CN114938638A - 包含涂覆粒子的软磁粉末 - Google Patents

包含涂覆粒子的软磁粉末 Download PDF

Info

Publication number
CN114938638A
CN114938638A CN202180008370.8A CN202180008370A CN114938638A CN 114938638 A CN114938638 A CN 114938638A CN 202180008370 A CN202180008370 A CN 202180008370A CN 114938638 A CN114938638 A CN 114938638A
Authority
CN
China
Prior art keywords
solid oxide
shell
layers
layer
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180008370.8A
Other languages
English (en)
Inventor
R·普伦恰克
J·A·希门尼斯
R·柯尼格
R·乔希莫维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN114938638A publication Critical patent/CN114938638A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/253Aluminum oxide (Al2O3)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/256Silicium oxide (SiO2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及一种包含涂覆粒子的软磁粉末,所述涂覆粒子包含核和壳,所述核具有0.1μm至100μm的平均粒度D50并包含铁,其中所述壳具有不大于20nm的厚度并包含至少两种固体氧化物,并且其中所述壳包含至少三个层,并且所述壳包含多于一个第一固体氧化物的层和至少一个第二固体氧化物的层,其中所述多于一个第一固体氧化物的层和所述至少一个第二固体氧化物的层以交替方式布置。本发明进一步涉及生产所述软磁粉末的方法、所述软磁粉末的用途和包含所述软磁粉末的电子组件。

Description

包含涂覆粒子的软磁粉末
本发明涉及包含涂覆粒子的软磁粉末(soft-magnetic powder comprisingcoated particles),所述涂覆粒子包含核和壳,所述核具有0.1μm至100μm的平均粒度D50并包含铁。本发明进一步涉及生产所述软磁粉末的方法、所述软磁粉末的用途和包含所述软磁粉末的电子组件。
软磁粉末的流行应用包括磁芯组件(magnetic core components),其充当用于限定和引导电气、机电和磁性器件(如电磁体(electromagnets)、变压器(transformers)、电动机(electric motors)、电感器(inductors)和磁性组装件(magnetic assemblies))中的磁场的具有高磁导率的磁性材料件。这些组件通常通过在模具中在高压下模制软磁粉末而以不同的形状和尺寸制成。
在电子应用中,特别是在交流电(AC)应用中,磁芯组件的两个关键特性是磁导率(magnetic permeability)和磁芯损耗特性(core loss characteristic)。在这种情况下,材料的磁导率提供其被磁化的能力或其携带磁通量的能力的指示。磁导率被定义为感应磁通量与磁化力或场强的比率。当磁性材料暴露于快速变化的场时,磁芯的总能量由于发生磁滞损耗和/或涡流损耗而降低。磁滞损耗是由克服磁芯组件内保留的磁力所必需的能量消耗引起的。涡流损耗是由因AC条件引起的通量变化而在磁芯组件中产生电流引起的,并且基本上导致电阻损耗。
通常,用于高频应用的器件对磁芯损耗敏感,并且为了减少由涡流引起的损耗,需要软磁粉末粒子的良好绝缘。实现这一点的最简单方式是加厚每个粒子的绝缘层。但是,绝缘层越厚,软磁粒子的芯密度越低,并且磁通密度降低。因此,为了制造具有最佳关键特性的软磁粉末芯,必须同时提高芯的电阻率和密度。
铁基粉末(Iron-based powders)已长期用作电子组件制造中的基础材料。这种粉末的其它用途包括金属注射成型部件、粉末冶金和各种特殊产品,如食品补充剂。
在磁性粒子上形成绝缘层的已知方法通常应对关键特性之一,即密度或绝缘性质,同时使另一个保持不变。因此,可获得的电阻率和磁导率有限。
为了防止金属表面氧化,不同的涂布方法,如等离子喷涂和溅射是已知的。原子层沉积(ALD)可用于在粒子基底上施加保形涂层(conformal coatings)。ALD是一种连续的、自限性的、基于蒸汽的技术,其能够在原子尺度的厚度控制下沉积均匀的保形膜。
ALD通常被描述为包含重复的四个步骤或由重复的四个步骤组成。第一步骤包括以蒸气相(vapor phase)存在的前体的自限性反应(self-limiting reaction)。第二步骤包括吹扫以除去气态反应副产物和过量的,也称为未反应的前体。第三步骤涉及以蒸气相存在的第二前体的自限性反应。第四步骤涉及吹扫,以再次除去气态反应副产物和过量的,也称为未反应的前体。上述过程通常被称为一个ALD反应或一个ALD周期,其由两个半反应或半周期组成。
Wank等人在“Coating fine iron particles with an oxidation-resistantγ-alumina nanolayer using ALD in a fluidized bed reactor”,Fluidization XI,present and future of fluidization engineering,ECI Intl,Brooklyn(2004),第603至610页中公开了被薄结晶γ-Al2O3纳米层涂覆的细铁粒子。
King等人,“Functionalization of fine particles using atomic andmolecular layer deposition”,Powder Technology 221(2012),第13至25页涉及粒子的官能化,其中通过原子或分子层沉积施加耐火氧化物、非氧化物、金属和杂化聚合物基材料的膜。构建绝缘膜、半导体膜、金属膜、聚合物膜和杂化无机/有机膜。
Cremers等人,“Oxidation barrier of Cu and Fe powder by Atomic LayerDeposition”,Surface and Coatings Technology 349(2018),第1032至1041页,报道了Al2O3涂层,其在旋转泵型ALD反应器中使用热三甲基铝(TMA)/水(H2O)工艺沉积在微米级Fe和Cu粉末上。
Moghtaderi等人,“Combustion prevention of iron powders by a novelcoating method”,Chemical Engineering Technology(2006)29,No.1,第97至103页,公开了具有防止快速氧化的保护屏障的细铁粉粒子,其中使用原子层沉积法将粒子单个涂布氧化铝基超薄膜。为了克服由粒子与氧化铝膜之间的热膨胀失配引起的开裂,保护膜由Al2O3和ZnS生成。
King等人在“Atomic Layer Deposition of UV-absorbing ZnO films on SiO2and TiO2 nanoparticles using a fluidized bed reactor”,Advanced FunctionalMaterials(2008)18,第607至615页中研究了原子层沉积以在紫外线阻挡型化妆品粒子的SiO2球体和作为新型无机防晒粒子的TiO2粒子上施加纳米厚的ZnO涂层。
US 6,613,383 B1、US 6,713,117 B2和US 6,913,827 B2公开了使用原子层沉积方法的具有超薄保形涂层的粒子。氮化物粒子被二氧化硅或氧化铝涂布,氮化物粒子或碳化物粒子被氧化物玻璃或金属涂布。描述了具有钝化涂层的氧化铝、二氧化硅、二氧化钛或沸石粒子以及涂有氧化物涂层的金属粒子、涂有催化活性金属的无机氧化物、无机氮化物或沸石的粒子以及涂有保护粒子免受氧化的层(如二氧化硅或氧化铝)的金属或陶瓷材料的纳米级粒子。
本发明的一个目的是提供具有高电阻率、高耐腐蚀性、高热稳定性和高磁导率的软磁粉末。
通过一种包含涂覆粒子的软磁粉末实现这一目的,所述涂覆粒子包含核和壳,所述核具有0.1μm至100μm的平均粒度D50并包含铁,其中所述壳具有不大于20nm的厚度并包含至少两种固体氧化物,并且其中所述壳包含至少三个层,并且所述壳包含多于一个第一固体氧化物的层和至少一个第二固体氧化物的层,其中所述多于一个第一固体氧化物的层和所述至少一个第二固体氧化物的层以交替方式布置。所述壳可包含例如至少第一固体氧化物和第二固体氧化物。所述软磁粉末可通过其中通过原子层沉积(ALD)在核上沉积壳的方法获得。
另外,本发明涉及所述软磁粉末用于线圈芯(coil cores)、磁流变液(magnetorheological fluids,MRF)、粉末注射成型(power injection molding)、射频识别标签(radio-frequency identification tags)或电磁屏蔽(electromagneticshielding)的用途,以及包含所述软磁粉末的电子组件。
根据本发明的壳高度保形并且能够涂布高纵横比特征(high aspect ratiofeatures)和内部孔隙。这尤其归因于气相沉积技术,因为前体蒸气能够扩散到孔隙、裂纹或贯通边界中,这对于湿法或干法或其它视线涂布(line of sight coating)法是困难的。由于未涂覆的铁区域容易发生气相降解,如氧化,使用气相技术,如ALD保护这样的表面得到优越的粉末。关于壳的宽范围的化学和关于核的宽范围的结构是可能的。
可通过ALD在埃级别控制壳的厚度,并且没有出现阴影效应。此外,壳的涂布是高度可重复和可规模化的。为了测量壳和/或层的厚度,可使用聚焦离子束(FIB)制备软磁粉末的横截面,并使用HAADF-STEM(高角度环形暗场-扫描透射电子显微术)与EDXS(能量色散X射线光谱学)检查。能够绘制样品中的元素分布图,并可推导出以重量%表示的壳和/或层的化学组成。核的粒度,特别是平均粒度D50可例如通过激光衍射分析测定。为此,可以采用来自Beckman Coulter的LS13320激光衍射粒度分析仪,其包含水性液体模块-Modul。在样品制备过程中,将软磁粉末例如悬浮在包含Na4P2O7的软化水中,然后通过泵循环经过测量池。从激光源将激光束射向测量池。每个粒子都造成散射光,被检测器捕捉。将散射光强度转换成信号,其通过应用光学模型的高分辨率迭代算法换算成体积分布。
壳也可被称为ALD涂层。壳包含至少三个层,其中所述至少三个层各自包含所述至少两种固体氧化物的一种,优选正好一种。尤其地,至少两个层分别包含所述至少两种固体氧化物的不同固体氧化物。壳包含多于一个第一固体氧化物的层和至少一个第二固体氧化物的层。第一固体氧化物是所述至少两种固体氧化物之一,且第二固体氧化物是所述至少两种固体氧化物之一。
由于薄且优选结构化的壳,实现了具有高电阻率的保形和无针孔的涂层。通过至少两种不同材料的组合,即所述至少两种固体氧化物,可同时改进软磁粉末的不同性质,并可减少或抑制涂层中的裂纹。
所述至少三个层的两个相邻层之间的界面可构成保护壳以免降解的扩散屏障。
涂覆粒子的形状可能不同。就形状而言,本领域技术人员已知的许多变体是可能的。涂覆粒子可以例如为针形、圆柱形、板形、泪珠形、扁平形或球形。具有各种粒子形状的粒子是可购得的。优选的是球形,因为这样的粒子可以容易地涂布,这实际上导致对电流更有效的绝缘。核优选具有1μm至20μm,更优选3μm至8μm的平均粒度D50
核优选包含羰基铁粉(CIP),以使核中所含的铁是CIP,特别由CIP组成。羰基铁可根据已知方法通过五羰基铁在气相中热分解获得,如例如Ullmann’s Encyclopedia ofIndustrial Chemistry,第5版,卷A14,第599页或DE 3 428 121或DE 3 940 347中所述,并含有特别纯的金属铁。
羰基铁粉是金属铁的灰色细分散粉末,其具有低含量的次要成分并基本由平均粒径最多10μm的球形粒子组成。在本情况下优选的未还原羰基铁粉具有>97重量%的铁含量(在此基于核的总重量计)、<1.5重量%的碳含量、<1.5重量%的氮含量和<1.5重量%的氧含量。在本发明的方法中特别优选的还原羰基铁粉具有>99.5重量%(在此基于核的总重量计)的铁含量、<0.1重量%的碳含量,<0.01重量%的氮含量和<0.5重量%的氧含量。该粉末粒子的平均直径优选为1μm至10μm,并且它们的比表面积(粉末粒子的BET)优选为0.1m2/g至2.5m2/g。
优选地,壳具有不大于15nm,更优选不大于10nm的厚度。壳优选由所述至少两种固体氧化物组成。
壳包含至少三个层并且壳包含多于一个第一固体氧化物的层和至少一个第二固体氧化物的层,其中所述多于一个第一固体氧化物的层和所述至少一个第二固体氧化物的层以交替方式布置。交替方式在本发明的框架中被理解为是第一固体氧化物的层和至少一个第二固体氧化物的层的序列,其中含有各自氧化物的层的顺序从核到涂覆粒子的表面交替。核可首先涂布第一固体氧化物的层,然后涂布第二固体氧化物的层。核也可能首先涂布第二固体氧化物的层,随后是第一固体氧化物的层。
壳可包含所述至少两种固体氧化物各自的几个层的序列。所述至少两种固体氧化物各自的层数可彼此相同。
例如,壳可包含几个第一固体氧化物的层和几个第二固体氧化物的层的序列。壳中包含的第一固体氧化物的层的数量可等于壳中包含的第二固体氧化物的层的数量。壳可包含例如两个第一固体氧化物的层和/或两个第二固体氧化物的层,或四个第一固体氧化物的层和/或四个第二固体氧化物的层、或六个第一固体氧化物的层和/或六个第二固体氧化物的层,或八个第一固体氧化物的层和/或八个第二固体氧化物的层。根据以交替方式的布置,一个第一固体氧化物的层布置在例如两个第二固体氧化物的层之间,或一个第二固体氧化物的层布置在两个第一固体氧化物的层之间。
例如,壳可包含两个第一固体氧化物的层和两个第二固体氧化物的层。在这种情况下,核可被如下序列涂布,所述序列包含直接布置在核上的第一固体氧化物的层,随后是第二固体氧化物的层,再随后是另一个第一固体氧化物的层,再随后是另一个第二固体氧化物的层。
壳也可包含多于两种固体氧化物,其中更优选地,第三固体氧化物包含在第三固体氧化物的层中,特别优选地,第三固体氧化物的层由第三固体氧化物组成。
优选地,壳包含3至20个层。所述至少三个层各自的厚度优选在0.1nm至5nm的范围内,更优选1nm至3nm,例如2nm。通常,所述至少三个层各自的厚度取决于ALD周期数、工艺温度和所用固体氧化物的化学结构,这取决于所选前体。
优选地,所述至少两种固体氧化物各自是金属(metal)、类金属(metalloid)或过渡金属(transition metal)的氧化物。类金属是例如选自周期表的第三至第六主族的元素。更优选地,金属是Al,类金属是Si和/或过渡金属选自Hf、Zn、Zr、Co、Mn、Ni和Ti。特别优选地,所述至少两种固体氧化物的至少一种选自SiO2、Al2O3、HfO2、TiO2、ZnO、ZrO2、CoO、MnO和NiO。最优选地,所述至少两种固体氧化物的第一固体氧化物是Al2O3和/或所述至少两种固体氧化物的第二固体氧化物是ZrO2或SiO2,或反之亦然。
根据所述至少两种固体氧化物,优选地,所述至少三个层各自是无定形的、结晶的,如多晶的,或其组合。例如,包含ZrO2的层是多晶层,且包含TiO2的层是结晶层。
在本发明中,所述至少两种固体氧化物各自与彼此不同。所述至少两种固体氧化物可在化学组成上和/或在氧化态上与彼此不同。
优选地,在一个层中主要存在所述至少两种固体氧化物之一。因此,所述至少两种固体氧化物各自的层包含优选小于50重量%,更优选小于10重量%,最优选小于5重量%的另一固体氧化物。此外,所述至少两种固体氧化物各自的层包含优选大于50重量%,更优选大于90重量%,最优选大于95重量%的所述至少两种固体氧化物的相应固体氧化物。特别优选地,所述至少两种固体氧化物各自的层由所述至少两种固体氧化物的相应固体氧化物组成。特别地,所述至少两种固体氧化物各自的层由所述至少两种固体氧化物的相应固体氧化物的单层组成。特别优选地,在各层中主要存在所述至少两种固体氧化物之一。
例如,第一固体氧化物主要存在于所述至少一个第一固体氧化物的层中和/或第二固体氧化物主要存在于所述至少一个第二固体氧化物的层中。因此,所述多于一个第一固体氧化物的层各自包含优选小于50重量%,更优选小于10重量%,最优选小于5重量%的第二固体氧化物,且所述至少一个第二固体氧化物的层优选包含小于50重量%,更优选小于10重量%,最优选小于5重量%的第一固体氧化物。相应地,所述多于一个第一固体氧化物的层各自包含优选大于50重量%,更优选大于90重量%,最优选大于95重量%的第一固体氧化物,且所述至少一个第二固体氧化物的层优选包含大于50重量%,更优选大于90重量%,最优选大于95重量%的第二固体氧化物。特别优选地,所述多于一个第一固体氧化物的层各自由第一固体氧化物组成,且所述至少一个第二固体氧化物的层由第二固体氧化物组成。例如,所述多于一个第一固体氧化物的层各自由第一固体氧化物的单层组成,和/或所述至少一个第二固体氧化物的层由第二固体氧化物的单层组成。
优选地,该软磁粉末具有至少17.5的相对磁导率,相对磁导率被定义为样品的磁导率与真空的磁导率之间的比率。
在一个优选实施方案中,所述多于一个第一固体氧化物的层各自包含Al2O3,且所述多于一个第一固体氧化物的层之一直接布置在涂覆粒子的核上以使核中包含的一部分铁与Al2O3直接接触。
包含在核中并位于核表面的铁可以FeO、Fe2O3和/或Fe3O4的形式存在。
在替代性实施方案中,所述多于一个第一固体氧化物的层各自包含ZrO2,且所述多于一个第一固体氧化物的层之一直接布置在涂覆粒子的核上以使核中包含的一部分铁与ZrO2直接接触。
在一个实施方案中,壳可包含所述至少两种固体氧化物,其中在壳中存在第一固体氧化物和/或第二固体氧化物的浓度梯度,优选在径向方向上,从核向涂覆粒子的表面。第一固体氧化物的浓度可从核向涂覆粒子的表面提高或降低,和/或第二固体氧化物的浓度可从核向涂覆粒子的表面提高或降低。优选地,第一固体氧化物的浓度从核向涂覆粒子的表面降低,且第二固体氧化物的浓度从核向涂覆粒子的表面提高。
本发明进一步涉及一种生产软磁粉末的方法,其中通过原子层沉积(ALD)在核上沉积壳。优选地,所述至少三个层各自通过ALD制成,更优选地,所述至少三个层各自通过多于一个ALD周期制成。一个ALD周期包括实施一组交替的半反应一次以沉积所述至少两种固体氧化物之一。周期数取决于工艺条件,如温度,取决于前体的选择和取决于层的所需厚度。例如,为了制造所述至少三个层的每一个,可实施ALD的最多90个周期或最多50个周期或最多40个周期。作为一个说明性实例,一旦通过实施相应的半反应六次完成第一固体氧化物的一个层,用另一组半反应将ALD程序重复另外六次,以完成第二固体氧化物的一个层。
例如,总厚度为11nm的壳(其包含布置在两个厚度各为3.6nm的Al2O3层之间的厚度为3.6nm的ZrO2层)可在180℃下通过采用30个交替的三甲基铝和水的半周期,接着30个交替的四(二甲基酰氨基)锆和水的半周期,接着另外30个交替的三甲基铝和水的半周期来制备。假设将各前体计量到饱和并在每个半周期后使用足够长的吹扫周期。
通过使用特定前体提供在较高温度下略微降低的生长速率,也可在250℃下通过使用总共99个周期而非上述90个周期实现类似的壳厚度。可通过选择不同的沉积温度改变所得层的密度和因此阻隔质量。
作为比较,在200℃下制备的使用布置在两个3.6nm的SiO2层之间的3.6nm的TiO2层的类似厚度和结构化的壳优选通过72个交替的三(二甲基酰氨基)硅烷和臭氧的半周期,接着90个交替的异丙醇钛(IV)和臭氧的半周期,接着另外72个交替的三(二甲基酰氨基)硅烷和臭氧的半周期制造。假设将各前体计量到饱和并在每个半周期后使用足够长的吹扫周期。
ALD能够每反应周期形成厚度最多大约0.3nm的沉积物,因此提供极其精细控制沉积厚度的手段。在这种技术中,在一系列的两个或更多个自限性反应中形成沉积物,这些可以重复以继续沉积附加的沉积材料层,直至达到所需厚度。通常,这些反应的第一个涉及在粒子表面(其优选是核的表面或已存在于核上的外层的表面)上的一些官能团,如M–H、M–O–H、M–OH、M–O–OH或M–N–H基团,其中M优选代表金属、类金属或过渡金属的原子。各个反应有利地分开进行并在进行后续反应前除去所有过剩的试剂和反应产物的条件下进行。
优选在开始反应序列前处理粒子以除去可能吸收到表面上的挥发性材料。这容易通过使粒子暴露于升高的温度和/或真空实现。在一些情况下也可进行预处理反应以如上所述将所需官能团引入到粒子表面上。在核上沉积壳之前,核可用H2、H2O或O3进行预处理。
所述至少两种固体氧化物可使用如下的二元(AB)反应序列(binary(AB)reactionsequence)沉积在粒子上。星号(*)是指位于粒子表面的原子,且Z代表氧或氮。M1优选是金属(或类金属或过渡金属)的原子,特别是具有化合价3或4的那种,且X是可置换的亲核基团。下示反应不是平衡的,并且仅意在显示在粒子表面的反应,即不是层间或层内反应。
M–Z–H*+M1Xn→M–Z–M1X*+HX (A1)
M–Z–M1X*+H2O→M–Z–M1OH*+HX (B1)
在反应A1中,试剂M1Xn与粒子表面上的一个或多个M–Z–H*基团反应以创造形式为–M1X的新表面基团。M1经由一个或多个Z原子键合到粒子上。–M1X基团代表可在反应B1中与水反应以再生一个或多个羟基的位点。在反应B1中形成的羟基可充当官能团,经由其可重复反应A1和B1,每次加入新的M1原子层。要指出,在一些情况下(例如当M1是硅、锆、钛、硼、钇或铝时),羟基可作为水消除,以在层内或层之间形成M1–O–M1键。如果需要,可通过例如在升高的温度和/或减压下退火促进这种缩合反应。
例如在King等人,“Atomic layer deposition of UV-absorbing ZnO films onSiO2 and TiO2 nanoparticles using a fluidized bed reactor”,Advanced FunctionalMaterials,2008,18,第607至615页中描述了通过方程A1和B1描述的通用类型的二元反应,其中M1是Zn。例如在Moghtaderi等人,“Combustion prevention of iron powders by anovel coating method”,Chemical Engineering Technology,2006,29,No.1,第97至103页中描述了通过方程A1和B1描述的通用类型的二元反应,其中M1是铝。在King等人,“Functionalization of fine particles using atomic and molecular layerdeposition”,Powder Technology 221(2012),第13至25页中描述了用于沉积其它固体氧化物的类似反应。
产生氧化铝层的A1/B1类型的特定反应序列是:
Al–(CH3)*+H2O→Al–OH*+CH4 (A1A)
Al–OH*+Al(CH3)3→Al–O–Al(CH3)2*+CH4 (B1A)
这种特定反应序列特别优选用于沉积氧化铝,因为这些反应在相对较低温度下进行顺利。这种特定反应序列倾向于以每个AB周期
Figure BDA0003732279100000101
的速率沉积Al2O3。三乙基铝(TEA)可代替三甲基铝使用,尽管三甲基铝(TMA)是优选的。
在上述反应序列中,优选的M1包括Si、Al、Hf、Ti、Zn、Zr、Co、Mn和Ni。合适的可置换亲核基团可随所选M1而变,但包括例如氟化基(fluoride)、氯化基(chloride)、溴化基(bromide)、烷氧基(alkoxy)、烷基(alkyl)、乙酰丙酮基(acetylacetonate)、环戊二烯基(cyclopentadienyls)、β-二酮基(β-diketonates)、酰胺基(amides)、脒基(amidinates)等。特别有意义的特定前体是三甲基铝(Al(CH3)3)、三(二甲基酰氨基)硅烷、原硅酸四乙酯(Si(OC2H5)4)、二乙基锌、四(二甲基酰氨基)锆(IV)、四(二甲基酰氨基)铪(IV)、双(乙基环戊二烯基)锰(II)、双(N,N’-二叔丁基乙脒)镍(nickel bis(N,N’-ditertialbutylacetamidinate))、四(二甲基氨基)钛等。H2O、O3和H2O2是用于这样的ALD法的常用共反应物。
上文提到的前体仅用于举例说明,并且无意作为穷举名单。例如,通过与H2O结合使用TiCl4、异丙醇钛(IV)或四(二甲基氨基)钛作为前体,可借助ALD实现TiO2涂层。前体在稳定性、蒸气压、反应性和/或生长速率方面可以不同。蒸气压是合适前体的关键特性。通常,将前体加热以提高所得蒸气压以实现所需反应。
例如为了沉积Al2O3,可如下给出整体化学计量学,其进一步说明在Puurunen,“Surface chemistry of atomic layer deposition:a case study for thetrimethylaluminum/water process”,Journal of Applied Physics,97,121301(2005)中:
Al(CH3)3(g)+3/2H2O(g)→1/2Al2O3(s)+3CH4(g)
用于使用三甲基铝在富羟基表面上沉积Al2O3的反应,也称为半反应,可在下面更精确地解读,其中“II-”代表含羟基的表面位点。
II-OH+Al(CH3)3→II–O–Al(CH3)2+CH4 (1)
2II–OH+Al(CH3)3→(II-O)2-AlCH3+2CH4 (2)
该半反应释放甲烷。在充分吹扫后,使用水的第二半反应随后继续进行以再生富羟基表面并在该过程中也释放甲烷:
II-O-Al(CH3)2+2H2O→II-O-Al(OH)2+2CH4 (3)
该二元反应通常在升高的温度,优选300K至1000K,更优选小于600K下进行。优选地,在400K至600K,更优选500K至580K的沉积温度下实施在核上的壳沉积,尤其是所述至少三个层的沉积。
在反应过程中和在反应之间,通常对粒子施以足以除去反应产物和未反应试剂的条件。这可例如通过对粒子施以真空(如100Pa或更低)来进行。这通常在反应步骤之间使粒子暴露于惰性吹扫气体的同时完成。这种吹扫气体也可充当粒子的流化介质和充当试剂的载体。合适的吹扫气体例如氩气或氮气。
这样的ALD反应也可在大气压下进行,但需要高得多的惰性载气和吹扫气体的体积以实现所需涂层。
有几种技术可用于监测反应进程。例如,可使用透射傅里叶变换红外技术进行振动光谱研究。质谱法也常用于监测ALD反应的进程。X射线光电子能谱法是通常适用于评估ALD涂覆粉末的有用的表面敏感技术。
将所述至少两种固体氧化物的超薄沉积物施加到粒子上的方便的方法是形成粒子的流化床,然后在反应条件下使各种试剂依次经过流化床。将微粒材料流化的方法是众所周知的,通常包括将粒子承载在多孔板或筛网上。流化气体向上经过板或筛网,以略微提升粒子和扩张床的体积。通过适当的扩张,粒子表现为流体。可将流体(气体或液体)试剂引入该床以与粒子表面反应。流化气体也可充当惰性吹扫气体以除去未反应的试剂和挥发性或气态反应产物。粉末的流化不是必需的,但通常优选以确保前体的适当计量和反应物的去除。可以通过使用额外的振动改进粘性粉末(例如Geldart C型粉末)的运动。
该反应可替代性地在旋转的圆柱形容器或旋转管中进行。旋转反应器可包含装有粒子的空心管。该反应器可相对于水平面保持一定角度,并且粒子可通过重力作用经过该管。反应器角度决定了粒子经过反应器的流速。反应器可以旋转以均匀分布各个粒子并使所有粒子暴露于反应物。反应器设计允许基质粒子在接近活塞流条件下流动,并特别适用于连续操作。反应物单独和依序引入以经过反应器,优选与基质粒子的方向相反。本发明不限于所例举的反应器概念的实例。
根据本发明的软磁粉末特别适用于制造电子组件。可通过涂覆粒子的例如加压模塑或注射成型获得电子组件,如磁芯。为了制造这样的电子组件,通常将软磁粉末与一种或多种类型的树脂合并,如环氧树脂、氨基甲酸酯树脂、聚氨酯树脂、酚醛树脂、氨基树脂、硅树脂、聚酰胺树脂、聚酰亚胺树脂、丙烯酸系树脂、聚酯树脂、聚碳酸酯树脂、降冰片烯树脂、苯乙烯树脂、聚醚砜树脂、硅树脂、聚硅氧烷树脂、氟树脂、聚丁二烯树脂、乙烯基醚树脂、聚氯乙烯树脂或乙烯基酯树脂。对混合这些组分的方法没有限制,该混合可通过混合器进行,例如带式掺合器、转鼓、Nauta混合器、Henschel混合器或高速混合器(supermixer)或捏合机,例如班伯里密炼机、捏合机、辊、捏合机-挤出机、桨式混合器、行星式混合器或单轴或双轴挤出机。
由软磁粉末生产模制品的一种方法包括使用所谓的即压型粉末(ready-to-presspowder),其含有根据上文的描述进一步用树脂涂覆的涂覆软磁粉末。这样的即压型粉末可在模具中在加热或不加热的情况下在最多1000MPa、优选最多500MPa的压力下压制。在压缩后,优选使模制品固化。用树脂涂覆软磁粉末的方法优选包括例如以下步骤:将树脂(例如环氧树脂)溶解在溶剂中,将软磁粉末添加到该混合物中,从混合物中除去溶剂以得到干燥产物,和研磨干燥产物以得到即压型粉末。该即压型粉末优选用于生产磁性或可磁化模制品。
粉末注射成型能够成本有效和高效地生产复杂金属部件。粉末注射成型通常包括将软磁粉末与聚合物一起配混并将其模制成所需形状。如果目标应用需要,随后优选除去聚合物并优选在烧结阶段将模制部件转化成固体金属部件。这特别适用于羰基铁粉,因为球形铁粒子可以非常紧密地堆积在一起。
软磁粉末的模制品特别可用作电气工程中所用的线圈芯(coil cores)或线圈架(coil formers)。具有相应的线圈芯或线圈架的线圈例如用作电磁铁、用于发电机、变压器、电感器、笔记本电脑、上网本(netbooks)、移动电话、电动机、AC逆变器、汽车工业中的电子组件、玩具、用于电子工业和用于磁场集中器。电子组件(Electronic components)特别是如用于电气、机电和磁性器件,如电磁体、变压器、电动机、电感器和磁性组装件(magnetic assemblies)的磁芯组件。该软磁粉末还可用于生产磁场集中器(magnetic-field concentrators)。
此外,由该软磁粉末制成的电子组件可用于屏蔽电子器件。在这样的应用中,辐射的交变磁场导致粉末粒子自己连续重排。由于产生的摩擦,粉末粒子将电磁波的能量转化成热量。
软磁粉末的进一步应用是在磁流变液(magnetorheological fluids,MRF)中。
附图简述
分别参考所附示意图和图像更详细描述本发明,其中:
图1a)–d)显示包含核和壳的涂覆粒子的横截面,
图2a)–i)显示包含核和壳的涂覆粒子的详细横截面,
图3显示包含核和分层的壳的涂覆粒子的TEM图像和
图4显示根据图3的涂覆粒子的EDXS线扫描。
图1a)至1d)显示包含核3和壳5的涂覆粒子1的横截面。呈现六种不同的涂覆粒子1。所有涂覆粒子1具有包含铁7的核3并在壳5的组成上不同。
图1a)中所示的涂覆粒子1具有在其核3上的壳5,其中壳5包含第一固体氧化物的层13和第二固体氧化物的层15。第一固体氧化物的层13包含第一固体氧化物9,第二固体氧化物的层15包含第二固体氧化物11。此外,壳5在第一固体氧化物的层13和第二固体氧化物的层15之间具有界面17,其中第一固体氧化物9和第二固体氧化物11彼此接触。
图1b)中所示的涂覆粒子1包含壳5,其包含四个层13、15,即两个包含第一固体氧化物9的第一固体氧化物的层13,和两个包含第二固体氧化物11的第二固体氧化物的层15。第一固体氧化物的层13与第二固体氧化物的层15以交替方式布置。此外,壳5具有三个界面17,在此第一固体氧化物的层13之一与第二固体氧化物的层15之一接触。
图1c)中所示的涂覆粒子1包含核3和壳5,壳5包含以交替方式布置的四个第一固体氧化物的层13和四个第二固体氧化物的层15。壳5具有七个界面17,各自分别在第一固体氧化物的层13之一与第二固体氧化物的层15之一之间。
图1d)中所示的涂覆粒子1包含核3和壳5,壳5包含以交替方式布置的八个第一固体氧化物的层13和八个第二固体氧化物的层15。壳5具有15个界面,各自分别在第一固体氧化物的层13之一与第二固体氧化物的层15之一之间。
图2a)至2i)显示九种不同的涂覆粒子1的详细横截面,各自包含含有铁7的核3和壳5。涂覆粒子1在更详细呈现的壳5的组成上不同。
图2a)中所示的涂覆粒子1的横截面具有壳5,其包含第一固体氧化物的层13(其包含第一固体氧化物9)和第二固体氧化物的层15(其包含第二固体氧化物11)。第一固体氧化物的层13在界面17处与第二固体氧化物的层15接触。此外,第一固体氧化物的层13直接位于核3上,随后接着第二固体氧化物的层15。第一固体氧化物的层13的厚度高于第二固体氧化物的层15的厚度。
图2b)中所示的涂覆粒子1的横截面具有壳5,其包含以交替方式布置的三个第一固体氧化物的层13和三个第二固体氧化物的层15。一个第一固体氧化物的层13直接布置在核3上。一个第二固体氧化物的层15布置在涂覆粒子1的外侧上。
图2c)中所示的涂覆粒子1的图示横截面与图2b)的涂覆粒子1的不同在于反转三个第一固体氧化物的层13和三个第二固体氧化物的层15的顺序。第一固体氧化物的层13和第二固体氧化物的层15也以交替方式布置,但在此以第二固体氧化物的层15开始,其直接布置在核3上,且第一固体氧化物的层13在涂覆粒子1的外侧上。
图2d)中所示的涂覆粒子1的图示横截面对应于图2b)的涂覆粒子1,区别在于涂覆粒子1j)包含八个第一固体氧化物的层13和八个第二固体氧化物的层15。
图2e)中所示的涂覆粒子1的横截面对应于图2c)的涂覆粒子1,区别在于该涂覆粒子1包含八个第一固体氧化物的层13和八个第二固体氧化物的层15。
图2f)中所示的涂覆粒子1的横截面具有壳5,其包含四个第一固体氧化物的层13和四个第二固体氧化物的层15。一个第二固体氧化物的层15直接布置在核3上,且一个第一固体氧化物的层13布置在涂覆粒子1的外侧上。第二固体氧化物的层15的厚度高于第一固体氧化物的层13的厚度。
图2g)中所示的涂覆粒子1的横截面与图2f)的涂覆粒子1的不同在于反转第一固体氧化物的层13和第二固体氧化物的层15的顺序以及层的厚度。比第二固体氧化物的层15厚的第一固体氧化物的层13直接布置在核3上,并且比第一固体氧化物的层13薄的第二固体氧化物的层15布置在涂覆粒子1的外侧上。
图2h)中所示的涂覆粒子1的横截面具有核3和壳5。壳5包含第一固体氧化物9和第二固体氧化物11。第一固体氧化物9和第二固体氧化物11各自以浓度梯度布置在壳5中。第一固体氧化物9的浓度从核3向涂覆粒子1的外侧降低,而第二氧化物11的浓度从核向涂覆粒子1的外侧提高。
图2i)中所示的涂覆粒子1的横截面对应于图2h)的涂覆粒子1,区别在于反转第一固体氧化物9和第二固体氧化物11的浓度梯度。在这种壳5中,第一固体氧化物的浓度从核3向涂覆粒子1的外侧提高,且第二固体氧化物11的浓度从核3向涂覆粒子1的外侧降低。
图3显示包含核3和壳5的涂覆粒子1的横截面的透射电子显微术(TEM)图像。包含铁7的核3呈现在图像的左下端。
图像b)显示作为涂覆粒子1的壳5的一部分的包含铝的第一固体氧化物9的两个加亮(illuminated)层。图像c)显示作为涂覆粒子1的壳5的一部分的包含锆的第二固体氧化物11的两个加亮层。
在图像d)上,将包含铝的第一固体氧化物9以及包含锆的第二固体氧化物11加亮以使涂覆粒子1的整个壳5可见。
图4显示根据图3的涂覆粒子的能量色散X射线光谱学(EDXS)-线扫描(Energy-dispersive X-ray spectroscopy(EDXS)-Linescan)。在横坐标19上给出相对于铁核表面的以nm计的距离,而在纵坐标21上以%显示线扫描的净计数。显示检测的铁7、铝23、锆25和氧29的曲线图。各自包含铝23的两个第一层13和各自包含锆25的两个第二层15可见。
实施例和对比例
作为对比例,羰基铁粒子的核通过原子层沉积仅用Al2O3或ZrO2涂布或仅包含各氧化物的一个层(比较样品2至8)。此外,羰基铁粒子的核通过原子层沉积用Al2O3和ZrO2的组合涂布(比较样品9至15)或用Al2O3和SiO2的组合涂布(比较样品16),见表1。另外,测试无涂层的羰基铁粒子(比较样品1)。
改变施加的固体氧化物的化学组成、壳中的层数和用于制造一个层的ALD周期数以及沉积温度。
在此,将第一固体氧化物的层直接布置在核上,如果适用,随后接着第二固体氧化物的层。第一固体氧化物的层和第二固体氧化物的层以交替方式布置。覆盖核并形成壳的层的总量是第一固体氧化物的层的所示数量和第二固体氧化物的层的所示数量的总和。
例如,将60克未涂覆的羰基铁粉置于Beneq TFS200 ALD的流化床反应器(FBR)中。将FBR抽空至大约100Pa的压力,同时将其加热至180℃。在实验过程中,将纯度为99.999摩尔%的氮气以10sccm至20sccm的流量引导经过FBR。此外,机械振动FBR以辅助粉末运动。利用来自MKS的Vision 2000C四极质谱仪/残余气体分析仪实时监测来自FBR的排气。粉末在这些条件下干燥3.5小时以除去物理吸附的水。
表1
Figure BDA0003732279100000171
Figure BDA0003732279100000181
对于粉末样品,使用来自TA instruments的同步热分析仪Q600测量氧化起始温度。该分析仪包含微量天平和炉,以便能够测量重量变化vs.温度。该粉末在空气中以20℃/分钟的速率加热,并测定重量增加(氧化)的开始。
所选粉末如表1中所述涂覆并压制成电感器磁芯(inductor cores)以测量初始磁导率。将这些磁芯置于180℃的炉中,并随时间监测产生的电压差以衡量热稳定性。在这样的试验中,0V电压是理想的,表明存在包围铁粉的电绝缘层。相比之下,高电压测量值表明绝缘壳已变得导电并损害粉末的性能。另外,在实验开始时、在24小时后、在48小时后、在72小时后和在96小时后监测相同样品的电压。测得的电压越低,样品的电阻率越高。
将使用这些粉末制成的其它磁芯置于保持在85℃和85%相对湿度(rH)的室中以测量壳的耐腐蚀性。每24小时目视检查磁芯的锈斑外观。与使用未涂覆粉末或使用具有相当厚度的单一氧化物(例如粉末3、4、5和6)制成的磁芯相比,使用粉末7、9、10和17制成的磁芯在这些侵蚀性条件下表现得非常好。例如,用样品1、3、4、5和6制成的磁芯表现出明显的表面锈蚀(>暴露面积的10%),这在85℃下暴露于85%相对湿度仅24小时后就明显可见。相比之下,粉末7、9、10和17甚至在暴露于相同条件96小时后也没有表现出表面锈蚀的迹象。结果表明,耐湿致腐蚀性不一定与通过热分析测定的氧化起始温度相关。
表2
Figure BDA0003732279100000182
Figure BDA0003732279100000191
在表2中,相对磁导率参考真空的磁导率μ0
表3
Figure BDA0003732279100000192
Figure BDA0003732279100000201
如表2和3中所示,至少两种固体氧化物在涂覆粒子的壳中的存在带来高电阻率(低电压)和/或优异的耐腐蚀性。同时,涂覆粒子仍具有良好的磁导率。
此外,使用聚焦离子束(FIB)制备粉末的横截面,并使用HAADF-STEM(高角度环形暗场-扫描透射电子显微术)与EDXS(能量色散X射线光谱学)检查以便能够绘制样品中的元素分布图。分析样品7并显示代表核的铁粒子被氧化铝、氧化锆、氧化铝和氧化锆的厚度大约2nm的交替层均匀涂布。
附图标记
1 涂覆粒子
3 核
5 壳
7 铁
9 第一固体氧化物
11 第二固体氧化物
13 第一固体氧化物的层
15 第二固体氧化物的层
17 界面
19 横坐标
21 纵坐标
23 铝
25 锆
29 氧

Claims (13)

1.一种包含涂覆粒子(1)的软磁粉末,所述涂覆粒子(1)包含核(3)和壳(5),所述核(3)具有0.1μm至100μm范围内的平均粒度D50并包含铁(7),
其中所述壳(5)具有不大于20nm的厚度并包含至少两种固体氧化物(9、11)和
其中所述壳(5)包含至少三个层(13、15),并且所述壳(5)包含多于一个第一固体氧化物的层(13)和至少一个第二固体氧化物的层(15),其中所述多于一个第一固体氧化物的层(13)和所述至少一个第二固体氧化物的层(15)以交替方式布置。
2.根据权利要求1的软磁粉末,其中壳(5)中包含的第一固体氧化物的层(13)的数量等于壳(5)中包含的第二固体氧化物的层(15)的数量。
3.根据权利要求1至2的软磁粉末,其中壳(5)包含3至20个层(13、15)。
4.根据权利要求1至3的软磁粉末,其中所述至少三个层(13、15)各自的厚度在0.1nm至5nm的范围内。
5.根据权利要求1至4的软磁粉末,其中所述至少三个层(13、15)各自是无定形的、结晶的,或其组合。
6.根据权利要求1至5的软磁粉末,其中核(3)包含羰基铁粉(CIP)。
7.根据权利要求1至6的软磁粉末,其中所述至少两种固体氧化物(9、11)各自是金属、类金属或过渡金属的氧化物。
8.根据权利要求7的软磁粉末,其中所述金属是Al,所述类金属是Si和/或所述过渡金属选自Hf、Zn、Zr、Co、Mn、Ni和Ti。
9.根据权利要求1至8的软磁粉末,其中所述至少两种固体氧化物(9、11)的第一固体氧化物(9)是Al2O3和/或所述至少两种固体氧化物(9、11)的第二固体氧化物(11)是ZrO2或SiO2
10.一种生产根据权利要求1至9的软磁粉末的方法,其中通过原子层沉积(ALD)在核(3)上沉积壳(5)。
11.根据权利要求10的方法,其中所述至少三个层(13、15)各自通过多于一个原子层沉积(ALD)周期制成。
12.根据权利要求1至9的软磁粉末用于线圈芯、磁流变液(MRF)、粉末注射成型、射频识别标签或电磁屏蔽的用途。
13.一种电子组件,其包含根据权利要求1至9的软磁粉末。
CN202180008370.8A 2020-01-10 2021-01-07 包含涂覆粒子的软磁粉末 Pending CN114938638A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20151101 2020-01-10
EP20151101.1 2020-01-10
PCT/EP2021/050195 WO2021140156A1 (en) 2020-01-10 2021-01-07 Soft-magnetic powder comprising coated particles

Publications (1)

Publication Number Publication Date
CN114938638A true CN114938638A (zh) 2022-08-23

Family

ID=69176965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180008370.8A Pending CN114938638A (zh) 2020-01-10 2021-01-07 包含涂覆粒子的软磁粉末

Country Status (8)

Country Link
US (1) US20220379373A1 (zh)
EP (1) EP4087694A1 (zh)
JP (1) JP2023509796A (zh)
KR (1) KR20220125325A (zh)
CN (1) CN114938638A (zh)
IL (1) IL294378A (zh)
TW (1) TW202137247A (zh)
WO (1) WO2021140156A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413786B2 (ja) * 2020-01-15 2024-01-16 セイコーエプソン株式会社 圧粉磁心の製造方法および圧粉磁心
KR20220067019A (ko) * 2020-11-17 2022-05-24 삼성전기주식회사 자성 시트 및 이를 이용한 코일 부품
US20230027090A1 (en) * 2021-07-16 2023-01-26 Ferric Inc. Ferromagnetic-polymer composite material and structures comprising same
WO2023287429A1 (en) * 2021-07-16 2023-01-19 Ferric Inc. Ferromagnetic-polymer composite material and structures comprising same
WO2024033244A1 (en) * 2022-08-10 2024-02-15 Basf Se Process for preparing coated organic particles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3428121A1 (de) 1984-07-31 1986-02-13 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von eisenpulver
DE3940347C2 (de) 1989-12-06 1997-02-20 Basf Ag Verfahren zur Herstellung von Eisenwhiskers
US6713117B1 (en) 1998-10-02 2004-03-30 Dharma Kodali Vegetable oil having elevated stearic acid content
US6613383B1 (en) 1999-06-21 2003-09-02 Regents Of The University Of Colorado Atomic layer controlled deposition on particle surfaces
US6713177B2 (en) 2000-06-21 2004-03-30 Regents Of The University Of Colorado Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
WO2007148734A1 (ja) * 2006-06-20 2007-12-27 Hitachi Metals, Ltd. 金属微粒子及び生体物質抽出用の磁気ビーズ、並びにそれらの製造方法
JP4585493B2 (ja) * 2006-08-07 2010-11-24 株式会社東芝 絶縁性磁性材料の製造方法
CN103046033A (zh) * 2012-12-21 2013-04-17 中国钢研科技集团有限公司 一种包覆型羰基铁粉的制备方法
JP6930722B2 (ja) * 2017-06-26 2021-09-01 太陽誘電株式会社 磁性材料、電子部品及び磁性材料の製造方法
CN108183012A (zh) * 2017-12-25 2018-06-19 郑州轻工业学院 一种提高铁基软磁复合材料压制密度的绝缘包覆处理方法

Also Published As

Publication number Publication date
TW202137247A (zh) 2021-10-01
IL294378A (en) 2022-08-01
EP4087694A1 (en) 2022-11-16
JP2023509796A (ja) 2023-03-09
KR20220125325A (ko) 2022-09-14
US20220379373A1 (en) 2022-12-01
WO2021140156A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
CN114938638A (zh) 包含涂覆粒子的软磁粉末
US20030026989A1 (en) Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
Raza et al. Gas sensing of NiO‐SCCNT core–shell heterostructures: optimization by radial modulation of the hole‐accumulation layer
CN112289535B (zh) 磁性粉末、磁性粉末的制造方法、压粉磁芯及线圈部件
US9318809B2 (en) Radio wave absorber
Willinger et al. The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V 2 O 4 coated nanotubes in gas sensing
US11846020B2 (en) Particle coating method
Tallarida et al. Atomic layer deposition of nanolaminate oxide films on Si
Paul et al. Ferromagnetism in nanocrystalline nickel incorporated diamond-like carbon thin films
CN106498365B (zh) 一种氧化锆包覆铝粉实现铝粉钝化的方法
Hutchings et al. Scalable production of single 2D van der Waals layers through atomic layer deposition: bilayer silica on metal foils and films
Marinca et al. Novel supermalloy/alumina type soft magnetic composite obtained by reaction spark plasma sintering of Al-Supermalloy (Ni70. 5Fe18. 8Mo4. 7Al6) surface oxidized particles
KR101503349B1 (ko) Fe기 연자성 분말, 상기 Fe기 연자성 분말을 이용한 복합 자성 분말 및 상기 복합 자성 분말을 이용한 압분 자심
Bridges et al. The impact of carbon coating on the synthesis and properties of α′′-Fe 16 N 2 powders
Sellers et al. Structural and magnetic properties of Mn-doped anatase TiO 2 films synthesized by atomic layer deposition
Enz et al. Structure and magnetic properties of iron nanoparticles stabilized in carbon
Lu et al. Design and synthesis of model and practical palladium catalysts using atomic layer deposition
CN114222826A (zh) 具有高饱和磁化的矫顽力增强氮化铁纳米颗粒
Bakovets et al. Mechanism of Ni film CVD with a Ni (ktfaa) 2 precursor on a copper substrate
Liu et al. Temperature-controlled conversion from Fe–Si particles to integrated Fe–Si/SiO2 core–shell structure particles during fluidised bed chemical vapour deposition
Canut et al. Structure of Ni/SiO2 films prepared by sol–gel dip coating
Shah et al. A new holder/container with a porous cover for atomic layer deposition on particles, with transport analysis and detailed characterization of the resulting materials
Dorovskikh et al. Deposition of Ni thin films from Ni (II) β-diketonates derivatives with 1, 3-diaminopropane
Vishwakarma et al. Effect of Oxygen Vacancies and Cationic Inversion on Magnetic Properties of Pulsed Laser Deposited Zinc Ferrite Thin Films
Pola et al. IR laser photodeposition of a-Fe/Si films developing nanograins of ferrisilicate, iron disilicide and rare hexagonal iron upon annealing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination