CN114950163A - 一种掺杂cau-1微粒的tfn膜及其制备方法 - Google Patents

一种掺杂cau-1微粒的tfn膜及其制备方法 Download PDF

Info

Publication number
CN114950163A
CN114950163A CN202110189732.XA CN202110189732A CN114950163A CN 114950163 A CN114950163 A CN 114950163A CN 202110189732 A CN202110189732 A CN 202110189732A CN 114950163 A CN114950163 A CN 114950163A
Authority
CN
China
Prior art keywords
cau
tfn
membrane
particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110189732.XA
Other languages
English (en)
Inventor
肖淑娟
于守武
霍晓文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Priority to CN202110189732.XA priority Critical patent/CN114950163A/zh
Publication of CN114950163A publication Critical patent/CN114950163A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种掺杂CAU‑1微粒的薄膜纳米复合物(TFN)膜,是将CAU‑1微粒加入到有机相溶液中,通过界面聚合的方法制备TFN膜。CAU‑1由变形的八面体和四面体构成,立方结构,具有良好的水稳定性和高孔隙率,可以作为优良的改性粒子添加到薄膜复合材料(TFC)膜中。通过掺杂CAU‑1微粒之后的TFN膜具有更加突出的分离性能以及渗透性能。所制备的TFN膜在盐水分离方面具有很大的潜力。

Description

一种掺杂CAU-1微粒的TFN膜及其制备方法
技术领域
本发明涉及膜制备技术领域,具体涉及一种掺杂CAU-1微粒的TFN膜及其制备方法。
背景技术
由于人口的快速增长和水体污染日趋严重,水资源短缺已成为世界上亟待解决的问题。膜分离技术因其能耗低、操作条件温和等突出优点被广泛的应用于水处理领域。其中TFC膜在工业脱盐膜中占主导地位,TFC膜通常由支撑层和选择层构成,其中,超薄选择层起主要分离作用。通常,聚酰胺(PA)选择层是以胺类单体和酰氯在水-油界面发生原位界面聚合制备的。因此,调节和控制PA层的分子和结构特性对于改善TFC膜的性能非常重要。
就渗透性和选择性而言,“trade-off”效应是TFC膜普遍存在的问题。对此,研究人员就如何提高TFC膜的渗透率而不损失溶质选择性进行了大量研究。实现高渗透率的一个策略是制作超薄的分离层,以降低水传输阻力。另一种可行的策略是通过在PA层中加入亲水纳米材料来改变分离层的内在特性,这种策略的主要原理是降低水穿过分离层的阻力,从而提高渗透率。然而,在基于PA的分离层中很难实现水传输性能的显著改变,因为水分子的传输受到高度交联的聚合物链的严重限制。最近,制备具有褶皱表面的PA分离层成为了研究热点,这种网状“图灵”结构的产生极大地增加了分离层的有效渗透面积,使通量大幅度上升。
金属有机框架材料(MOF)是一种新型的有机-无机杂化材料,具有拓扑结构,孔尺寸和表面性质的高度可调,与聚合物基质有更好的相容性,这些特点使得MOF成为制备分离膜的理想材料。将MOF分散在油相中制备复合膜较分散在水相中可以更好地优化膜性能,这是因为MOF在有机相中可以显著影响界面聚合过程,大大降低膜的孔径,提高膜的透水性。
纳米材料的孔隙率、尺寸、表面化学成分和组成都会影响纳米复合膜的性能。仅从纳米微粒尺寸的角度考虑,通常认为粒径较小的纳米材料有利于在聚合物基质中分散,产生较大的渗透通量。CAU-1(Al4(OH)2(OCH3)4(H2N-BDC)3·xH2O)是由变形的八面体和四面体组成的立方结构的MOF材料,有效孔直径为1nm和0.45nm,具有良好的水稳定性和高孔隙率,可以作为优良的改性粒子添加到TFC膜中。
对此,合成了不同粒径的CAU-1纳米微粒,并将其分散在TMC/正己烷有机相中,通过界面聚合的方法制备TFN膜。一方面,通过改变溶剂的占比,合成不同粒径的CAU-1微粒,将其作为纳米改性材料加入PA层中,改善了分离膜的亲水性。另一方面, CAU-1颗粒自身电荷性质提高了分离膜的纯水通量。
发明内容
本发明目的在于克服现有技术存在的缺点,寻求设计一种掺杂CAU-1微粒的TFN膜。
为实现上述目的,本发明采用以下技术方案:
一种掺杂CAU-1微粒的TFN膜的制备方法,首先合成了不同粒径的CAU-1纳米微粒,并将其分散在TMC/正己烷有机相中,通过界面聚合的方法制备TFN膜。
一种掺杂CAU-1微粒的TFN膜的制备方法,具体包括以下步骤:
(1)合成不同粒径的CAU-1微粒
将一定量的AlCl3·6H2O和NH2-BDC混合在一定量的甲醇中,将混合液转移到带有聚四氟乙烯衬里的钢制高压釜中,加热12 h后,离心收集黄色产物,然后用甲醇洗涤产物以除去未反应的NH2-BDC,将产物在去离子水中搅拌以进一步纯化,离心回收,真空干燥24小时后保存备用;
(2)制作PPSU基板
首先将PPSU(20 wt.%)、PVP(8 wt.%)和NMP(22 wt.%)的聚合物加热并搅拌12小时,静置过夜后,使用厚度为200µm的铸膜刀将溶液倾倒在干净的玻璃板上,然后,将铸态膜浸入水中进行相转化,最后将其储存在新鲜的去离子水中保存;
(3)制备TFC膜
通过界面聚合的方法在PPSU基底上形成交联聚酰胺层制备TFC膜,首先将PPSU基底放入定制的膜框中,倒入去离子水,停留10min后倒出,再用滤纸吸去多余的溶液,将0.15wt.%的TMC/正己烷溶液倒在膜表面上,进行1 min的界面聚合,随后将溶液倒出,放入70℃的烘箱进行固化,固化完成后保存在去离子水中备用;
(4)制备TFN膜
除了在TMC/正己烷有机相中加入CAU-1微粒之外,TFN膜的制备步骤与TFC膜完全相同,为保证微粒分散,所有CAU-1微粒在正己烷中超声分散30 min。
进一步地,所述制得的CAU-1微粒的粒径范围为300~800nm。
优选地,所述的CAU-1微粒的粒径为300nm、400nm、800nm中的一种。
本发明的有益效果是:①CAU-1(Al4(OH)2(OCH3)4(H2N-BDC)3·xH2O)是由变形的八面体和四面体组成的立方结构,具有良好的水稳定性和高孔隙率,可以作为优良的改性粒子添加到TFC膜中;②在PA层中引入CAU-1微粒后,TFN膜的亲水性得到了显著改善;③粒径小、不带电的CAU-1在保持截留率不变的情况下,可明显提高纯水通量。④TFN膜因高电荷CAU-1的加入,膜表面形成了超大表面积的网状“图灵结构”,较大程度的提升了膜的渗透性能。
附图说明
下面结合附图对本发明作进一步的说明:
图1为不同粒径CAU-1粒子的XRD图;
图2为不同粒径CAU-1粒子的红外光谱图;
图3为TFC和TFN膜亲水性的表征图;
图4为TFC和TFN膜的红外光谱图。
具体实施方式
下面通过具体实施例并结合附图对发明作进一步说明。
实施例1
一种不同粒径CAU-1微粒的制备方法,具体包括以下步骤:
将2.967g的AlCl3·6H2O和0.746g的NH2-BDC分别混合在60ml、50ml、30ml的甲醇中。将悬浮液转移到带有聚四氟乙烯衬里的钢制高压釜中。加热12 h后,离心收集黄色产物。然后用甲醇洗涤产物以除去未反应的NH2-BDC。将产物在去离子水中搅拌以进一步纯化,离心回收,得到粒径为300nm、400nm、800nm的CAU-1粒子,真空干燥24小时后保存备用。分别命名为CAU-1-300、CAU-1-400、CAU-1-800。
实施例2
一种TFC膜的制备方法,具体包括以下步骤:
首先将PPSU(20 wt.%)、PVP(8 wt.%)和NMP(22 wt.%)的聚合物加热并搅拌12小时。静置过夜后,将溶液倾倒在干净的玻璃板上,使用厚度为200µm的铸模刀刮膜。然后,将铸态膜浸入水中进行相转化,最后将其储存在新鲜的去离子水中保存,得到PPSU基底。然后将PPSU基底放入定制的膜框中,倒入1 wt.%的PIP水溶液,停留10min后倒出,再用滤纸吸去多余的溶液。将0.15 wt.%的TMC/正己烷溶液倒在膜表面上,进行1 min的界面聚合,随后将溶液倒出,放入70℃的烘箱进行固化。将固化完成后得到的TFC膜保存在去离子水中备用。
实施例3
一种掺杂CAU-1的TFN膜的制备方法,具体包括以下步骤:
除了在TMC/正己烷有机相中加入不同浓度的CAU-1微粒之外,TFN膜的制备步骤与TFC膜完全相同。加入CAU-1粒子的浓度为0.02w/v.% ,0.05w/v.% ,0.1w/v.% ,为保证微粒分散,所有CAU-1粒子在正己烷中超声分散30 min。含有300、400和800 nm微粒的TFC膜被称为TFN-300、TFN-400和TFN-800。
对比例1
首先将PPSU(20 wt.%)、PVP(8 wt.%)和NMP(22 wt.%)的聚合物加热并搅拌12小时。静置过夜后,将溶液倾倒在干净的玻璃板上,使用铸模刀刮膜。然后将膜浸入水中进行相转化,最后将其储存在新鲜的去离子水中保存。然后将PPSU基底放入定制的膜框中,倒入1 wt.%的PIP水溶液,停留10min后倒出,再用滤纸吸去多余的溶液。将0.15 wt.%的TMC/正己烷溶液倒在膜表面上,进行1 min的界面聚合,随后将溶液倒出,放入70℃的烘箱进行固化。将固化完成后得到的TFC膜保存在去离子水中备用。在TMC/正己烷有机相中加入CAU-1粒子的浓度为0.1w/v.% ,为保证颗粒分散, CAU-1粒子在正己烷中超声分散30 min。含有300、400和800 nm颗粒的TFC膜被称为TFN-300、TFN-400和TFN-800 (除了在TMC/正己烷有机相中加入不同浓度的CAU-1颗粒之外,TFN膜的制备步骤与TFC膜完全相同) 。
经测试,TFC膜水接触角为44.04°,加入CAU-1颗粒后,TFN膜的接触角降低,TFN-300、TFN-400、TFN-800接触角分别为41.86°、40.62°、32.37°;TFC膜纯水通量为19.36 L·m-2·h-1,而当加入CAU-1颗粒后,TFN-300、TFN-400、TFN-800膜纯水通量分别为27.05、24.91、26.99 L·m-2·h-1,并且TFN-800膜产生了图灵结构。

Claims (7)

1.一种掺杂CAU-1微粒的TFN膜的制备方法,其特征在于,合成了不同粒径的CAU-1微粒,并将按一定浓度分散在均苯三甲酰氯(TMC)/正己烷有机相中,通过界面聚合的方法制备TFN膜。
2.根据权利要求1所述的掺杂CAU-1微粒的TFN膜的制备方法,其特征在于,包括以下步骤:
(1)合成不同粒径的CAU-1微粒:将一定量的六水三氯化铝(AlCl3·6H2O)和2-氨基1,4-苯二甲酸(NH2-BDC)混合在一定量的甲醇中,将混合液转移到带有聚四氟乙烯衬里的钢制高压釜中,加热12 h后,离心收集黄色产物,然后用甲醇洗涤产物以除去未反应的NH2-BDC,为了去除框架中的氯离子,将产物在去离子水中搅拌以进一步纯化,离心回收,真空干燥24小时后保存备用;
(2)制作聚亚苯基砜(PPSU)基板:首先将聚亚苯基砜PPSU(20 wt.%)、聚乙烯吡咯烷酮PVP(8 wt.%)和N-甲基吡咯烷酮NMP(22 wt.%)的聚合物加热并搅拌12小时,静置过夜后,倾倒在干净的玻璃板上,使用厚度为200µm的铸膜刀刮膜,然后将铸态膜浸入水中进行相转化,最后将其储存在新鲜的去离子水中保存;
(3)制备TFC膜:通过界面聚合的方法在PPSU基底上形成交联聚酰胺层制备TFC膜,首先将PPSU基底放入定制的膜框中,倒入1 wt.%的哌嗪(PIP)水溶液,停留10min后倒出,再用滤纸吸去多余的溶液,将0.15 wt.%的TMC/正己烷溶液倒在膜表面上,进行1 min的界面聚合,随后将溶液倒出,放入70℃的烘箱进行固化,固化完成后保存在去离子水中备用;
(4)制备TFN膜:除了在TMC/正己烷有机相中按照一定浓度加入不同粒径的之外,TFN膜的制备步骤与TFC膜完全相同,为保证微粒分散,CAU-1微粒在正己烷中超声分散30 min。
3.根据权利要求2所述的掺杂CAU-1微粒的TFN膜的制备方法,其特征在于,所述的CAU-1微粒的粒径范围为300~800nm。
4.根据权利要求3所述的掺杂CAU-1微粒的TFN膜的制备方法,其特征在于,所述的CAU-1微粒的粒径优选为300nm、400nm、800nm中的一种。
5.根据权利要求4所述的掺杂CAU-1微粒的TFN膜的制备方法,其特征在于,所述的CAU-1微粒的浓度为0.02w/v.%~0.1 w/v.%。
6.根据权利要求5所述的掺杂CAU-1微粒的TFN膜的制备方法,其特征在于,所述的CAU-1微粒的浓度优选为0.02w/v.%或0.05w/v.%或0.1 w/v.%。
7.一种根据权利要求1-6任意一项所述方法制备的掺杂CAU-1微粒的TFN膜。
CN202110189732.XA 2021-02-19 2021-02-19 一种掺杂cau-1微粒的tfn膜及其制备方法 Pending CN114950163A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110189732.XA CN114950163A (zh) 2021-02-19 2021-02-19 一种掺杂cau-1微粒的tfn膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110189732.XA CN114950163A (zh) 2021-02-19 2021-02-19 一种掺杂cau-1微粒的tfn膜及其制备方法

Publications (1)

Publication Number Publication Date
CN114950163A true CN114950163A (zh) 2022-08-30

Family

ID=82954548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110189732.XA Pending CN114950163A (zh) 2021-02-19 2021-02-19 一种掺杂cau-1微粒的tfn膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114950163A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464001A (zh) * 2013-08-05 2013-12-25 大连理工大学 一种用于co2分离的金属有机骨架膜的制备方法
CN104209021A (zh) * 2014-09-03 2014-12-17 北京林业大学 一种zif-8型金属-有机骨架材料改性的芳香族聚酰胺膜的制备方法
CN110449042A (zh) * 2019-08-28 2019-11-15 同济大学 具有抗菌抗生物污染功能的聚酰胺薄层复合反渗透膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464001A (zh) * 2013-08-05 2013-12-25 大连理工大学 一种用于co2分离的金属有机骨架膜的制备方法
CN104209021A (zh) * 2014-09-03 2014-12-17 北京林业大学 一种zif-8型金属-有机骨架材料改性的芳香族聚酰胺膜的制备方法
CN110449042A (zh) * 2019-08-28 2019-11-15 同济大学 具有抗菌抗生物污染功能的聚酰胺薄层复合反渗透膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUJUAN XIAO等: "Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance", 《CHINESE JOURNAL OF CHEMICAL ENGINEERING》 *

Similar Documents

Publication Publication Date Title
Yang et al. Effects of GO and MOF@ GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane
Zhu et al. Crumple-textured polyamide membranes via MXene nanosheet-regulated interfacial polymerization for enhanced nanofiltration performance
Liu et al. Enhanced dispersibility of metal–organic frameworks (MOFs) in the organic phase via surface modification for TFN nanofiltration membrane preparation
Shakeri et al. Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable
Pang et al. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles
Wu et al. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance
Elma et al. Carbon templated strategies of mesoporous silica applied for water desalination: A review
Chen et al. Enhancing interface compatibility of UiO-66-NH2 and polyamide by incorporating dopamine into thin film nanocomposite membranes
Oskoui et al. Effect of different additives on the physicochemical properties and performance of NLDH/PVDF nanocomposite membrane
Ang et al. Embedding hollow silica nanoparticles of varying shapes and dimensions in nanofiltration membranes for optimal performance
Karki et al. Building rapid water transport channels within thin-film nanocomposite membranes based on 2D mesoporous nanosheets
Huang et al. Polyelectrolyte grafted MOFs enable conjugated membranes for molecular separations in dual solvent systems
CN109499397A (zh) 一种改性纳米复合膜及其制备方法和应用
Rahimi-Kashkouli et al. Thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals with superior anti-organic fouling affinity
Bayrami et al. Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance
Gao et al. Preparation of poly (piperazine-amide) nanofilms with micro-wrinkled surface via nanoparticle-templated interfacial polymerization: Performance and mechanism
Xia et al. Polyamide membranes with a ZIF-8@ Tannic acid core-shell nanoparticles interlayer to enhance nanofiltration performance
Xiao et al. MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration
Deng et al. Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance
Ajibade et al. Bio-inspired PDA@ WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye
Cheng et al. PVDF/MOFs mixed matrix ultrafiltration membrane for efficient water treatment
Panchami et al. Improved hydrophilic and antifouling performance of nanocomposite ultrafiltration zwitterionic polyphenylsulfone membrane for protein rejection applications
Vafaei et al. Covalent organic frameworks modified with TA embedded in the membrane to improve the separation of heavy metals in the FO
Berbar et al. New method for silica embedding on a PES membrane surface via in situ sol gel process and immobilization in a polyamide thin film composite
Sun et al. Enhancing the permeation and antifouling performance of PVDF hybrid membranes by incorporating Co–Fe hydroxide nanoparticles in reverse microemulsion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220830