CN114950147A - 一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备方法 - Google Patents

一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备方法 Download PDF

Info

Publication number
CN114950147A
CN114950147A CN202210502836.6A CN202210502836A CN114950147A CN 114950147 A CN114950147 A CN 114950147A CN 202210502836 A CN202210502836 A CN 202210502836A CN 114950147 A CN114950147 A CN 114950147A
Authority
CN
China
Prior art keywords
uio
base type
type polyimide
polyimide
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210502836.6A
Other languages
English (en)
Inventor
陈赞
洪宗平
于海斌
臧毅华
段翠佳
袁标
胡晓宇
严朔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
Original Assignee
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNOOC Tianjin Chemical Research and Design Institute Co Ltd filed Critical CNOOC Tianjin Chemical Research and Design Institute Co Ltd
Priority to CN202210502836.6A priority Critical patent/CN114950147A/zh
Publication of CN114950147A publication Critical patent/CN114950147A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种
Figure DDA0003636116080000011
Base型聚酰亚胺杂化膜,该膜由
Figure DDA0003636116080000014
Base型聚酰亚胺和UiO‑66‑NH2金属有机骨架纳米颗粒共混而成。首先,分别通过两步有机合成反应和溶剂热法制备
Figure DDA0003636116080000012
Base型聚酰亚胺和UiO‑66‑NH2纳米颗粒;然后将UiO‑66‑NH2分散液与
Figure DDA0003636116080000013
Base型聚酰亚胺溶液共混得到铸膜液,经溶液浇铸法加热成膜。本发明制备过程温和可控、原料易得,且填充剂分散性良好。所制备的
Figure DDA0003636116080000015
Base型聚酰亚胺杂化膜具有良好的热稳定性,应用于CO2/CH4和CO2/N2分离体系,表现出良好的CO2分离性能。

Description

一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备 方法
技术领域
本发明属于气体膜分离技术领域,具体涉及一种用于CO2分离的
Figure BDA0003636116060000012
Base型聚酰亚胺杂化膜及其制备方法。
背景技术
随着全球工业化进程的加快,化石燃料的大量燃烧导致大气中的CO2浓度急剧增加,全球温室效应日益严峻。据报道,今年5月,全球每月平均CO2浓度已达到历史最高水平416.5ppm。而且新开采的天然气、沼气等清洁能源中含有的酸性气体CO2,也会造成热值降低、管道腐蚀等问题。因此,开发节能高效的CO2分离技术势在必行。膜分离作为一种新兴、高效的绿色分离技术,在能耗、装置占地面积和成本等方面表现出较大优势,极具发展和应用前景。膜材料是膜分离技术的核心。由于目前膜材料CO2分离性能不高,膜分离技术的发展受到限制,故开发高气体渗透分离性能和高稳定性的CO2分离膜材料至关重要。
有机-无机杂化膜是一种将易加工成型的有机聚合物与气体性能优异的无机多孔材料有效结合起来的膜形式。本发明设计并制备了一种UiO-66-NH2纳米颗粒负载的
Figure BDA0003636116060000013
Base型聚酰亚胺杂化膜。其中,具有V形、刚性双环胺结构的
Figure BDA0003636116060000014
Base型聚酰亚胺作为聚合物基质,该聚合物中
Figure BDA0003636116060000015
Base结构单元与CO2分子具有较强的亲和性,并提供了易相互作用的位点,而且
Figure BDA0003636116060000016
Base型聚酰亚胺纯膜表现出良好的气体分子筛分特性,是一类在CO2分离领域具有较大发展潜力的聚合物材料。UiO-66-NH2作为一种亲CO2多孔材料,被广泛用作CO2分离杂化膜的填充剂。本发明即利用其与
Figure BDA0003636116060000017
Base型聚酰亚胺良好的界面相容性,使纳米填充剂可以均匀、稳定地分散在聚合物基质中,而且杂化膜仍保持良好的分子筛分特性;同时,该纳米填充剂的引入也增大了膜内聚合物链间距,并提供额外的气体传递通道,强化了CO2分子在膜内的快速传递。
发明内容
本发明的目的在于提供一种用于CO2分离的
Figure BDA0003636116060000022
Base型聚酰亚胺杂化膜及其制备方法。该制备方法温和可控,所制备的杂化膜具有良好的热稳定性,应用于CO2/CH4和CO2/N2分离体系,表现出良好的CO2分离性能。
本发明提出的一种用于CO2分离的
Figure BDA0003636116060000023
Base型聚酰亚胺杂化膜,是UiO-66-NH2纳米颗粒负载的
Figure BDA0003636116060000024
Base型聚酰亚胺杂化膜,由质量分数为70~90%的
Figure BDA0003636116060000025
Base型聚酰亚胺和质量分数为10~30%的UiO-66-NH2金属有机骨架纳米颗粒组成,其中所述的UiO-66-NH2金属有机骨架纳米颗粒的颗粒尺寸为80~120nm,经两步有机合成反应制得的
Figure BDA0003636116060000026
Base型聚酰亚胺结构式如下:
Figure BDA0003636116060000021
本发明还进一步提供了上述用于CO2分离的
Figure BDA0003636116060000027
Base型聚酰亚胺杂化膜的制方法,包括如下步骤:
1)将
Figure BDA0003636116060000028
Base型聚酰亚胺溶于三氯甲烷中,室温下搅拌均匀得到质量分数为6~7%的透明溶液;然后,将UiO-66-NH2纳米颗粒分散于三氯甲烷中,超声得到UiO-66-NH2浓度为4~6mg/mL的分散液;
2)步骤1)所述的
Figure BDA0003636116060000029
Base型聚酰亚胺透明溶液分批加入分散液中,每加入一批超声搅拌,全部加入后搅拌得到铸膜液;再将所述的铸膜液浇铸于洁净的超平玻璃板中,并在饱和三氯甲烷氛围下室温缓慢挥发24~36h,形成固态薄膜;最后,将剥离的薄膜在甲醇中浸泡、室温下晾干后,在100~150℃下真空干燥12~24h,得到UiO-66-NH2纳米颗粒负载的
Figure BDA00036361160600000210
Base型聚酰亚胺杂化膜。
本发明还提供了一种如权利要求1所述的
Figure BDA00036361160600000211
Base型聚酰亚胺杂化膜在CO2分离中的应用。所述的CO2分离优选为CO2/CH4和CO2/N2分离。
本发明的优点在于,该杂化膜的制备过程简单可控、条件温和、原料易得,且制备方法具有一定的普适性。制得的杂化膜具有良好的热稳定性,应用于CO2/CH4和CO2/N2分离体系,在35℃、原料气压力为0.1MPa的测试条件下,膜的CO2渗透系数为224~415Barrer,CO2/CH4和CO2/N2的选择性分别为25.0~28.3和18.9~20.0,表现出良好的CO2分离性能。
附图说明
图1为本发明实施例1-3和对比例1制备的膜的CO2分离性能对比图。
具体实施方式
下面结合具体实施例和附图对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
实施例1:按照以下步骤制备UiO-66-NH2纳米颗粒质量分数为10%的
Figure BDA0003636116060000031
Base型聚酰亚胺杂化膜,记作M1。
步骤一、
Figure BDA0003636116060000032
Base型聚酰亚胺的制备:向三口烧瓶中依次加入8.8848mg(20mmol)4,4'-(六氟异亚丙基)二邻苯二甲酸酐、7.3302mg(60mmol)2,6-二氨基甲苯和160mLN-甲基吡咯烷酮溶剂,室温、氮气氛围下反应12h;加入55mL甲苯溶剂,在180℃、氮气氛围下回流反应12h,得到深褐色溶液;将得到的反应液倒入2L体积比1:1的冰水/甲醇混合溶液中,搅拌析出黄色沉淀;将沉淀物用冰水反复洗涤3次后,在80℃下真空干燥48h,得到含有酰亚胺环的二胺单体粉末。
0℃、氮气氛围下,向三口烧瓶中依次加入2.6104g(4mmol)上述制得的含有酰亚胺环的二胺单体和2.0mL(22.4mmol)二甲氧基甲烷溶剂,并向反应瓶中缓慢滴加65mL三氟乙酸溶剂,同时开启机械搅拌;滴加完毕后,将反应温度升至25℃反应48h,得到棕色溶液;向得到的反应液中加入过量的质量分数为2.5%的氨水溶液,0℃下搅拌析出白色沉淀;将沉淀物依次用去离子水、甲醇反复洗涤3次后,在120℃下真空干燥24h,得到白色
Figure BDA0003636116060000033
Base型聚酰亚胺。
步骤二、UiO-66-NH2金属有机骨架纳米颗粒的制备:向三口烧瓶中依次加入3.2g(9.93mmol)八水氯化氧锆、1.7472g(9.64mmol)2-氨基对苯二甲酸、60mLN,N-二甲基甲酰胺和30mL甲酸,室温搅拌溶解后,在140℃下回流反应2h;离心收集沉淀物,并依次用新鲜的N,N-二甲基甲酰胺、甲醇反复洗涤3次后,在120℃下真空干燥24h,得到颗粒尺寸为80~120nm的淡黄色UiO-66-NH2金属有机骨架纳米颗粒。
步骤三、UiO-66-NH2纳米颗粒负载的
Figure BDA0003636116060000034
Base型聚酰亚胺杂化膜的制备:按照5mL三氯甲烷和0.3g(
Figure BDA0003636116060000035
Base型聚酰亚胺+UiO-66-NH2)的比例配制铸膜液。首先,称取0.27g步骤一制得的
Figure BDA0003636116060000036
Base型聚酰亚胺溶于4.4mL三氯甲烷中,室温下搅拌12h,得到透明溶液;然后,将0.03g步骤二制得的UiO-66-NH2纳米颗粒分散于0.6mL三氯甲烷中,超声2h,得到UiO-66-NH2分散液;接着将提前配制好的
Figure BDA0003636116060000037
Base型聚酰亚胺透明溶液分批加入到UiO-66-NH2分散液中,每加入一批即超声、搅拌各30min,全部加入后在室温下搅拌12h,得到铸膜液;再将上述配制好的铸膜液浇铸于洁净的玻璃培养皿中,并在饱和三氯甲烷氛围下室温缓慢挥发24h,形成固态薄膜;最后,将剥离的薄膜在甲醇中浸泡24h,取出、室温下晾干后,在120℃下真空干燥24h,得到UiO-66-NH2纳米颗粒质量分数为10%的
Figure BDA0003636116060000041
Base型聚酰亚胺杂化膜M1。
将本实施例1制得的M1号膜用于CO2/CH4和CO2/N2分离,在35℃、原料气压力为0.1MPa的测试条件下,膜的CO2渗透系数为224Barrer,CO2/CH4和CO2/N2的选择性分别为28.3和20.0,如图1所示。
实施例2:按照以下步骤制备UiO-66-NH2纳米颗粒质量分数为20%的
Figure BDA0003636116060000042
Base型聚酰亚胺杂化膜,记作M2。
实施例2的制备步骤一与步骤二与实施例1完全相同,不同之处在于:将步骤三中0.27g
Figure BDA0003636116060000043
Base型聚酰亚胺溶于4.4mL三氯甲烷、0.03g UiO-66-NH2纳米颗粒分散于0.6mL三氯甲烷,改为0.24g
Figure BDA0003636116060000044
Base型聚酰亚胺溶于3.8mL三氯甲烷、0.06g UiO-66-NH2纳米颗粒分散于1.2mL三氯甲烷,最终得到UiO-66-NH2纳米颗粒质量分数为20%的
Figure BDA0003636116060000045
Base型聚酰亚胺杂化膜M2。
将本实施例2制得的M2号膜用于CO2/CH4和CO2/N2分离,在35℃、原料气压力为0.1MPa的测试条件下,膜的CO2渗透系数为295Barrer,CO2/CH4和CO2/N2的选择性分别为27.3和19.5,如图1所示。
实施例3:按照以下步骤制备UiO-66-NH2纳米颗粒质量分数为30%的
Figure BDA0003636116060000046
Base型聚酰亚胺杂化膜,记作M3。
实施例3的制备步骤一与步骤二与实施例1完全相同,不同之处在于:将步骤三中0.27g
Figure BDA0003636116060000047
Base型聚酰亚胺溶于4.4mL三氯甲烷、0.03g UiO-66-NH2纳米颗粒分散于0.6mL三氯甲烷,改为0.21g
Figure BDA0003636116060000048
Base型聚酰亚胺溶于3.2mL三氯甲烷、0.09g UiO-66-NH2纳米颗粒分散于1.8mL三氯甲烷,最终得到UiO-66-NH2纳米颗粒质量分数为30%的
Figure BDA0003636116060000049
Base型聚酰亚胺杂化膜M3。
将本实施例3制得的M3号膜用于CO2/CH4和CO2/N2分离,在35℃、原料气压力为0.1MPa的测试条件下,膜的CO2渗透系数为415Barrer,CO2/CH4和CO2/N2的选择性分别为25.0和18.9,如图1所示。
对比例1:按照以下步骤制备
Figure BDA00036361160600000410
Base型聚酰亚胺纯膜,记作M0。
对比例1的制备步骤一与实施例1完全相同。步骤二为制备
Figure BDA00036361160600000411
Base型聚酰亚胺纯膜:称取0.3g步骤一制得的
Figure BDA0003636116060000051
Base型聚酰亚胺溶于5mL三氯甲烷中,室温下搅拌24h,得到透明的铸膜液;再将上述配制好的铸膜液浇铸于洁净的玻璃培养皿中,并在饱和三氯甲烷氛围下室温缓慢挥发24h,形成固态薄膜;最后,将剥离的薄膜在甲醇中浸泡24h,取出、室温下晾干后,在120℃下真空干燥24h,得到
Figure BDA0003636116060000052
Base型聚酰亚胺纯膜M0。
将对比例1制得的M0号对比膜用于CO2/CH4和CO2/N2分离,在35℃、原料气压力为0.1MPa的测试条件下,膜的CO2渗透系数为156Barrer,CO2/CH4和CO2/N2的选择性分别为31.2和20.5,如图1所示。
综上,根据上述实施例1-3与对比例1可以看出,UiO-66-NH2纳米颗粒负载的
Figure BDA0003636116060000054
Base型聚酰亚胺杂化膜较
Figure BDA0003636116060000053
Base型聚酰亚胺纯膜表现出增强的CO2分离性能,特别是UiO-66-NH2纳米颗粒质量分数为30%的
Figure BDA0003636116060000055
Base型聚酰亚胺杂化膜的CO2渗透系数提高了166%。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (4)

1.一种用于CO2分离的
Figure FDA0003636116050000011
型聚酰亚胺杂化膜,其特征在于,所述杂化膜由质量分数为70~90%的
Figure FDA0003636116050000012
型聚酰亚胺和质量分数为10~30%的UiO-66-NH2金属有机骨架纳米颗粒组成;其中,经溶剂热法合成的UiO-66-NH2颗粒尺寸为80~120nm,经两步有机合成反应制得的
Figure FDA0003636116050000013
型聚酰亚胺结构式如下:
Figure FDA0003636116050000014
2.一种如权利要求1所述的
Figure FDA0003636116050000015
型聚酰亚胺杂化膜的制备方法,其特征在于,包括以下步骤:
1)将
Figure FDA0003636116050000016
型聚酰亚胺溶于三氯甲烷中,室温下搅拌均匀得到质量分数为6~7%的透明溶液;然后,将UiO-66-NH2纳米颗粒分散于三氯甲烷中,超声得到UiO-66-NH2浓度为4~6mg/mL的分散液;
2)步骤1)所述的
Figure FDA0003636116050000017
型聚酰亚胺透明溶液分批加入分散液中,每加入一批超声搅拌,全部加入后在室温下搅拌得到铸膜液;再将所述的铸膜液浇铸于洁净的超平玻璃板中,并在饱和三氯甲烷氛围下室温缓慢挥发12~24h,形成固态薄膜;最后,将剥离的薄膜在甲醇中浸泡、室温下晾干后,在100~150℃下真空干燥12~24h,得到UiO-66-NH2纳米颗粒负载的
Figure FDA0003636116050000018
型聚酰亚胺杂化膜。
3.一种如权利要求1所述的
Figure FDA0003636116050000019
型聚酰亚胺杂化膜在CO2分离中的应用。
4.根据权利要求3所述的应用,其特征在于,所述的CO2分离为CO2/CH4和CO2/N2分离。
CN202210502836.6A 2022-05-10 2022-05-10 一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备方法 Pending CN114950147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210502836.6A CN114950147A (zh) 2022-05-10 2022-05-10 一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210502836.6A CN114950147A (zh) 2022-05-10 2022-05-10 一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备方法

Publications (1)

Publication Number Publication Date
CN114950147A true CN114950147A (zh) 2022-08-30

Family

ID=82982016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210502836.6A Pending CN114950147A (zh) 2022-05-10 2022-05-10 一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114950147A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636936A (zh) * 2022-12-23 2023-01-24 中国气象科学研究院 一种离子化朝格尔碱高分子材料及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106823863A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 金属有机骨架杂化膜、其制备方法及应用
CN109126469A (zh) * 2018-09-01 2019-01-04 常州大学 一种聚酰亚胺/无机粒子渗透汽化杂化膜的制备方法及应用
WO2019138932A1 (en) * 2018-01-11 2019-07-18 Kyoto University Polyimide, production method of polyimide, separation film, production method of separation film, and gas separation method
CN112275146A (zh) * 2020-09-01 2021-01-29 中国科学院山西煤炭化学研究所 一种经磷酸处理的Tr*ger`s Base聚合物气体分离膜及其制备方法和应用
CN112717711A (zh) * 2020-12-14 2021-04-30 中海石油(中国)有限公司 一种聚酰亚胺基混合基质中空纤维膜的制备方法
CN112717723A (zh) * 2020-12-14 2021-04-30 中海石油(中国)有限公司 一种用于气体分离的氨基碳点与聚酰亚胺混合基质膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106823863A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 金属有机骨架杂化膜、其制备方法及应用
WO2019138932A1 (en) * 2018-01-11 2019-07-18 Kyoto University Polyimide, production method of polyimide, separation film, production method of separation film, and gas separation method
CN109126469A (zh) * 2018-09-01 2019-01-04 常州大学 一种聚酰亚胺/无机粒子渗透汽化杂化膜的制备方法及应用
CN112275146A (zh) * 2020-09-01 2021-01-29 中国科学院山西煤炭化学研究所 一种经磷酸处理的Tr*ger`s Base聚合物气体分离膜及其制备方法和应用
CN112717711A (zh) * 2020-12-14 2021-04-30 中海石油(中国)有限公司 一种聚酰亚胺基混合基质中空纤维膜的制备方法
CN112717723A (zh) * 2020-12-14 2021-04-30 中海石油(中国)有限公司 一种用于气体分离的氨基碳点与聚酰亚胺混合基质膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAN CHEN等: "Tröger’s Base Polyimide Hybrid Membranes by Incorporating UiO-66-NH2 Nanoparticles for Gas Separation", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 61, no. 9, 23 February 2022 (2022-02-23), pages 3419 - 3420 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636936A (zh) * 2022-12-23 2023-01-24 中国气象科学研究院 一种离子化朝格尔碱高分子材料及其制备方法和用途

Similar Documents

Publication Publication Date Title
Chen et al. PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance
CN112608490B (zh) 硫醚功能化的芘基共价有机框架材料及其制备方法和应用
CN114950147A (zh) 一种用于CO2分离的Tröger's Base型聚酰亚胺杂化膜及其制备方法
CN109400903A (zh) 一种笼型聚倍半硅氧烷/金属-2-氨基对苯二甲酸有机框架杂化材料及其制备方法
CN112237852A (zh) 一种仿生材料Bio-ZIF填充的嵌段聚醚酰胺混合基质膜及其制备方法和应用
Yuan et al. Performance optimization of imidazole containing copolyimide/functionalized ZIF-8 mixed matrix membrane for gas separations
CN113751076A (zh) 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
CN113617388A (zh) 基于多孔吡啶基共价有机框架的银纳米催化剂及其制备方法和应用
CN113828170B (zh) 一种混合基质膜及其制备方法和应用
CN113385055B (zh) 一种基于复合材料UiO-66@HNT的混合基质膜的制备方法
CN111635523A (zh) 以三聚喹唑啉为结点的二维共价有机框架材料及其制备方法和应
CN110372862B (zh) 一种三苯基菲并咪唑三嗪聚合物及其制备方法和用途
Hasan et al. Study on the recycling of zeolitic imidazolate frameworks and polymer Pebax® 1657 from their mixed matrix membranes applied to CO2 capture
CN108744991B (zh) 一种掺杂沸石咪唑酯骨架多孔碳纳米材料的有机-无机混合基质膜的制备方法及应用
Shi et al. Micrometer-sized MOF particles incorporated mixed-matrix membranes driven by π-π interfacial interactions for improved gas separation
Wu et al. Effects of modification of silica gel and ADH on enzyme activity for enzymatic conversion of CO2 to methanol
CN108080036B (zh) 一种基于光敏性金属-有机配位纳米笼与二氧化钛的杂化材料及其制备方法和应用
CN110270231B (zh) Mof衍生气体分离膜及其制备方法和应用
CN113731198A (zh) 一种高选择性聚酰亚胺气体分离膜的制备方法
CN113372525A (zh) 一种具有分子印迹型的共价有机框架材料及其制备方法和应用
CN109762142B (zh) 一种基于光热效应调控二氧化碳吸附的共轭高分子材料
CN114699928A (zh) 一种基于原位聚合的混合基质膜制备方法
CN110614089A (zh) 一种功能化聚酰胺-胺树形分大子吸附剂的制备方法
CN114939350A (zh) 一种用于气体分离的金属-有机笼配合物混合基质膜的制备
CN110172158B (zh) 一种分级多孔金属有机骨架材料MIL-101(Cr)的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination