CN114956843A - 一种陶瓷基复合材料轻质点阵结构的制备方法 - Google Patents

一种陶瓷基复合材料轻质点阵结构的制备方法 Download PDF

Info

Publication number
CN114956843A
CN114956843A CN202210580845.7A CN202210580845A CN114956843A CN 114956843 A CN114956843 A CN 114956843A CN 202210580845 A CN202210580845 A CN 202210580845A CN 114956843 A CN114956843 A CN 114956843A
Authority
CN
China
Prior art keywords
pressing plate
primary
ceramic matrix
matrix composite
lattice structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210580845.7A
Other languages
English (en)
Inventor
何江怡
成来飞
涂建勇
陈翔
江鸿寰
史思涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Golden Mountain Ceramic Composites Co ltd
Original Assignee
Xi'an Golden Mountain Ceramic Composites Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Golden Mountain Ceramic Composites Co ltd filed Critical Xi'an Golden Mountain Ceramic Composites Co ltd
Priority to CN202210580845.7A priority Critical patent/CN114956843A/zh
Publication of CN114956843A publication Critical patent/CN114956843A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种陶瓷基复合材料轻质点阵结构的制备方法,以解决现有陶瓷基复合材料轻质点阵结构的制备中采用纤维布制备中间连接导致的上、下层板之间纤维束不连续、性能存在各向异性、材料性能存在损失的技术问题。该方法包括:1、获取半致密化上压板和半致密化下压板;2、加工缝制孔和走线凹槽,获取初级上压板和初级下压板;3、获取纤维绳预制体;4、采用纤维绳预制体对初级上压板和初级下压板连续缝制获取初级陶瓷基复合材料轻质点阵结构;5、致密化后进行表面处理得到最终陶瓷基复合材料轻质点阵结构。

Description

一种陶瓷基复合材料轻质点阵结构的制备方法
技术领域
本发明涉及陶瓷基复合材料点阵结构的制备方法,具体涉及一种陶瓷基复合材料轻质点阵结构的制备方法。
背景技术
连续碳纤维增强陶瓷基复合材料(Continuous Fiber Reinforced CeramicMatrix Composites,CFCC)继承了陶瓷本身的低密度、高强度、抗氧化等优异特性,又克服了陶瓷脆性大和可靠性差的弱点,表现出类似于金属的断裂行为,且对裂纹不敏感、不易发生灾难性断裂,尤其是碳纤维增强碳化硅陶瓷基复合材料,综合了C/C复合材料和SiC陶瓷的优点,具有比强高、比模量高、温度稳定性好、耐高温、耐低温、低密度等一系列优异性能,在高超声速飞行器热防护结构材料领域具有巨大的应用潜力。
化学气相渗透(Chemical Vapor Infiltration,CVI)是制备碳纤维增强碳化硅陶瓷基复合材料的成熟工艺,可以在900-1000℃的中温、低压或常压条件下由气态先驱体连续沉积复合材料的不同成分,即界面相、基体和外涂层。初始材料是n(通常n=2或3)维多孔纤维预制体。采用CVI进行预制体制备过程中,界面相和SiC基体被沉积到预制体孔隙内部的纤维表面。采用CVI制备预制体具有以下突出优点:实用性强,制备温度较低;有效实现复合材料在微观尺寸上的成分设计;适于制备高纤维体积分数、形状复杂、净尺寸、尺寸范围宽的制品;制备过程对纤维损伤小。
高超声速飞行器在高速飞行过程中要承受气动载荷和热载荷的共同作用,热防护机构是高速飞行器的关键结构之一,其保证飞行器外形结构完整,同时保护飞行器内部元器件能够正常工作,热防护系统需要满足防热、隔热及结构承载的需求。高超声速飞行器表面大面积温度超过1600K,因此传统的防热材料如金属TPS结构等已不能满足使用要求。
近年来欧美等国家相关飞行器上均不同程度的采用C/SiC复合材料热防护构件,但目前化学气相沉积工艺C/SiC复合材料结构件主要采用在线铆接或连接件连接制备,其工艺非常复杂,很难满足轻质、高承载及防热一体化结构。公开号为CN110204319A的中国专利提出了一种陶瓷基复合材料点阵结构的整体式制备方法,它主要从预制体设计着手,采用PIP工艺制备复合材料,但该预制体结构不适用于CVI工艺,并且PIP工艺需要反复高温裂解,会导致复合材料性能出现一定损失。采用CVI工艺制备陶瓷基复合材料轻质点阵结构将会较大提高结构的承载及减重。
综上所述,现有连续纤维增强陶瓷基复合材料轻质点阵结构的制备,存在着以下技术难点:(1)预制体成型困难、纤维丝不连续造成性能稳定性不足:传统工艺制备的陶瓷基复合材料轻质点阵结构,采用多个内垫块排列定型,上、下模具进行压紧固定,该定型过程中各个内垫块之间的定位精度难以保证,这将直接影响点阵结构侧壁壁厚均匀性从而导致性能波动,而且随着点阵结构长度方向的延伸,制备成本及累计误差都将持续增大,不利于规模化生产;(2)点阵结构设计局限性大、性能存在各向异性:传统工艺制备的陶瓷基复合材料轻质点阵结构,采用二维叠层铺布定型点阵结构中部波纹部分,这将导致X向与Y向力学、热学性能存在差异,不利于实际应用;(3)工艺复杂、制备周期长,材料性能存在损失:传统工艺制备的陶瓷基复合材料轻质点阵结构,采用PIP工艺进行材料制备,而多轮次(8~20轮次)的浸渍-固化-裂解-高温热解将导致材料内部存在大量空洞,并且出现纤维受损,基体收缩,宏观分层等不良情况,材料性能损伤不可避免。
发明内容
本发明目的在于解决现有陶瓷基复合材料轻质点阵结构的制备中采用纤维布制备中间连接导致的上、下层板之间纤维束不连续、性能存在各向异性、材料性能存在损失的技术问题,提出一种陶瓷基复合材料轻质点阵结构的制备方法。
本发明的技术方案为:
一种陶瓷基复合材料轻质点阵结构的制备方法,其特殊之处在于,包括以下步骤:
S1、采用碳纤维布根据上压板和下压板的设计尺寸制备上压板预制体和下压板预制体,采用CVI工艺对上压板预制体和下压板预制体进行致密化处理,得到半致密化上压板和半致密化下压板;
S2、在半致密化上压板和半致密化下压板加工出多个阵列排布的走线单元,每个走线单元包括X型走线凹槽和设置在X型的交叉点处的缝制孔,所述缝制孔的直径为R1;相邻走线单元的走线凹槽的端部对应连接,得到初级上压板和初级下压板;
S3、将碳纤维束编织成直径为R2的碳纤维绳,采用CVI工艺对碳纤维绳进行热解碳界面层的制备,并高温处理,得到纤维绳预制体;
S4、将初级上压板和初级下压板根据设计的间距固定放置,使用纤维绳预制体将初级上压板和初级下压板进行连续缝制,使每个缝制孔具有由n个纤维绳预制体形成的支撑柱,n为整数且2≤n≤5,R2=R1/[n+(0.5~1)],形成初级陶瓷基复合材料轻质点阵结构;可以理解的是,纤维绳预制体具有一定压缩性,为使纤维绳预制体在缝制孔处紧实无间隙,所以需要单根纤维绳预制体直径略大一些;
S5、采用CVI工艺对初级陶瓷基复合材料轻质点阵结构进行致密化处理后,使用碳化硅粉和碳化硅晶须混合物,对走线凹槽进行涂粉处理,并采用CVI工艺对上压板的上表面和下压板的下表面进行沉积处理,得到最终陶瓷基复合材料轻质点阵结构。
进一步地,步骤S1中,所述上压板预制体和下压板预制体为2D叠层预制体或2.5D编织预制体或三维四向编织预制体或三维五向编织预制体或三维针刺预制体。
进一步地,步骤S1中,所述碳纤维布为碳纤维平纹碳布,单层碳纤维平纹碳布厚度为0.15~0.17mm;
采用碳纤维束将叠层铺设后的碳纤维平纹碳布进行缝制定形后得到2D叠层预制体,2D叠层预制体的碳纤维布中碳纤维体积分数大于等于30%。
进一步地,步骤S1中,致密化处理为采用CVI工艺依次制备热解碳界面层和碳化硅基体;
所述热解碳界面层的厚度为100~200nm;
制备碳化硅基体,直至半致密化上压板和半致密化下压板的体积密度为1.3~1.8g/cm3
进一步地,步骤S5中,碳化硅粉和碳化硅晶须混合物中,按照质量计碳化硅粉:碳化硅晶须=1:(1~1.2),混合介质采用聚乙烯醇和蒸馏水,按质量计,聚乙烯醇:蒸馏水=1:(1.5~2.1)。
进一步地,步骤S2中,所述走线凹槽为圆弧槽,弧底曲面半径为3~4mm,走线凹槽弧底至初级上压板的上表面或初级下压板的下表面的距离为0.5~1.5mm;所述缝制孔直径R1为1-4mm。
走线凹槽设置成弧底圆槽,与纤维绳预制体的形状适配,以通过较小的凹槽空间实现对纤维绳预制体的容置。
进一步地,步骤S2中,走线凹槽与碳纤维布中纤维走向夹角为30~60°。
走线凹槽与碳纤维布中纤维走向设定30~60°的夹角,避免因为走线凹槽的设置导致碳纤维布中的纤维丝断裂,影响制备所得上压板和下压板的强度。
进一步地,步骤S3中,采用CVI工艺对碳纤维绳进行热解碳界面层的制备,制备的热解碳界面层厚度为100~300nm。
进一步地,步骤S4中,初级上压板和初级下压板根据设计的间距固定放置时,初级上压板的缝制孔在初级下压板的投影,位于初级下压板上对角相邻的两个缝制孔的连线中点上。
本发明的有益效果:
1、本发明采用处理后的碳纤维绳,通过缝制孔和走线凹槽,对初级上压板和初级下压板进行连续缝制,再经过致密化处理和表面处理,基于在连接两个压板的碳纤维绳为连续缝制,提高了压板之间的连接强度,较现有的点阵结构件采用焊接或用胶粘接,避免了连接端面开裂的风险。
2、本发明碳纤维绳采用CVI技术进行热解碳界面层的制备,并高温处理,得到仍具有可弯曲变形功能的纤维绳预制体,以实现对初级上压板和初级下压板的缝制,成功制备了一种轻质、高强、耐温性能优异的陶瓷基复合材料点阵结构件,降低成本并提升了材料的工艺稳定性。
3、本发明通过CVI技术进行致密化处理和沉积,对陶瓷基复合材料影响较小,更好的保留了材料本身的高性能,进一步提高了陶瓷基复合材料点阵结构件的高强度和耐高温性能。
附图说明
图1为本发明陶瓷基复合材料轻质点阵结构的制备方法实施例中制备的初级上压板结构示意图;
图2为图1中A-A剖面图;
图3为图1中B-B剖面图;
图4为本发明实施例中制得的初级上压板上表面编号示意图;
图5为本发明实施例中制得的初级下压板上表面编号示意图;
图6为本发明实施例中初级上压板与初级下压板固定放置方式示意图;
图7为本发明实施例中初级陶瓷基复合材料轻质点阵立体结构示意图;
图8为本发明实施例中初级陶瓷基复合材料轻质点阵侧面一示意图;
图9为本发明实施例中初级陶瓷基复合材料轻质点阵侧面二示意图;
附图标记如下:
1-初级上压板,2-缝制孔,3-走线凹槽,4-初级下压板,5-纤维绳预制体。
具体实施方式
本实施例提供一种陶瓷基复合材料轻质点阵结构的制备方法,该方法包括以下步骤:
S1、将碳纤维布根据上压板和下压板的设计尺寸叠层铺设后定形得到2D叠层结构的上压板预制体和下压板预制体,采用CVI工艺对上压板预制体和下压板预制体进行致密化处理,得到半致密化上压板和半致密化下压板;具体的,致密化处理为采用CVI工艺依次制备热解碳界面层和碳化硅基体;热解碳界面层的厚度为100~200nm,在1500℃高温下处理1小时;随后采用CVI技术制备碳化硅基体,直至半致密化上压板和半致密化下压板的体积密度达到1.3~1.8g/cm3;可以理解的是,上压板预制体和下压板预制体还可以为2.5D编织预制体或三维四向编织预制体或三维五向编织预制体或三维针刺预制体。本实施例中,碳纤维布为碳纤维平纹碳布,单层碳纤维平纹碳布厚度约为0.15~0.17mm;采用T300-3K碳纤维束将叠层铺设后的碳纤维平纹碳布进行缝制定形后得到2D叠层预制体,2D叠层预制体的碳纤维布中碳纤维体积分数为45%,定形厚度为3.0mm。
S2、在半致密化上压板和半致密化下压板加工出等距排列的缝制孔2;再在半致密化上压板的上表面和半致密化下压板的下表面加工出长度一致的走线凹槽3,相邻的走线凹槽3端部相接;走线凹槽3为圆弧槽,弧底曲面半径为3~4mm,走线凹槽3底部至半致密化上压板的上表面或半致密化下压板的下表面的距离为0.5~1.5mm,走线凹槽3与碳纤维布中纤维走向夹角为30~60°;缝制孔2位于走线凹槽3的中心;缝制孔2的直径为R1,R1为1-4mm,得到初级上压板1和初级下压板4,参见图1-图3。
S3、将碳纤维束编织成直径为R2的碳纤维绳,编织采用合股编织,在合股编织纤维丝束时可选择0.5K、1K、3K等,合股方式根据纤维丝束大小进行选择,如1K纤维合三股;纤维束合股编织时,可以采用同牌号纤维加捻,也可以不加捻。采用CVI工艺对碳纤维绳进行热解碳界面层的制备,制备的热解碳界面层厚度为100~300nm,并高温处理,得到纤维绳预制体5;本实施例中,将T300-1K不加捻合股,三束纤维合一股,并编织为直径为2mm的纤维绳预制体5,采用CVI工艺在编织后的碳纤维绳表面制备热解碳界面层,界面层厚度约为100~300nm,在1500℃高温下处理1h。
S4、将初级上压板1和初级下压板4根据设计的间距固定放置,使用纤维绳预制体5将初级上压板1和初级下压板4进行连续缝制,使每个缝制孔2具有由n个纤维绳预制体(5)形成的支撑柱,n为整数且2≤n≤5,R2=R1/[n+(0.5~1)],形成初级陶瓷基复合材料轻质点阵结构,参见图7-图9。
参见图6,初级上压板1和初级下压板4根据设计的间距固定放置时,初级上压板1的缝制孔2在初级下压板4的投影,位于初级下压板4上对角相邻的两个缝制孔2的连线中点上。
根据初级上压板1上的上压板缝制孔排布编号,参见图4,初级上压板1边缘第一个上压板缝制孔为X(0,0),相邻的上压板缝制孔按照顺序依次编号;根据初级下压板4上的下压板缝制孔排布编号,参见图5,初级下压板4与初级上压板1的第一个上压板缝制孔交错对应的下压板4的第一个下压板缝制孔为S(0,0),相邻的下压板缝制孔按照顺序依次编号;本实施例中,纤维绳预制体5连续缝制的顺序为:X(0,0)→X(1,1)→S(0,0)→S(1,1)→X(0,1)→X(1,2)→S(0,1)→S(1,2)…以此类推,沿顺时针完成连接后,按照相同规律逆时针再次缝制。
S5、采用CVI工艺对初级陶瓷基复合材料轻质点阵结构进行致密化处理,直至初级陶瓷基复合材料轻质点阵结构的整体密度大于1.9g/cm3;使用碳化硅粉和碳化硅晶须混合物,对埋线的走线凹槽3进行涂粉处理,并采用CVI工艺对上压板的上表面和下压板的下表面进行沉积处理,沉积60小时,得到最终陶瓷基复合材料轻质点阵结构。
具体的,碳化硅粉和碳化硅晶须混合物中,按照质量计碳化硅粉:碳化硅晶须=1:(1~1.2),混合介质采用聚乙烯醇和蒸馏水,按质量计,聚乙烯醇:蒸馏水=1:(1.5~2.1)。

Claims (9)

1.一种陶瓷基复合材料轻质点阵结构的制备方法,其特征在于,包括以下步骤:
S1、采用碳纤维布根据上压板和下压板的设计尺寸制备上压板预制体和下压板预制体,采用CVI工艺对上压板预制体和下压板预制体进行致密化处理,得到半致密化上压板和半致密化下压板;
S2、在半致密化上压板和半致密化下压板加工出多个阵列排布的走线单元,每个走线单元包括X型走线凹槽(3)和设置在X型的交叉点处的缝制孔(2),所述缝制孔(2)的直径为R1;相邻走线单元的走线凹槽(3)的端部对应连接,得到初级上压板(1)和初级下压板(4);
S3、将碳纤维束编织成直径为R2的碳纤维绳,采用CVI工艺对碳纤维绳进行热解碳界面层的制备,并高温处理,得到纤维绳预制体(5);
S4、将初级上压板(1)和初级下压板(4)根据设计的间距固定放置,使用纤维绳预制体(5)将初级上压板(1)和初级下压板(4)进行连续缝制,使每个缝制孔(2)具有由n个纤维绳预制体(5)形成的支撑柱,n为整数且2≤n≤5,R2=R1/[n+(0.5~1)],形成初级陶瓷基复合材料轻质点阵结构;
S5、采用CVI工艺对初级陶瓷基复合材料轻质点阵结构进行致密化处理后,使用碳化硅粉和碳化硅晶须混合物,对走线凹槽(3)进行涂粉处理,并采用CVI工艺对上压板的上表面和下压板的下表面进行沉积处理,得到最终陶瓷基复合材料轻质点阵结构。
2.根据权利要求1所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S1中,所述上压板预制体和下压板预制体为2D叠层预制体或2.5D编织预制体或三维四向编织预制体或三维五向编织预制体或三维针刺预制体。
3.根据权利要求2所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S1中,所述碳纤维布为碳纤维平纹碳布,单层碳纤维平纹碳布厚度为0.15~0.17mm;
采用碳纤维束将叠层铺设后的碳纤维平纹碳布进行缝制定形后得到2D叠层预制体,2D叠层预制体的碳纤维布中碳纤维体积分数大于等于30%。
4.根据权利要求3所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S1中,致密化处理为采用CVI工艺依次制备热解碳界面层和碳化硅基体;
所述热解碳界面层的厚度为100~200nm;
制备碳化硅基体,直至半致密化上压板和半致密化下压板的体积密度为1.3~1.8g/cm3
5.根据权利要求1-4任一所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S5中,碳化硅粉和碳化硅晶须混合物中,按照质量计碳化硅粉:碳化硅晶须=1:(1~1.2),混合介质采用聚乙烯醇和蒸馏水,按质量计,聚乙烯醇:蒸馏水=1:(1.5~2.1)。
6.根据权利要求5所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S2中,所述走线凹槽(3)为圆弧槽,弧底曲面半径为3~4mm,走线凹槽(3)弧底至初级上压板(1)的上表面或初级下压板(4)的下表面的距离为0.5~1.5mm;
缝制孔(2)直径R1为1-4mm。
7.根据权利要求6所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S2中,走线凹槽(3)与碳纤维布中纤维走向夹角为30~60°。
8.根据权利要求7所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S3中,采用CVI工艺对碳纤维绳进行热解碳界面层的制备,制备的热解碳界面层厚度为100~300nm。
9.根据权利要求8所述的陶瓷基复合材料轻质点阵结构的制备方法,其特征在于:
步骤S4中,初级上压板(1)和初级下压板(4)根据设计的间距固定放置时,初级上压板(1)的缝制孔(2)在初级下压板(4)的投影,位于初级下压板(4)上对角相邻的两个缝制孔(2)的连线中点上。
CN202210580845.7A 2022-05-25 2022-05-25 一种陶瓷基复合材料轻质点阵结构的制备方法 Pending CN114956843A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210580845.7A CN114956843A (zh) 2022-05-25 2022-05-25 一种陶瓷基复合材料轻质点阵结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210580845.7A CN114956843A (zh) 2022-05-25 2022-05-25 一种陶瓷基复合材料轻质点阵结构的制备方法

Publications (1)

Publication Number Publication Date
CN114956843A true CN114956843A (zh) 2022-08-30

Family

ID=82954855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210580845.7A Pending CN114956843A (zh) 2022-05-25 2022-05-25 一种陶瓷基复合材料轻质点阵结构的制备方法

Country Status (1)

Country Link
CN (1) CN114956843A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023161A (zh) * 2023-01-31 2023-04-28 北京理工大学 一种大尺寸高强陶瓷基复合材料异形点阵结构及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102898172A (zh) * 2012-11-06 2013-01-30 哈尔滨理工大学 四棱锥构型Cf/SiC点阵复合材料平板及其制备方法
CN103862731A (zh) * 2014-03-26 2014-06-18 哈尔滨理工大学 四棱锥构型Cf/SiC-ZrC仿生梯度点阵复合材料平板及其制备方法
CN103921451A (zh) * 2014-04-15 2014-07-16 哈尔滨理工大学 一种陶瓷基金字塔点阵结构复合材料制备模具
US20190160704A1 (en) * 2017-09-22 2019-05-30 Goodman Technologies LLC 3D Printing of Silicon Carbide Structures
CN110105078A (zh) * 2019-04-26 2019-08-09 江苏大学 一种炭纤维缝制硬化平板保温材料的制备方法
CN110183239A (zh) * 2019-04-22 2019-08-30 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的组合式制备方法
CN110204319A (zh) * 2019-04-22 2019-09-06 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的整体式制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102898172A (zh) * 2012-11-06 2013-01-30 哈尔滨理工大学 四棱锥构型Cf/SiC点阵复合材料平板及其制备方法
CN103862731A (zh) * 2014-03-26 2014-06-18 哈尔滨理工大学 四棱锥构型Cf/SiC-ZrC仿生梯度点阵复合材料平板及其制备方法
CN103921451A (zh) * 2014-04-15 2014-07-16 哈尔滨理工大学 一种陶瓷基金字塔点阵结构复合材料制备模具
US20190160704A1 (en) * 2017-09-22 2019-05-30 Goodman Technologies LLC 3D Printing of Silicon Carbide Structures
CN110183239A (zh) * 2019-04-22 2019-08-30 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的组合式制备方法
CN110204319A (zh) * 2019-04-22 2019-09-06 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的整体式制备方法
CN110105078A (zh) * 2019-04-26 2019-08-09 江苏大学 一种炭纤维缝制硬化平板保温材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张云龙等: "《碳化硅及其复合材料的制造与应用》", 31 July 2015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023161A (zh) * 2023-01-31 2023-04-28 北京理工大学 一种大尺寸高强陶瓷基复合材料异形点阵结构及制备方法
CN116023161B (zh) * 2023-01-31 2023-07-11 北京理工大学 一种大尺寸高强陶瓷基复合材料异形点阵结构及制备方法

Similar Documents

Publication Publication Date Title
KR100447840B1 (ko) 탄소 복합재 제조 방법
US8828534B2 (en) Method of fabricating a thermostructural composite material part, and a part obtained thereby
US8615877B2 (en) Method of producing a nozzle or a divergent nozzle element made of a composite
US9784217B2 (en) Low-thickness thermostructural composite material part, and manufacture method
KR101701545B1 (ko) 세라믹 매트릭스를 갖는 복합재 부재 및 그것의 제조방법
CN111908932B (zh) 一种轻质高效防隔热一体化热防护材料及制备方法
WO1985004835A1 (en) Method for forming composite articles of complex shapes
CN110183239A (zh) 一种陶瓷基复合材料点阵结构的组合式制备方法
US7012035B2 (en) Fibre composite ceramic with a high thermal conductivity
CN109721376B (zh) 一种SiCw定向高强韧化厚壁陶瓷基复合材料的制备方法
US10556831B2 (en) Method of manufacturing ceramic matrix composite objects
JP2004270127A (ja) 繊維ブランクの製造方法、および繊維強化複合材料部品の製造方法
JP6301261B2 (ja) Cmc材料部品
EP1566370A2 (en) Thermo-mechanical property enhancement plies for CVI/SiC ceramic matrix composite laminates
CN114956843A (zh) 一种陶瓷基复合材料轻质点阵结构的制备方法
US20100081350A1 (en) Smooth surface ceramic composites
CN106747531A (zh) 一种多元碳及陶瓷基热结构复合材料及其涡轮叶片的无余量制备方法
CN112341226B (zh) 一种表层孔隙可控的高力学性能纤维织物的成型方法
CN107042661A (zh) 一种耐高温热防护材料及其制备方法
CN114096500A (zh) 用于由cmc材料制成的部件的多孔陶瓷结构及获得其方法
CN115124361B (zh) 一种具有混杂结构的陶瓷基复合材料及其制备方法
US20080207075A1 (en) Optimized fabric lay-up for improved ceramic matrix composites
CN108137418B (zh) 复合材料部件
CN116023161B (zh) 一种大尺寸高强陶瓷基复合材料异形点阵结构及制备方法
JP2782890B2 (ja) 繊維強化無機系材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: China

Address after: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Applicant after: Xi'an Xinyao Ceramic Composite Co.,Ltd.

Address before: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Applicant before: XI'AN GOLDEN MOUNTAIN CERAMIC COMPOSITES CO.,LTD.

Country or region before: China

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220830