CN114951633A - 高铝高熵合金超耐磨耐腐蚀涂层及其制备方法 - Google Patents

高铝高熵合金超耐磨耐腐蚀涂层及其制备方法 Download PDF

Info

Publication number
CN114951633A
CN114951633A CN202210479570.8A CN202210479570A CN114951633A CN 114951633 A CN114951633 A CN 114951633A CN 202210479570 A CN202210479570 A CN 202210479570A CN 114951633 A CN114951633 A CN 114951633A
Authority
CN
China
Prior art keywords
coating
aluminum
powder
resistant
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210479570.8A
Other languages
English (en)
Other versions
CN114951633B (zh
Inventor
夏志新
谢勇
于云鹤
侯纪新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202210479570.8A priority Critical patent/CN114951633B/zh
Publication of CN114951633A publication Critical patent/CN114951633A/zh
Application granted granted Critical
Publication of CN114951633B publication Critical patent/CN114951633B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种高铝高熵合金超耐磨耐腐蚀涂层及其制备方法。其中,涂层由涂层粉末制得,该涂层粉末可用CoCrNiCuAl3表示。CoCrNiCuAl3涂层粉末的粒径为100~350目,以原子百分数计,其组成为:13~17%的钴、13~17%的铬、13~17%的镍、13~17%的铜及余量铝。以该CoCrNiCuAl3涂层粉末固溶体为原料,采用采用激光熔化沉积、电弧熔化沉积、等离子喷涂等方法制取的涂层,具有超高的耐磨性及耐腐蚀性能,且涂层与基材有着较高的结合强度。可以应用于钢、铝、钛、铜等各种基材的结构零件中,有效提高了结构的服役性能,扩大了零件的使用环境。

Description

高铝高熵合金超耐磨耐腐蚀涂层及其制备方法
技术领域
本发明涉及金属材料及其制备技术领域,尤其涉及一种高铝高熵合金超耐磨耐腐蚀涂层及其制备方法。
背景技术
在生产生活中,为了降低结构部件在服役过程中因摩擦、腐蚀导致的材料损耗,保证生产安全,通常会在重要的零部件上涂覆特殊涂层,以提高其耐磨、耐腐蚀性能。特别是在航空航天、交通运输、石油开采、核反应等行业中,许多设备、器件需要在高速、重载或酸性、碱性环境等极端条件下服役工作,对涂层材料的耐磨耐腐蚀性能提出了更严苛的要求。因此,研究出一种具有超高耐磨性能、耐腐蚀性能的涂层成为了当前研究的迫切需求。
高熵合金一般指含有四种以上主要元素的新型合金,由于元素种类多,晶格畸变大,其具有良好的耐磨、耐腐蚀性能,而被应用于各类特种涂层中,目前已成为涂层研究领域的热点,其中体心立方晶格(BCC)结构涂层更是耐磨性能与腐蚀性能突出。不过,现有高熵合金的耐磨、耐腐蚀性能往往还不能够满足一些极端苛刻产品的要求,且涂层与基材的结合强度较低而易脱落。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种超耐磨耐腐蚀的高熵合金涂层及其制备方法。
为达到上述目的,本发明采用的技术方案是:
一种高铝高熵合金超耐磨耐腐蚀涂层粉末,所述涂层由涂层粉末制得,以原子百分数计,所述涂层粉末的组成为:13~17%的钴、13~17%的铬、13~17%的镍、13~17%的铜及余量铝。
优选地,所述涂层粉末的粒径为100~350目。
优选地,所述涂层粉末中,钴:铬:镍:铜:铝的原子数量比为1:1:1:1:3。
优选地,所述涂层粉末的晶体结构为体心立方晶格+B2双相结构。
在一些优选实施方式中,所述涂层的极化电阻大于90Ω·cm2
在一些优选实施方式中,所述涂层的硬度大于700HV。
所述的高铝高熵合金超耐磨耐腐蚀涂层的制备方法包括:制备所述涂层粉末,然后将所述涂层粉末涂覆在基材上。
优选地,所述涂层粉末通过如下步骤制得:
S1、按照比例称取一定质量的钴、铬、镍、铜、铝,将其混合后进行熔炼,得到合金液体,所述合金液体冷却成型后得到合金固体;
S2、将所述合金固体粉碎,得到合金粉末;
S3、对所述合金粉末进行筛分处理,选择粒径为100~350目的合金粉末,得到所述涂层粉末。
进一步优选地,在所述步骤S2中,所述合金固体通过以下步骤制得所述合金粉末:
S21、所述合金固体通过水雾化法制得不规则粉体;
S22、所述不规则粉体通过射频离子球化法制得规则球形的所述合金粉末。
进一步优选地,在所述步骤S2与S3之间,还包括S23:将所述合金粉末置于真空干燥箱中进行干燥处理。
进一步优选地,在所述步骤S1中,所述钴、铬、镍、铜、铝均为单质,所述钴、铬、镍、铜、铝在真空电弧熔炼炉中进行熔炼,熔炼后的所述合金液体倒入棒状模具中成型。
在一些优选实施方式中,所述涂层粉末采用激光熔化沉积的方法涂覆在所述基材上,其中激光功率为600~1600W。
在一些优选实施方式中,所述涂层粉末采用电弧熔化沉积的方法涂覆在所述基材上,其中电流强度为0.2~0.8A。
在一些优选实施方式中,所述涂层粉末采用离子喷涂的方法涂覆在所述基材上。
优选地,所述基材为钢、铝、铜、钛中的任一种。
本发明提供的高熵合金超耐磨耐腐蚀涂层,是一种化学式为CoCrNiCuAl3的高熵合金涂层。发明人通过实验发现并证明了,等原子比的高熵合金CoCrNiCu为一种面心立方晶格(FCC)结构,向其中添加铝元素到一定程度后,CoCrNiCuAl由FCC相原位反应形成了BCC相,耐磨、耐腐蚀性能显著增加。参见图6、7所示,向CoCrNiCuAl中继续增加铝元素,会导致晶格畸变增加,固溶体由BCC相进一步转变为BCC+B2双相结构,其中B2相是一种超有序固溶体,能够促使晶格摩擦力进一步增加,表现为CoCrNiCuA13的耐磨、耐腐蚀性能更加优异。
但是,如果继续向高熵合金中添加铝元素到较高含量后,由于铝元素本身硬度较差,又会导致合金产品的硬度显著下降。因此,为了获得硬度最高的高熵合金产品,铝元素具有一个最优的添加范围,本发明即确定了该最优范围。
以本发明提供的CoCrNiCuAl3涂层粉末为原料,可采用激光熔化沉积、电弧熔化沉积、等离子喷涂等多种涂层制备手段,合成超耐磨耐腐蚀CoCrNiCuAl3涂层,广泛应用于钢、铝、钛、铜等结构部件的涂层,有效提高了结构部件的服役性能,扩大结构部件的服役范围。
此外,传统涂层由于其涂层硬度与基材的化学、物理性能相差较大,基材与涂层结合较差,容易脱落。而本发明的高熵合金涂层能够在基材-涂层界面处形成梯度固溶体,大大增强基材与涂层结合力,有效地解决了这一难题。
附图说明
图1为实施例3中CoCrNiCuAl3涂层的扫描电镜示意图;
图2为实施例4中CoCrNiCuAl3涂层的扫描电镜示意图
图3为实施例3中CoCrNiCuAl3涂层的硬度图;
图4为实施例3中CoCrNiCuAl3涂层的磨痕形貌图;
图5为实施例4中CoCrNiCuAl3涂层的磨痕形貌图;
图6为实施例3中CoCrNiCuAl3涂层的透射电镜图;
图7为实施例3中CoCrNiCuAl3涂层B2相的衍射光斑。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
实施例1
本实施例提供一种涂层粉末。以原子百分数计,该涂层粉末的组成为:15%的钴、15%的铬、15%的镍、15%的铜及余量的铝(约40%)。
该涂层粉末的制备方法包括如下步骤:
S1、按照上述比例称取一定质量的钴、铬、镍、铜、铝为原料,各原料组分均为单质,将各原料组分混合后在真空电弧熔炼炉中进行熔炼,得到合金液体,再将该合金液体倒入棒状模具中冷却成型,得到棒状合金固体;
S2、将棒状合金固体粉碎,得到合金粉末,其中:
S21、合金固体通过水雾化法制得不规则粉体,在雾化过程中破碎的金属熔滴快速凝固变成不规则状的粉体;
S22、不规则粉体通过射频离子球化法制得规则球形的合金粉末,射频离子球化法利用高温、高能量密度的等离子热源,将不规则粉体迅速加热熔化,并在其表面张力作用下缩聚成球形液滴,球形液滴进入冷却室后即可快速冷却而得到高致密的球形合金粉末,规则的球状能够提高粉末的流动性,有助于将后续制备高硬度的涂层;
S23、将合金粉末置于真空干燥箱中进行干燥处理,真空环境用于防止合金粉末氧化;
S3、利用筛网对已干燥的合金粉末进行筛分处理,选择粒径为100~350目的合金粉末,得到CoCrNiCuAl3涂层粉末,该涂层粉末的晶体为BCC结构,可以直接作为制备超耐磨耐腐蚀涂层的原料。
实施例2
本实施例提供一种涂层粉末,该涂层粉末与实施例1基本相同,主要区别在于涂层粉末的配方不同。
本实施例中,以原子百分数计,涂层粉末的组成为:13%的钴、13%的铬、13%的镍、13%的铜及余量的铝(约48%)。
实施例3
本实施例提供一种高铝高熵合金超耐磨耐腐蚀涂层,该涂层的制备方法如下:以45号钢为基材,将实施例1中的涂层粉末采用激光熔化沉积的方法涂覆在基材上,制取CoCrNiCuAl3涂层。其中工艺参数为:激光功率1000W,扫描速度6mm/s,送粉量4.5g/min,搭接率50%。
本实施例中,进一步对制得涂层的理化性质进行了实验研究。图1所示为该涂层的扫描电镜示意图,其中浅色区域富含Co、Cr、Ni元素,深色区域富含Cu、Al元素。对基材及涂层进行硬度表征,结果如图3所示,45号钢基材的硬度值仅约为220HV,而CoCrNiCuAl3涂层的硬度高达720HV。
参见4所示,本实施例中还对无涂层基材及有涂层基材分别进行摩擦磨损实验,实验载荷为10N,摩擦磨损实验结果如下:
Figure BDA0003627025810000041
由上表可知,相同条件下,45号钢基材的磨损体积远大于CoCrNiCuAl3涂层的磨损体积,且45号钢基材的摩擦系数远大于CoCrNiCuAl3涂层的摩擦系数,表明CoCrNiCuAl3涂层的耐磨损性能要远高于45号钢基材的耐磨损性能。
本实施例中还对无涂层基材及有涂层基材分别进行电化学实验,对实验材料外加电流进行极化腐蚀,实验结果如下:
Figure BDA0003627025810000042
该实验中,材料的自腐蚀电位越大、自腐蚀电流越小、极化电阻越大,则表明其耐腐蚀性能越好。由上表可知,CoCrNiCuAl3涂层的耐腐蚀性能远高于45号钢基材的耐腐蚀性能。
实施例4
本实施例提供一种高铝高熵合金超耐磨耐腐蚀涂层,该涂层的制备方法如下:以TC4钛合金为基材,将实施例2中的涂层粉末采用激光熔化沉积的方法涂覆在基材上,制取CoCrNiCuAl3涂层。其中工艺参数为:激光功率1200W,扫描速度6mm/s,送粉量4.5g/min,搭接率50%。
本实施例中,进一步对制得涂层的理化性质进行了实验研究。图2所示为该涂层的扫描电镜示意图。参见5所示,本实施例中还对无涂层基材及有涂层基材分别进行摩擦磨损实验,实验载荷为10N,摩擦磨损实验结果如下:
Figure BDA0003627025810000051
实验表明,CoCrNiCuAl3涂层的耐磨损性能要远高于TC4钛合金基材的耐磨损性能。
本实施例中还对无涂层基材及有涂层基材分别进行电化学实验,对实验材料外加电流进行极化腐蚀,实验结果如下:
Figure BDA0003627025810000052
由上表可知,CoCrNiCuAl3涂层的耐腐蚀性能远大于TC4钛合金基材的耐腐蚀性能。
综上,本发明提供的耐磨耐腐蚀涂层粉末及其制备的涂层,由于高熵合金CoCrNiCuAl3的高性能晶体结构,使得涂层与基材的结合强度高,并具有优异的耐磨耐腐蚀性能,适用于各种严苛的服役工况。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种高铝高熵合金超耐磨耐腐蚀涂层,其特征在于:所述涂层由涂层粉末制得,以原子百分数计,所述涂层粉末的组成为:13~17%的钴、13~17%的铬、13~17%的镍、13~17%的铜及余量铝。
2.根据权利要求1所述的高铝高熵合金超耐磨耐腐蚀涂层,其特征在于:所述涂层粉末中,钴:铬:镍:铜:铝的原子数量比为1:1:1:1:3。
3.根据权利要求1所述的高铝高熵合金超耐磨耐腐蚀涂层,其特征在于:所述涂层粉末的晶体结构为体心立方晶格+B2双相结构。
4.根据权利要求1所述的高铝高熵合金超耐磨耐腐蚀涂层,其特征在于:所述涂层的极化电阻大于90Ω·cm2;和/或,所述涂层的硬度大于700HV。
5.一种如权利要求1至4任一项所述的高铝高熵合金超耐磨耐腐蚀涂层的制备方法,其特征在于,所述制备方法包括:制备所述涂层粉末,然后将所述涂层粉末涂覆在基材上。
6.根据权利要求5所述的高铝高熵合金超耐磨耐腐蚀涂层的制备方法,其特征在于,所述涂层粉末通过如下步骤制得:
S1、按照比例称取一定质量的钴、铬、镍、铜、铝,将其混合后进行熔炼,得到合金液体,所述合金液体冷却成型后得到合金固体;
S2、将所述合金固体粉碎,得到合金粉末;
S3、对所述合金粉末进行筛分处理,选择粒径为100~350目的合金粉末,得到所述涂层粉末。
7.根据权利要求6所述的高铝高熵合金超耐磨耐腐蚀涂层的制备方法,其特征在于:在所述步骤S2中,所述合金固体通过以下步骤制得所述合金粉末:
S21、所述合金固体通过水雾化法制得不规则粉体;
S22、所述不规则粉体通过射频离子球化法制得规则球形的所述合金粉末。
8.根据权利要求6所述的高铝高熵合金超耐磨耐腐蚀涂层的制备方法,其特征在于:在所述步骤S2与S3之间,还包括S23:将所述合金粉末置于真空干燥箱中进行干燥处理;和/或,
在所述步骤S1中,所述钴、铬、镍、铜、铝均为单质,所述钴、铬、镍、铜、铝在真空电弧熔炼炉中进行熔炼,熔炼后的所述合金液体倒入棒状模具中成型。
9.根据权利要求5所述的高铝高熵合金超耐磨耐腐蚀涂层的制备方法,其特征在于:所述涂层粉末采用激光熔化沉积的方法涂覆在所述基材上,其中激光功率为600~1600W;和/或,
所述涂层粉末采用电弧熔化沉积的方法涂覆在所述基材上,其中电流强度为0.2~0.8A;和/或,
所述涂层粉末采用离子喷涂的方法涂覆在所述基材上。
10.根据权利要求5至9任一项所述的高铝高熵合金超耐磨耐腐蚀涂层的制备方法,其特征在于:所述基材为钢、铝、铜、钛中的任一种。
CN202210479570.8A 2022-05-05 2022-05-05 高铝高熵合金超耐磨耐腐蚀涂层及其制备方法 Active CN114951633B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210479570.8A CN114951633B (zh) 2022-05-05 2022-05-05 高铝高熵合金超耐磨耐腐蚀涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210479570.8A CN114951633B (zh) 2022-05-05 2022-05-05 高铝高熵合金超耐磨耐腐蚀涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN114951633A true CN114951633A (zh) 2022-08-30
CN114951633B CN114951633B (zh) 2023-12-12

Family

ID=82979068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210479570.8A Active CN114951633B (zh) 2022-05-05 2022-05-05 高铝高熵合金超耐磨耐腐蚀涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114951633B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323116A1 (en) * 2012-05-31 2013-12-05 Swe-Kai Chen Alloy material with constant electrical resistivity, applications and method for producing the same
CN107740094A (zh) * 2017-09-18 2018-02-27 苏州大学 一种用于机闸上的高温封严涂层及其制备方法
CN110172628A (zh) * 2019-04-18 2019-08-27 中北大学 一种耐腐蚀性能良好的铝钴铁镍铬高熵合金的制备方法
CN110344047A (zh) * 2019-08-27 2019-10-18 兰州理工大学 一种原位合成低压冷喷涂CuNiCoFeCrAl2.8高熵合金涂层的制备方法
CN110359038A (zh) * 2019-08-27 2019-10-22 兰州理工大学 一种原位合成低压冷喷涂NiCoCrAlCu高熵合金涂层的制备方法
CN112030015A (zh) * 2020-09-02 2020-12-04 中国航发北京航空材料研究院 一种高Al含量难熔高熵合金铸锭真空自耗熔炼方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323116A1 (en) * 2012-05-31 2013-12-05 Swe-Kai Chen Alloy material with constant electrical resistivity, applications and method for producing the same
CN107740094A (zh) * 2017-09-18 2018-02-27 苏州大学 一种用于机闸上的高温封严涂层及其制备方法
CN110172628A (zh) * 2019-04-18 2019-08-27 中北大学 一种耐腐蚀性能良好的铝钴铁镍铬高熵合金的制备方法
CN110344047A (zh) * 2019-08-27 2019-10-18 兰州理工大学 一种原位合成低压冷喷涂CuNiCoFeCrAl2.8高熵合金涂层的制备方法
CN110359038A (zh) * 2019-08-27 2019-10-22 兰州理工大学 一种原位合成低压冷喷涂NiCoCrAlCu高熵合金涂层的制备方法
CN112030015A (zh) * 2020-09-02 2020-12-04 中国航发北京航空材料研究院 一种高Al含量难熔高熵合金铸锭真空自耗熔炼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
薛云飞等: "《先进金属基复合材料》", 北京理工大学出版社, pages: 263 - 264 *

Also Published As

Publication number Publication date
CN114951633B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN110344047B (zh) 一种原位合成低压冷喷涂CuNiCoFeCrAl2.8高熵合金涂层的制备方法
KR101450988B1 (ko) 철-크롬-몰리브덴 기반 열 분사 분말 및 그의 제조 방법
Wolf et al. Recent developments on fabrication of Al‐matrix composites reinforced with quasicrystals: from metastable to conventional processing
CN109628772B (zh) 一种超短周期高强度-高延展性镍铝青铜合金及制备方法
CN109778042B (zh) 一种高强度钨基合金及其制备方法
CN113621843B (zh) 一种高强韧耐腐蚀FeCoNiCuAl高熵合金吸波材料、制备方法及用途
CN112831710B (zh) 一种超硬耐磨高熵合金及其制备方法
Luo et al. Recent advances in the design and fabrication of strong and ductile (tensile) titanium metal matrix composites
TW201418001A (zh) 使用呈現變質轉化之塗層之消費性電子加工過的外殼
US20120258849A1 (en) Method of in situ synthesis by thermite reaction with sol-gel and FeNiCrTi/NiAl-A12O3 nanocomposite materials prepared by the method
CN114939654B (zh) 一种用于激光增材制造的高熵合金粉末及其制备方法、应用
Şelte et al. Crystallite size and strain calculations of hard particle reinforced composite powders (Cu/Ni/Fe–WC) synthesized via mechanical alloying
Wang et al. Microstructure, preparation and properties of TiC-Fe/FeCoCrNiMn cermet with a core-rim structure
CN114951633B (zh) 高铝高熵合金超耐磨耐腐蚀涂层及其制备方法
Liu et al. Microstructure and mechanical properties of CoCrCuFeNi high-entropy alloys synthesized by powder metallurgy and spark plasma sintering
CN114951634B (zh) 高熵合金耐磨耐腐蚀涂层及其制备方法
Xia et al. Influence of WC particle content of Fe-based powder-cored wire on microstructure and properties of plasma cladding reinforced layers
WO2021247813A1 (en) Aluminum-scandium composite, aluminum-scandium composite sputtering target and methods of making
CN114480983B (zh) 利用凝固界面前沿溶质相互作用细化晶粒的Fe合金及制备
CN113512688B (zh) 一种航空超高强度钢球形粉体材料及制备方法
CN115401214B (zh) 一种兼具常温与高温抗腐蚀的高熵合金激光增材制备方法
CN109841401A (zh) 一种软磁复合粉末材料的制备方法
JP2002212716A (ja) 高スパッタ電力ですぐれた耐割損性を発揮する光磁気記録媒体の記録層形成用焼結スパッタリングターゲット材
CN110331399B (zh) 抑制激光熔覆制备含铬镍基合金-cBN复合涂层中cBN颗粒分解的方法
Lv et al. Effects of Carbon Nanotubes and Nickel-Plated Carbon Nanotubes on the Microstructure and Mechanical Properties of AlCoCrFeNiCu High Entropy Alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant