CN114940004A - 一种覆铜氮化物陶瓷基板及其制备方法 - Google Patents

一种覆铜氮化物陶瓷基板及其制备方法 Download PDF

Info

Publication number
CN114940004A
CN114940004A CN202210388836.8A CN202210388836A CN114940004A CN 114940004 A CN114940004 A CN 114940004A CN 202210388836 A CN202210388836 A CN 202210388836A CN 114940004 A CN114940004 A CN 114940004A
Authority
CN
China
Prior art keywords
copper
ceramic substrate
metal
nitride ceramic
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210388836.8A
Other languages
English (en)
Other versions
CN114940004B (zh
Inventor
朱焰焰
李德善
李华杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANNUO PHOTOELECTRIC MATERIAL CO Ltd
Original Assignee
TIANNUO PHOTOELECTRIC MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANNUO PHOTOELECTRIC MATERIAL CO Ltd filed Critical TIANNUO PHOTOELECTRIC MATERIAL CO Ltd
Priority to CN202210388836.8A priority Critical patent/CN114940004B/zh
Publication of CN114940004A publication Critical patent/CN114940004A/zh
Application granted granted Critical
Publication of CN114940004B publication Critical patent/CN114940004B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本发明属于陶瓷材料技术领域,具体涉及一种覆铜氮化物陶瓷基板及其制备方法。覆铜氮化物陶瓷基板,包括以下原料铜板、氮化物陶瓷基板和钎料,所述钎料包括活性金属薄膜和金属纳米线薄膜,金属纳米线薄膜覆盖在活性金属薄膜上,并与铜板贴合。本发明覆铜氮化物陶瓷基板在钎料中引入金属纳米线与活性金属薄膜进行钎焊,减少了对金属Ag的使用,有效降低铜材的膨胀系数,降低铜材与陶瓷之间因应力不匹配造成的陶瓷基板碎裂、接头脆裂等问题。

Description

一种覆铜氮化物陶瓷基板及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种覆铜氮化物陶瓷基板及其制备方法。
背景技术
随着科技、生活设施、工业设备所需要的半导体仪器迅速发展,对大功率、高规模集成模块、大功率集成线路板的需求与要求也在逐渐变高,传统以氧化铝陶瓷为基板的功率线路板已经无法满足高导热、大功率模块的需求,因此人们开始着眼于具有高导热的金刚石、立方系氮化硼、氮化硅、氧化铍和氮化铝。但是金刚石和立方系氮化硼的合成是一个复杂而昂贵的工艺;而氧化铍则是毒性物质。因而以氮化铝、氮化硅为基材的陶瓷具有最适宜的综合性能。并且经过各种实验与开发,已经慢慢呈现在人们的视野当中,其中最大的应用领域是大功率的LED产品。氮化物陶瓷具有高导热率、低介电常数、低介电损耗、优良的电绝缘性,与硅以及碳化硅芯片相匹配的热膨胀系数及无毒性等优点,使其成为高密度、大功率和高速集成电路板与封装基板的理想材料,并成功应用在高铁、电动新能源汽车、风力发电、智能电网等大功率LED封装、大功率充电以及半导体等众多领域。
目前,氮化物陶瓷线路板制备方法较多,包括物理气相沉积、化学镀、DBC、DPC以及AMB工艺,但氮化物陶瓷的主流制备工艺仍然以AMB活性金属钎焊为主。氮化物陶瓷线路板AMB工艺的钎焊形式主要以活性带有金属的Ag-Cu-Ti钎膏(丝网印刷、涂敷)为主,同时混入可以降低铜熔点的Sn、In、Ga等低熔点金属,由于Ag-Cu-Ti钎焊膏体中银占要成分,含量一般在60%-100%之间,使得钎焊成本大、容易发生银电迁移现象以及有机物挥发不完全等问题。以金属片材叠合以及合金钎片等进行铜材的钎焊的方法,虽然可以有效的避免溶剂的使用并直接进行钎焊,无论从接头强度还是结合力,与钎焊膏相比都有了很大的提升,但片材钎料的成分仍然是以Ag-Cu-Ti为主,高含量的银中带有少量的Cu以及活性钛。相对于钎膏,无论是叠片钎焊还是合金片钎焊,钎焊片材均是以银为主要成分,制作成本更高,同时焊片的厚度是主要问题,一般20μm以上,这无疑增加了后续电路板在蚀刻过程中的难度,使得成本再次提升。
氮化物陶瓷线路板AMB活性钎焊工艺主要原理是以Ti、Hf、Zr、V等活性金属元素与氮化物陶瓷相互反应,浸润氮化物陶瓷的表面层,降低铜在其表面的浸润角,为铜的钎焊提供良好的附着面。而钎料中Ag作用更多是为了降低铜的熔点与陶瓷基板发生液相共晶,形成Cu-Ti合金相。因此,Ag在此过程中并不参与反应,其主要作用除了降低钎焊温度以外,银的参杂还可以缓解钎焊应力、降低钎焊脆性。目前现有氮化物陶瓷线路板的制备方法中由于钎料中均采用大量的Ag进行钎焊,而银的熔点为961.93℃,因而钎焊温度一般为800℃-1000℃。而由于氮化陶瓷基材的热膨胀系数低,而铜材的热膨胀系数相对较大,在冷却过程中会造成残余应力大、应力释放不完全以及高温下损伤陶瓷基材等问题使得产品良率较低。同时,在现有技术中,银的大量使用还会造成电迁移现象,影响线路板在使用过程中的稳定性。
发明内容
本发明主要目的在于提供一种覆铜氮化物陶瓷基板及其制备方法,本发明覆铜氮化物陶瓷基板在钎料中引入金属纳米线进行钎焊,以减少对金属Ag的使用;同时金属纳米线其自身带有较高的表面能,在不需要给予太高的温度的情况下就能变为熔融状态,以此来降低铜片的液相共晶温度,这有利于保护陶瓷基材,有效降低铜材的膨胀系数,降低铜材与陶瓷之间因应力不匹配造成的陶瓷基板碎裂、接头脆裂等问题。
为实现上述目的,本发明采用以下技术方案:
本发明提供一种覆铜氮化物陶瓷基板,包括以下原料:铜板,氮化物陶瓷基板和钎料;所述钎料包括PVD溅射活性金属、PVD溅射铜层以及金属纳米线,金属纳米线薄膜覆盖在活性金属膜层上以及铜膜层上,并与铜板贴合。
进一步地,金属纳米线薄膜厚度为0.01-5.00μm。
进一步地,金属纳米线薄膜中金属纳米线为Ag纳米线、Ag-Ni纳米线、Ag-Cu纳米线中的一种;其中金属纳米线直径为10nm-300nm,长度为3μm-300μm。
进一步地,所述活性金属膜层包括Zr膜层、Ti膜层、V膜层、Hf膜层、Cr膜层中的一种或多种。
进一步地,所述活性金属膜层厚度为1-5μm。
本发明还提供所述覆铜氮化物陶瓷基板的制备方法,所述方法包括以下步骤:对氮化物陶瓷基板、铜片以及金属纳米线进行清洗、干燥,配制金属纳米线溶液,将金属纳米线溶液涂覆在PVD溅射活性金属膜层上,随后进行真空溅射铜膜层,然后将金属纳米线溶液再次涂敷于铜膜层上,将铜版进行贴合,最后进行真空热压。
进一步地,金属纳米线溶液的配制包括将金属纳米线置于溶剂中进行分散配制得到金属纳米溶液,分散浓度为5-25mg/mL。
进一步地,进行真空热压时,压力为10-1000Pa,温度为300-1000℃,最优为650—750℃,热压时间为0.5-24h,真空度为10-3Pa。
进一步地,对氮化物陶瓷基板、铜片以及活性金属纳米线进行清洗时,将其分别浸于乙醇溶液进行超声波清洗,再浸于有机溶剂中进行超声波清洗;所述有机溶剂为环己烷、正己烷、丙酮、乙酸乙酯、乙醇中的一种或多种,超声时间为10-30min。
进一步地,在40℃-60℃,真空度为0.06MPa-0.08MPa条件下进行干燥。
本发明所述覆铜氮化物陶瓷基板在钎料中引入纳米线材料,利用其自身带有较高的表面能,在不需要给予太高的温度的情况下就能变为熔融状态,以此来降低铜片与铜膜层的液相共晶温度,这有利于保护陶瓷基材,而活性金属膜层虽然熔点较高,但由于纳米线可以在较低的温度下进入熔融状态,以促进铜膜层、铜版层界面的溶解,进而促进活性金属膜层的溶解、共晶以及分子扩散效应,在本发明所述温度、时间以及压力下,可以使活性金属膜层形成两种互补的结合形式:分子扩散反应结合与液相共晶结合,实现氮化物陶瓷与铜的钎焊。
本发明以活性金属膜层为主要钎焊材料,由于活性金属具有极高的熔点很难实现与浸润反应,但在真空高温下却可以实现分子扩散性的化学反应,在金属纳米线的存在下,提前与溅射铜膜层反应,形成Cu-Ti合金相。在本发明所述压力范围下,溅射活性金属表面与氮化物陶瓷紧密贴合处,高能分子表面相互反应结合,而活性金属膜层带有纳米线的一面与铜膜层进行共晶,铜膜层上方的金属纳米线,既可以提前溶解上层铜片的接触面又可以与溶解下铜膜层,形成Cu-Ag-Cu合金。由于纳米线自身带有较高的表面能,其熔点会进一步降低,从而实现贴合处铜熔点的降低,实现共晶液相与活性金属相互浸润,因而活性金属可以实现双重反应:扩散性化学反应与浸润性化学反应,形成活性金属-Cu-Ag-Cu合金相,得到氮化物陶瓷双面覆铜板。
与现有技术相比,本发明具有以下优势:
1)本发明所述覆铜氮化物陶瓷基板能够有效降低铜材的膨胀系数,降低铜材与陶瓷之间因应力不匹配造成的陶瓷基板碎裂、接头脆裂等问题。
2)本发明方法简单,相对低钎焊温度可以更加有效的保护陶瓷基材。
3)本发明方法以活性金属膜层与纳米线结合进行钎焊,有效降低成本,极大减少对金属Ag的使用。
4)本发明方法采用真空热压的形式,有助于大批量钎焊多层线路板。
5)相对薄的钎焊层,本发明方法有助于提升后续线路板的蚀刻效率。
附图说明
图1为本发明实施例1所述双面覆铜的氮化物陶瓷基板的结构示意图;
图2为剥离强度随真空热压压力变化关系图;
图3为剥离强度随真空热压温度变化关系图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1
取尺寸为138x190mm的氮化物陶瓷基板1片、136x188x0.25mm的无氧铜2片,用无水乙醇与水1:1的比例配置清洗液,将氮化物陶瓷基板、铜片分别置于清洗液中超声15min,取出后再以丙酮进行超声20min以除掉表面附带的油脂,并在0.08MPa 60℃下进行真空干燥。采用PVD在陶瓷基板上溅射一层Ti膜,厚度为2um;取直径为80nm的纳米银线溶于乙醇中,配置成5mg/ml的分散液,分散20min并装于精密涂布机中,将纳米银线涂覆于陶瓷板的Ti膜层表面,涂覆厚度为500nm,并进行干燥。然后再次进行PVD溅射铜膜层,膜层厚度为1um,最后在于铜膜层表面涂敷1um厚度的纳米银线,形成Ti-纳米Ag-Cu-纳米Ag复合层,最后将干燥好的铜片、带有纳米银线的复合金属层氮化物陶瓷基板、铜片,按照自下而上的方式进行叠合,然后将其置于10-3Pa真空度下,温度为650℃、300Pa压力进行热压5h,得到双面覆铜的氮化物陶瓷基板,如图1所示。最后将其按照预设的线路板图形进行曝光、显影、蚀刻即可得到氮化物陶瓷双面覆铜线路板。
实施例2
取尺寸为138x190mm的氮化物陶瓷基板1片、136x188x0.25mm的无氧铜2片,用乙醇与水1:1的比例配置清洗液,将氮化物陶瓷基板、铜片分别置于清洗液中超声15min,取出后再以丙酮进行超声20min以除掉表面附带的油脂,并在0.08MPa 60℃下进行真空干燥。采用PVD在陶瓷基板上溅射一层Ti膜,厚度为2um;取直径为120nm的纳米银线溶于乙醇中,配置成10mg/ml的分散液,分散20min并装于精密涂布机中,将纳米银线涂覆于Ti膜层表面,涂覆厚度为1μm,并进行干燥。然后再次进行PVD溅射铜膜层,膜层厚度为1um,最后在于铜膜层表面涂敷1um厚度的纳米银线,形成Ti-纳米Ag-Cu-纳米Ag复合层,最后将干燥好的铜片、带有纳米银线的复合金属层氮化物陶瓷基板、铜片,按照自下而上的方式进行叠合,然后将其置于10-3Pa真空度下,温度为700℃、500Pa压力进行热压8h,得到覆铜的氮化物陶瓷基板。最后将其按照预设的线路板图形进行曝光、显影、蚀刻即可得到氮化物陶瓷覆铜线路板。
实施例3
取尺寸为138x190mm的氮化物陶瓷基板1片、136x188x0.25mm的无氧铜2片,用乙醇与水1:1的比例配置清洗液,将氮化物陶瓷基板、铜片以分别置于清洗液中超声15min,取出后再以丙酮进行超声20min以除掉表面附带的油脂,并在0.08MPa 60℃下进行真空干燥。采用PVD在陶瓷基板上溅射一层Ti膜,厚度为1um;取直径为150nm的纳米银线溶于乙醇中,配置成15mg/ml的分散液,分散20min并装于精密涂布机中,将纳米银线涂覆于Ti膜层表面,涂覆厚度为2μm,并进行干燥。然后再次进行PVD溅射铜膜层,膜层厚度为2um,最后在于铜膜层表面涂敷1.5um厚度的纳米银线,形成Ti-纳米Ag-Cu-纳米Ag复合层,最后将干燥好的铜片、带有纳米银线的复合金属层氮化物陶瓷基板、铜片,按照自下而上的方式进行叠合。然后将其置于10-3Pa真空度下,温度为700℃、500Pa压力进行热压8h,得到双面覆铜的氮化物陶瓷基板。最后将其按照预设的线路板图形进行曝光、显影、蚀刻即可得到氮化物陶瓷双面覆铜线路板。
实施例4
取尺寸为138x190mm的氮化物陶瓷基板1片、136x188x0.25mm的无氧铜2片,用乙醇与水1:1的比例配置清洗液,将氮化物陶瓷基板、铜片分别置于清洗液中超声15min,取出后再以丙酮进行超声20min以除掉表面附带的油脂,并在0.08MPa 60℃下进行真空干燥。采用PVD在陶瓷基板上溅射一层Ti膜,厚度为3um;取直径为200nm的纳米银线溶于乙醇中,配置成15mg/ml的分散液,分散20min并装于精密涂布机中,将纳米银线涂覆于Ti膜层表面,涂覆厚度为3μm,并进行干燥。然后再次进行PVD溅射铜膜层,膜层厚度为2um,最后在于铜膜层表面涂敷2um厚度的纳米银线,形成Ti-纳米Ag-Cu-纳米Ag复合层随后将干燥好的铜片、带有纳米银线复合金属层的氮化物陶瓷基板、带有金属纳米线的复合金属层氮化物陶瓷板、铜片,按照自下而上的方式进行叠合,然后将其置于10-3Pa真空度下,温度为750℃、1000Pa压力进行热压10h,得到双面覆铜的氮化物陶瓷基板。最后将其按照预设的线路板图形进行曝光、显影、蚀刻即可得到氮化物陶瓷双面覆铜线路板。
对比例1
取尺寸为138x190mm的氮化物陶瓷基板1片、136x188x0.25mm的无氧铜2片,用乙醇与水1:1的比例配置清洗液,将氮化物陶瓷片超声15min取出,再以丙酮进行超声20min以除掉表面附带的油脂,并在0.08MPa 60℃下进行真空干燥。然后采用PVD先溅射Ti,后溅射铜,然后将铜片、带有Ti-Cu复合金属层的氮化物陶瓷基板、铜片按照自下而上的方式进行叠合,然后将其置于10-3Pa真空度下,温度为650℃、300Pa压力进行热压5h,得到双面覆铜的氮化物陶瓷基板。
对比例2
取尺寸为138x190mm的氮化物陶瓷基板1片、136x188x0.25mm的无氧铜2片,用乙醇与水1:1的比例配置清洗液,将氮化物陶瓷片超声15min取出,再以丙酮进行超声20min以除掉表面附带的油脂,并在0.08MPa 60℃下进行真空干燥。然后取粒径为30um的Ag粉10g,将10g聚乙二醇溶于100ml乙醇中,配置成粘稠溶液,将银粉与聚乙二醇溶液配置成固含量90%的膏状,将其涂于PVD溅射Ti膜层的陶瓷基板上,厚度为20um,最后将铜片、涂有银粉的氮化物陶瓷基板、铜片按照自下而上的方式进行叠合,将其置于10-3Pa真空度下,温度为900℃、300Pa压力进行热压5h,得到双面覆铜的氮化物陶瓷基板。
将实施例1-4及对比例1-2制备得到的覆铜的氮化物陶瓷基板的剥离强度和孔隙率进行分析,所得结果如下表1所示。
表1覆铜的氮化物陶瓷基板的剥离强度和孔隙率
组别 剥离强度 孔细率
实施例1 8.2N/mm 1%
实施例2 8.7N/mm. 0.8%
实施例3 9.2N/mm 0.7%
实施例4 9.8N/mm 0.5%
对比例1 3.6N/mm 24%
对比例2 9.3N/mm 8%
由表中可以得到,对比例1中未含有Ag,由于铜与钛的溶化温度均超过1000℃,低温下无法使得铜材无法与Ti膜层进行熔融共晶,仅有部分Ti与陶瓷板反应,并且与铜形成脆性合金相,在进行真空热压时,650℃下无法进行有效的钎焊,结合力低下。对比例2中,由于使用微米级Ag粉,其熔点仍然与Ag单质熔点相接近,以大量Ag的来降低铜材的熔点,达到共晶,获得了较好的剥离强度。而本发明实施例1-4中使用了少量的纳米Ag线,在相对低的温度下,即获得了具有优异剥离强度的陶瓷覆铜板。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种覆铜氮化物陶瓷基板,包括以下原料:铜板,氮化物陶瓷基板和钎料;其特征在于,钎料包括活性金属膜层和金属纳米线薄膜,金属纳米线薄膜覆盖在活性金属膜层上,并与铜板贴合。
2.根据权利要求1所述覆铜氮化物陶瓷基板,其特征在于,金属纳米线薄膜厚度为0.01-5.00μm。
3.根据权利要求1或2所述覆铜氮化物陶瓷基板,其特征在于,金属纳米线薄膜中金属纳米线为Ag纳米线、Ag-Ni纳米线、Ag-Cu纳米线中的一种;其中金属纳米线直径为10nm-300nm,长度为3μm-300μm。
4.根据权利要求1所述覆铜氮化物陶瓷基板,其特征在于,所述PVD溅射活性金属膜层包括Zr膜层、Ti膜层、V膜层、Hf膜层、Cr膜层中的一种或多种。
5.根据权利要求1或4所述覆铜氮化物陶瓷基板,其特征在于,所述活性金属膜层的厚度为1-5μm。
6.权利要求1-5任一项所述覆铜氮化物陶瓷基板的制备方法,其特征在于,包括以下步骤:对氮化物陶瓷基板、铜片以进行清洗、干燥,配制金属纳米线溶液,将金属纳米线溶液涂覆在活性金属膜层表面,进行干燥,使其表面附着大量的纳米金属线;将铜片、带有金属纳米线复合金属层的氮化物陶瓷基板进行贴合后采取真空热压。
7.根据权利要求6所述的制备方法,其特征在于,金属纳米线溶液的配制包括将金属纳米线置于溶剂中进行分散配制得到金属纳米溶液,分散浓度为5-25mg/mL。
8.根据权利要求6所述的制备方法,其特征在于,进行真空热压时,压力为10-1000Pa,温度为300-1000℃,热压时间为0.5-24h,真空度为10-3Pa。
9.根据权利要求6所述的制备方法,其特征在于,对氮化物陶瓷基板、铜片进行清洗时,将其分别浸于乙醇溶液进行超声波清洗,再浸于有机溶剂中进行超声波清洗;所述有机溶剂为环己烷、正己烷、丙酮、乙酸乙酯、乙醇中的一种或多种,超声时间为10-30min。
10.根据权利要求6所述的制备方法,其特征在于,在40℃-60℃,真空度为0.06MPa-0.08MPa条件下进行干燥。
CN202210388836.8A 2022-04-14 2022-04-14 一种覆铜氮化物陶瓷基板及其制备方法 Active CN114940004B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210388836.8A CN114940004B (zh) 2022-04-14 2022-04-14 一种覆铜氮化物陶瓷基板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210388836.8A CN114940004B (zh) 2022-04-14 2022-04-14 一种覆铜氮化物陶瓷基板及其制备方法

Publications (2)

Publication Number Publication Date
CN114940004A true CN114940004A (zh) 2022-08-26
CN114940004B CN114940004B (zh) 2023-12-22

Family

ID=82906739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210388836.8A Active CN114940004B (zh) 2022-04-14 2022-04-14 一种覆铜氮化物陶瓷基板及其制备方法

Country Status (1)

Country Link
CN (1) CN114940004B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845583A (zh) * 2016-05-03 2016-08-10 佛山市百瑞新材料技术有限公司 一种陶瓷-金属复合基板制备工艺
CN106825978A (zh) * 2017-02-24 2017-06-13 哈尔滨工业大学深圳研究生院 一种用于陶瓷与金属焊接的钎料及焊接方法
CN108033810A (zh) * 2017-12-12 2018-05-15 北京科技大学 一种氮化铝陶瓷覆铜板的制备方法
US20200253046A1 (en) * 2019-01-31 2020-08-06 Korea Electronics Technology Institute Composite conductive substrate and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845583A (zh) * 2016-05-03 2016-08-10 佛山市百瑞新材料技术有限公司 一种陶瓷-金属复合基板制备工艺
CN106825978A (zh) * 2017-02-24 2017-06-13 哈尔滨工业大学深圳研究生院 一种用于陶瓷与金属焊接的钎料及焊接方法
CN108033810A (zh) * 2017-12-12 2018-05-15 北京科技大学 一种氮化铝陶瓷覆铜板的制备方法
US20200253046A1 (en) * 2019-01-31 2020-08-06 Korea Electronics Technology Institute Composite conductive substrate and manufacturing method thereof

Also Published As

Publication number Publication date
CN114940004B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
KR102531070B1 (ko) 소결 재료 및 이를 이용한 부착 방법
CN108520855B (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
CN111403347B (zh) 一种高可靠性氮化硅覆铜陶瓷基板的铜瓷界面结构及其制备方法
CN112157371B (zh) 一种亚微米Cu@Ag焊膏及其制备方法
JP4812985B2 (ja) セラミック体と銅板の接合方法
CN113511915B (zh) 一种陶瓷覆铝衬板的制备方法
WO2020215739A1 (zh) 一种纳米金属膜模块制备方法及其基板制备方法
CN115626835A (zh) 一种陶瓷基覆铜板的制造方法及其产品
JP4674983B2 (ja) 接合体の製造方法
RU2196683C2 (ru) Подложка, способ ее получения (варианты) и металлическое соединенное изделие
CN111627823A (zh) 一种低温快速生成高强度高熔点接头的芯片连接方法
CN114029573A (zh) 一种石墨烯薄膜表面超薄软钎焊改性层的制备方法
CN114940004B (zh) 一种覆铜氮化物陶瓷基板及其制备方法
CN111146076A (zh) 一种纳米烧结铜与晶圆结合的制备方法及其连接结构
CN111885852A (zh) 一种陶瓷覆铜板的制备方法
TWI851321B (zh) 活性金屬硬焊基板材料及其製造方法
CN114956850B (zh) 一种利用金属线纳米薄膜制备覆铜氮化物陶瓷板的方法
US11938543B2 (en) Silver sintering preparation and the use thereof for the connecting of electronic components
TWI850011B (zh) 含有鋁元素的活性金屬硬焊基板材料及其製造方法
CN118610096A (zh) 一种预成型铜基材料及其制备方法与应用
JP3460167B2 (ja) 金属回路を有する窒化アルミニウム回路基板の製造方法
CN117088705A (zh) 一种Si3N4陶瓷覆铜基板及其制备方法
CN115939091A (zh) 一种高导热封装基板及其制备方法
CN115529734A (zh) 一种在无机基材表面制作厚铜电路的方法
CN117505838A (zh) 一种微米Ag、微米In与微米Cu@In核壳混合材料预制片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant