브

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination