CN114931562B - 一种基于不溶性膳食纤维的微胶囊递送系统 - Google Patents

一种基于不溶性膳食纤维的微胶囊递送系统 Download PDF

Info

Publication number
CN114931562B
CN114931562B CN202210480195.9A CN202210480195A CN114931562B CN 114931562 B CN114931562 B CN 114931562B CN 202210480195 A CN202210480195 A CN 202210480195A CN 114931562 B CN114931562 B CN 114931562B
Authority
CN
China
Prior art keywords
kelp
nanocellulose
microcapsule
solution
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210480195.9A
Other languages
English (en)
Other versions
CN114931562A (zh
Inventor
苏文涛
王奎又
谭明乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Polytechnic University
Original Assignee
Dalian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Polytechnic University filed Critical Dalian Polytechnic University
Priority to CN202210480195.9A priority Critical patent/CN114931562B/zh
Publication of CN114931562A publication Critical patent/CN114931562A/zh
Application granted granted Critical
Publication of CN114931562B publication Critical patent/CN114931562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • A61K36/05Chlorophycota or chlorophyta (green algae), e.g. Chlorella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Nutrition Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种基于不溶性膳食纤维的微胶囊递送系统,所述微胶囊通过微流控工艺制备,包括微胶囊壁材和微胶囊芯材,所述壁材由海藻酸钠和不溶性膳食纤维组成,所述芯材由核心成分组成,核心成分为益生菌、保健品功效成分、药品、食品功能因子及其他适合包埋的物质。使用海带纳米纤维素基微胶囊在胃里保持了良好的球形,显著提高了对核心成分的保护,在肠道里可以快速释放核心成分,起到良好的胃肠缓释功能。本发明制备的微胶囊粒径在500μm以下,且单分散性良好,制备方法操作简便,成本低。

Description

一种基于不溶性膳食纤维的微胶囊递送系统
技术领域
本发明涉及一种基于不溶性膳食纤维的微胶囊递送系统,特别是一种基于海带纳米纤维素的微胶囊递送系统及其制备方法,属于生物递送与缓释领域。
背景技术
食品工业对含有益生菌的功能性食品的需求日益增加,强调需要实施适当的程序以确保可行的菌落计数(每克>6-7个对数菌落形成)益生菌的健康益处是多方面的,例如产生细菌素来对抗肠道中的有害细菌以改善肠道功能,以及产生氨基酸或短肽来降低心血管疾病的风险。当然,这些健康益处是基于益生菌以高度活跃的状态进入宿主肠道。在固定在肠道之前,益生菌只能暴露于外部环境因素(如冷冻保存,氧气存在)和极低的胃酸pH值。因此,保护益生菌延长其保质期并将其大量运输到肠道是至关重要的。
益生菌的封装是一种先进的策略,有望开发功能性载体以保护益生菌免受恶劣环境或人类胃肠系统的影响,在其他制备微胶囊的方法中,微流体允许通过微通道控制少量流体,一个一个地形成微米级液滴,并精确控制每个具有固定尺寸的液滴。这为益生菌包埋提供了一种替代且通用的方法。使用微流体装置不仅可以将它们更精确地结合到液滴中,而且还提供了结合额外材料的可能性,以在加工过程和暴露于胃肠道条件下更好地保护益生菌。
海藻酸钠是一种天然的阴离子多糖,可与二价阳离子形成稳定的水凝胶来包裹益生菌,在胃中低pH时保持其完整形态,并在中性pH时在肠道中释放益生菌。由于其简单的凝胶工艺和良好的生物相容性,它已成为应用最广泛的微囊壁材料。然而,这种单一的水凝胶具有多孔结构,胃酸很容易渗透并侵蚀其内部的益生菌,从而降低其保护能力,如果能对其进行修饰,将有重要意义。在食品工业上,海带被用于生产海藻酸钠,产生的海带废渣中有高含量不溶性膳食纤维,可用于制备纳米纤维素。利用纤维素酶解超声的方法已经被证实是一种有效制备纳米纤维素的方法。基于纳米纤维素的封装载体,如纤维素纳米纤维和纤维素纳米晶体,由于其优异的机械性能、生物相容性和高表面积,最近成为有前途的益生菌递送平台。
发明内容
针对现有技术存在的问题,本发明的目的提供一种基于不溶性膳食纤维的微胶囊递送系统,其粒径小,单分散性好,能很好的保护递送物质,且具有良好的胃肠缓释性能。
本方案为解决上述所提出的问题所采用的技术方案为:一种基于不溶性膳食纤维的微胶囊递送系统,所述微胶囊通过微流控工艺制备,包括微胶囊壁材和微胶囊芯材,所述壁材由海藻酸钠和不溶性膳食纤维组成,所述芯材由核心成分组成。
本发明的一种实施方式中,所述不溶性膳食纤维为海带纳米纤维素。
本发明的一种实施方式中,所述海带纳米纤维素制备方法如下:首先提取海带纤维素,然后对其进行纤维素酶酶解,最后通过超声处理获得海带纳米纤维素。
本发明提供的递送系统递送的核心成分可以为益生菌、保健品功效成分、药品及其他适合包埋的物质。
本发明的一种实施方式中,所述核心成分为益生菌或小球藻。
本发明提供的递送系统,具体制备方法如下:
(1)海带纤维素的提取:将清洗后的海带置于60℃烘箱中,直至其完全干燥,取出烘干后的海带将其研磨成粉,准确称量20g粉末分散在2wt%氢氧化钠1L水溶液中,在120℃下作用2h,离心,将沉淀物彻底洗涤,重复2-3次以去除半纤维素,将沉淀物继续分散在含有3.5wt%NaOH、150mL冰醋酸、16g NaClO的1L水溶液中,在80℃下漂白1h,离心收集沉淀物并彻底洗涤,重复2-3次直至沉淀物呈现白色为止;将沉淀物悬浮在含有2wt%NaOH、0.8wt%Na3PO4·12H2O、0.8wt%Na2SiO3·9H2O的1L水溶液中,在100℃下反应2h以去除木质素,离心并充分洗涤沉淀,直至pH为中性,通过冷冻干燥收集海带纤维素;
(2)海带纳米纤维素的制备:将步骤(1)所得的海带纤维素加入到水中分散,在控制温度、pH下加入纤维素酶反应,离心收集沉淀,使用超声波细胞破碎系统以450W的功率对溶液进行超声处理15分钟;
(3)共混溶液的制备:首先将步骤(2)所得到的海带纳米纤维素与海藻酸钠配置混合液,然后加入核心成分制成共混溶液;
(4)微胶囊的制备:将步骤(3)制得共混溶液,注入微流控设备,控制喷射装置的流速为1.2-3.6mm/s,喷射装置距离氯化钙液面的高度2-14cm,氯化钙溶液浓度为1-5wt%,搅拌速度300-1100rpm,固化时间30min-180min,制得微胶囊。
本发明的一种实施方式中,步骤(2)海带纳米纤维素制备中:纤维素的浓度为0.2-1wt%,反应温度55℃-65℃,反应pH为4-6,反应时间为2-4h,纤维素酶浓度为0.1-1mg/ml,所述离心是以8000rpm-10000rpm的转速离心10-15min。
本发明的一种实施方式中,步骤(3)所述共混溶液的制备工艺为:将海带纳米纤维素与海藻酸钠配置混合液,控制海藻酸钠浓度为1-1.5wt%,海带纳米纤维素浓度0.5%-1.5%,两者混合后加水在55℃下搅拌2h得到混合溶液,然后按(5-20):1比例加入核心成分混匀制成共混溶液。
本发明的一种实施方式中,所述微流控工艺为:控制喷射装置的流速为1.2-3.6mm/s,喷射装置距离氯化钙液面的高度2-14cm,氯化钙溶液浓度为1-5wt%,搅拌速度300-1100rpm,固化时间30min-180min;所述喷射装置的控制方式可采用气动微阀或驱动泵实现,通过调节气动微阀或驱动泵的顺序开启和关闭,灵活用于液体的操控。
本发明的一种实施方式中,提供了一种基于海带纳米纤维素益生菌微胶囊递送系统,该微胶囊由海带纳米纤维素、海藻酸钠与益生菌混合物在钙离子交联下制备而成,其中壁材为海藻酸钠和海带纳米纤维素,芯材为益生菌。
益生菌微胶囊递送系统的制备方法,主要步骤如下:
(1)益生菌的培养:将益生菌粉接种在培养基中活化16h,并传代2-3次;
(2)从培养基中离心收集菌体,用生理盐水洗1-2遍,确保没有多余的培养基残留;
(3)海带纤维素的提取:将清洗后的海带置于60℃烘箱中,直至其完全干燥,取出烘干后的海带将其研磨成粉,准确称量20g粉末分散在2wt%氢氧化钠1L水溶液中,在120℃下作用2h,离心,将沉淀物彻底洗涤,重复2-3次以去除半纤维素,将沉淀物继续分散在含有3.5wt%NaOH、150mL冰醋酸、16g NaClO的1L水溶液中,在80℃下漂白1h,离心收集沉淀物并彻底洗涤,重复2-3次直至沉淀物呈现白色为止;将沉淀物悬浮在含有2wt%NaOH、0.8wt%Na3PO4·12H2O、0.8wt%Na2SiO3·9H2O的1L水溶液中,在100℃下反应2h以去除木质素,离心并充分洗涤沉淀,直至pH为中性,通过冷冻干燥收集海带纤维素;
(4)海带纳米纤维素的制备:将步骤(3)所得的海带纤维素加入到水中分散,纤维素的浓度为0.2-1wt%,反应温度55℃-65℃,反应pH为4-6,反应时间为2-4h,纤维素酶浓度为0.1-1mg/ml,所述离心是以8000rpm-10000rpm的转速离心10-15min;
(5)共混溶液的制备:首先将步骤(4)所得到的海带纳米纤维素与海藻酸钠配置混合液,然后加入益生菌制成共混溶液;
(6)微胶囊的制备:将步骤(5)制得共混溶液,注入微流控设备,控制喷射装置的流速为1.2-3.6mm/s,喷射装置距离氯化钙液面的高度2-14cm,氯化钙溶液浓度为1-5wt%,搅拌速度300-1100rpm,固化时间30min-180min,制备载有益生菌的微胶囊。
益生菌包括双歧杆菌属,乳杆菌属如动物双歧杆菌,副干酪乳杆菌,干酪乳杆菌,植物乳杆菌,鼠李糖乳杆菌,嗜热链球菌,发酵乳杆菌,瑞士乳杆菌等中的一种或多种。
与现有技术相比,本发明的方法具有如下有益效果:
(1)本发明使用微流控技术制备的微胶囊粒径在500μm以下,且单分散性良好,制备方法操作简便,成本低。
(2)海带纳米纤维素具有良好的机械性能和纳米丝状结构提高了微球的机械性能,有效地封堵了海藻酸钙微球表面的孔状结构,提高了对核心成分的保护。海带纳米纤维素基微胶囊在胃里保持了良好的球形,在肠道里可以快速释放核心成分,起到良好的胃肠缓释功能。
附图说明
图1为在微流体装置上制备基于海带纳米纤维素/藻酸盐的递送微胶囊的示意图。
图2为海带纤维素电镜照片及负载益生菌后的微胶囊的电镜照片;
a:没有酶解超声处理的海带纤维素扫描发射显微镜(SEM)图像;(b)酶解超声后得到的海带纳米纤维素的SEM图像和透射电子显微镜(TEM)图像;(c)不含海带纳米纤维素的无益生菌微胶囊的横截面;d:含海带纳米纤维素的无益生菌微胶囊的横截面;e:不含海带纳米纤维素的载有益生菌的微胶囊的横截面;f:含海带纳米纤维素的的载有益生菌的微胶囊的横截面。
图3为实施例1-2与对比例1所得微胶囊包封率和平均粒径。
图4为模拟胃液前益生菌在微胶囊的活量以及模拟胃液2h后微胶囊中益生菌的活量。
图5为实施例1-2和对比例1所得微胶囊在模拟肠液中益生菌释放曲线。
图6为实施例1-2和对比例1所得微胶囊在模拟肠液中微胶囊的形态。
图7为实施例3-4制备的微胶囊的热稳定分析。
图8为实施例3-4制备的微胶囊的肠消化分析。
图9为实施例5-6制备的微胶囊的肠消化分析。
具体实施方式
为了更好地理解本发明所解决的技术问题、技术方案及技术效果,以下结合实施例和附图,对本发明的内容进一步详细说明,但不应理解为对本发明的限制。
实施例所提到的海带纳米纤维素的制备均用如下方法制备:将清洗后的海带置于60℃烘箱中,直至其完全干燥,取出烘干后的海带将其研磨成粉,准确称量20g粉末分散在2wt%氢氧化钠1L水溶液中,在120℃下作用2h,离心,将沉淀物彻底洗涤,这个步骤重复2-3次以去除半纤维素,将沉淀物继续分散在含有3.5wt%NaOH,150mL冰醋酸,16g NaClO的1L水溶液中,在80℃下漂白1h,离心收集沉淀物并彻底洗涤,这个步骤重复2-3次直至沉淀物呈现白色为止。将沉淀物悬浮在含有2wt%NaOH、0.8wt%Na3PO4·12H2O和0.8wt%Na2SiO3·9H2O的1L水溶液中,在100℃下反应2h以去除木质素,离心并洗涤沉淀,直至pH为中性,通过冷冻干燥收集海带纤维素。准确称量0.5g海带纤维素,分散在250ml去离子水中,加入50mg纤维素酶,在60℃,pH=4.8的条件下反应3h,反应结束后,10000rpm,离心10min以去除多余纤维素酶,在450W条件下用超声细胞破碎器超声10min,冷冻干燥收集海带纳米纤维素。
实施例所提到的益生菌指副干酪乳杆菌,但不局限于副干酪乳杆菌。
实施例描述中,wt%是指质量百分比,例如“0.5wt%海带纳米纤维素”是指100mL水溶液中含有0.5g的海带纳米纤维素。
微胶囊包埋益生菌包埋率的测量方法:
将由5mL混合溶液制备的微胶囊溶解在20mL PBS(pH=7.4)中并以200rpm搅拌直至所有微胶囊破裂。将释放的益生菌用生理盐水(NaCl,0.9wt%)连续稀释并涂布在MRS琼脂平板上。将平板在37℃培养箱中孵育48小时并计数。包埋效率(EE)的计算公式为:EE(%)=N/N0×100%,其中N是从微粒中释放的活细胞数(log CFUg-1),N0是用于微胶囊化的细胞浓缩物中的活细胞数(log CFU g-1)。
微胶囊平均粒径的测定方法:
将制好的微胶囊在光学显微镜下拍照,微胶囊的图像由数码相机捕获并上传到ImageJ软件。通过随机选择100个微胶囊并测量它们的直径来获得微胶囊的平均粒径。
微囊化益生菌在模拟胃液环境下的活性测定方法:
将含有副干酪乳杆菌(5mL)的混合溶液制成的微胶囊加入到20mL人造胃液中,并在37℃和150rpm的水浴中搅拌2小时。随后通过将微胶囊溶解在20mL PBS(pH=7.4)中并以200rpm搅拌直至所有微胶囊破裂,将释放的益生菌用生理盐水(NaCl,0.9wt%)连续稀释并涂布在MRS琼脂平板上。将平板在37℃培养箱中孵育48小时并计数。
微胶囊在模拟肠液条件下(SIF)释放实验的测定方法:
简而言之,将由含有副干酪乳杆菌(5mL)的混合溶液制成的微胶囊浸入20mL人造肠液中,在10分钟,30分钟,60分钟,120分钟,180分钟和360分钟时取样(100μl),用生理盐水(NaCl,0.9wt%)连续稀释并涂布在MRS琼脂平板上。将平板在37℃培养箱中孵育48小时并计数。同时,使用倒置荧光显微镜(40x)(Nikon,Tokyo,Japan)在每个时间点观察微胶囊的形态。
实施例1益生菌微胶囊递送系统
含有0.5wt%海带纳米纤维素基益生菌微胶囊的制备,其是由海带纳米纤维素,海藻酸钠和益生菌共混溶液在Ca2+的交联作用下采用离子交联法制备的。制备方法使用上述的微流控技术,使微胶囊的平均粒径小于500μm,且外观呈现规则的球形。
上述海带纳米纤维素基益生菌微胶囊的制备方法,具体如下:
(1)益生菌的培养:将副干酪乳杆菌粉接种在MRS培养基中活化16h,并传代3次;
(2)益生菌的收集:取15ml传代培养后的副干酪乳杆菌,在6000rpm,离心6min收集菌泥,用生理盐水水洗2次,用上述相同的离心条件收集不含MRS培养基的菌泥备用;
(3)海带纳米纤维素,海藻酸钠共混溶液地配置:将0.05g海带纳米纤维素,0.15g海藻酸钠溶于10ml去离子水中,在55℃下搅拌3h,得到含有0.5wt%的海带纳米纤维素与1.5wt%海藻酸钠的共混溶液;
(4)海带纳米纤维素,海藻酸钠,副干酪乳杆菌共混溶液地配置,将步骤(3)所得混合溶液与步骤(2)所得菌泥混合,充分震荡,制得含有副干酪乳杆菌的共混溶液;
(5)用注射器吸入步骤(4)的混合溶液,如图1所示,通过微流控装置控制注射器中的混合溶液流出针头的流速为3mm/s,针头具氯化钙液面的高度5cm,装有氯化钙溶液的烧杯加转子放置在磁力搅拌器上,搅拌速度700rpm,氯化钙溶液浓度为2wt%,微球固化时间为30min,得到含有0.5wt%的海带纳米纤维素基益生菌微胶囊,命名为AC05。
实施例2益生菌微胶囊递送系统
含有1.5wt%海带纳米纤维素基益生菌微胶囊地制备,此实施例的微胶囊的制备和实施例1的步骤方法完全相同,不同之处仅在于将其中的0.05g海带纳米纤维素替换成0.15g海带纳米纤维素,微胶囊命名为AC15。
对比例1益生菌微胶囊递送系统
不含海带纳米纤维素的益生菌微胶囊地制备,此对比例的微胶囊制备和实施例1的步骤方法完全相同,不同之处仅在于将其中的0.05g海带纳米纤维素去除,微胶囊命名为AC00。
对实施例1、实施例2、对比例1分析发现,海带纤维素的宏观形态呈现出不规则的片状结构,如图2a所示,这是由于木质素和半纤维素的去除引起的。纤维素酶解后破坏了用于连接D-吡喃葡萄糖苷的β-1,4糖苷键,然后通过超声处理将纤维素尽可能分散,得到纳米纤维,如图2b所示,大多数海带纳米纤维素的直径小于100nm。图2b右上角的投射式电子显微镜(TEM)图像也可以证明纳米纤维素的制备成功。通过冷场扫描电镜(Cryo-SEM)对含有或不含海带纳米纤维素的不含益生菌或载有益生菌的微胶囊的横截面微观结构进行拍照,以比较它们作为益生菌载体之间的微观差异,如图2c所示,没有海带纳米纤维素的微胶囊的横截面内部结构显示出三维网络结构。同时,观察到海带纳米纤维以交联形式存在于基质内部(图2d),这更有利于益生菌在微胶囊内的保留。图2e和2f分别显示了不含海带纳米纤维素的益生菌微胶囊和含海带纳米纤维素的益生菌微胶囊的横截面结构特征,两者都可以看出副干酪乳杆菌被包裹在基质中。
测定微胶囊益生菌的包埋率,微胶囊AC00的包埋率为94.76%,实施例1制微胶囊AC05的包埋率为96.11%,实施例2制微胶囊AC15的包埋率为95.63%,实施例制微胶囊的包封率高于对比例制备的微胶囊,这可能是由于纳米纤维素的比表面积高,对益生菌的粘附性更好。此外海藻酸钠和海带纳米纤维素具有良好的生物相容性,微流控方法的包封通过精确控制流体机理,促进了益生菌的滞留;微囊化过程是在温和的室温下进行的,对益生菌的损害很小。
测量上述微胶囊平均粒径,AC00平均粒径为432.02μm,AC05的平均粒径为330.31μm,AC15的平均粒径为306.07μm,具体结果参见图3,无论是实施例还是对比例在使用微流控方法制备的平均粒径均达到了预期的500μm以下,粒径小,单分散性好,适合用于食品中而不影响口感。随着海带纳米纤维素的添加,微球平均粒径下降,这可能是海带纳米纤维素与海藻酸钠在Ca2+交联作用下使得微球更紧凑的原因。
测定微胶囊包埋益生菌模拟胃肠后益生菌的存活量,微胶囊AC00在模拟胃液前包埋活菌9.08(log CFU g-1),模拟胃液2h后活菌数仅为5.38(log CFU g-1),益生菌损失3.70(log CFU g-1),存活率为59.25%,这是因为多孔洞结构的海藻酸钙微球,胃液很容易渗透进其内部对益生菌造成损伤。实施例1,2微胶囊AC05,AC15初始活菌为9.34(log CFU g-1),9.16(log CFU g-1),模拟胃液2h后益生菌活量分别下降1.95(log CFU g-1),1.37(log CFUg-1),存活率分别为79.12%,85.04%。海带纳米纤维素的引用可以更好地封堵海藻酸钙表面孔洞,从而更好地保护益生菌不被胃液侵蚀。进一步,验证载体系统在胃肠道系统中的稳定性,具体结果参见图4。
测定微胶囊在肠液条件下益生菌释放能力,微胶囊AC05在360min内可以释放8.97(log CFU g-1),微胶囊AC15在360min内可释放7.47(log CFU g-1),微胶囊AC05和AC15的肠液中益生菌的释放速度比AC00中的益生菌慢。AC00和AC05可以在360min内释放几乎所有的益生菌,而AC15中的一些益生菌仍然没有释放。这可能是由于海带纳米纤维素表面的羟基与海藻酸钠表面的羧基形成氢键,它们紧密交联形成更致密的网络,从而提高了微胶囊在肠液中的稳定性,降低了益生菌的释放率,具体结果参见图5。
微胶囊在不同时间点的形态如图6所示,微胶囊AC05、AC15可以保持球形溶胀状态120min不崩解,这也在一定程度上阻碍了益生菌的释放。但微胶囊AC00在肠液中迅速膨胀,30min时没有完整的球形,60min内基质几乎溶解,大量益生菌迅速释放。结果表明,海带纳米纤维素可能通过延缓微胶囊的崩解时间来调节益生菌在肠道中的释放时间和释放速率,具体结果参见图6。
实施例3小球藻微胶囊递送系统
含有1.5wt%海带纳米纤维素基小球藻微胶囊地制备,其是由海带纳米纤维素,海藻酸钠和小球藻共混溶液在Ca2+的交联作用下采用离子交联法制备的。制备方法使用上述的微流控技术,使微胶囊的平均粒径可控在微米或毫米,且外观呈现规则的球形。
上述海带纳米纤维素基益生菌微胶囊的制备方法,具体如下:
(1)小球藻的准备:0.1g-0.5g小球藻溶于10ml去离子水中充分搅拌;
(2)海带纳米纤维素,海藻酸钠共混溶液地配置:将0.1g海带纳米纤维素,0.3g海藻酸钠溶于10ml去离子水中,在55℃下搅拌3h,得到含有1wt%的海带纳米纤维素与3wt%海藻酸钠的共混溶液;
(3)海带纳米纤维素,海藻酸钠,小球藻共混溶液地配置,将步骤(3)所得混合溶液与步骤(1)所得小球藻溶液以体积比1:1混合,充分震荡,制得含有小球藻的共混溶液,使体系最终的海带纳米纤维素,海藻酸钠浓度分别为0.5wt%,1.5wt%;
(4)用注射器吸入步骤(3)的混合溶液,如图1所示,通过微流控装置控制注射器中的混合溶液流出针头的流速为3mm/s,针头具氯化钙液面的高度5cm,装有氯化钙溶液的烧杯加转子放置在磁力搅拌器上,搅拌速度700rpm,氯化钙溶液浓度为2wt%,微球固化时间为30min,得到含有1.5wt%的海带纳米纤维素基小球藻微胶囊。
实施例4雨生红球藻微胶囊递送系统
含有1.5wt%海带纳米纤维素基雨生红球藻微胶囊地制备,其是由海带纳米纤维素,海藻酸钠和雨生红球藻共混溶液在Ca2+的交联作用下采用离子交联法制备的。制备方法使用上述的微流控技术,使微胶囊的平均粒径可控在微米或毫米,且外观呈现规则的球形。
上述海带纳米纤维素基雨生红球藻微胶囊的制备方法,具体如下:
(1)雨生红球藻的准备:0.1g-0.5g雨生红球藻溶于10ml去离子水中充分搅拌;
(2)海带纳米纤维素,海藻酸钠共混溶液地配置:将0.1g海带纳米纤维素,0.3g海藻酸钠溶于10ml去离子水中,在55℃下搅拌3h,得到含有1wt%的海带纳米纤维素与3wt%海藻酸钠的共混溶液;
(3)海带纳米纤维素,海藻酸钠,雨生红球藻共混溶液地配置,将步骤(3)所得混合溶液与步骤(1)所得小球藻溶液以体积比1:1混合,充分震荡,制得含有雨生红球藻的共混溶液,使体系最终的海带纳米纤维素,海藻酸钠浓度分别为0.5wt%,1.5wt%;
(4)用注射器吸入步骤(3)的混合溶液,如图1所示,通过微流控装置控制注射器中的混合溶液流出针头的流速为3mm/s,针头具氯化钙液面的高度5cm,装有氯化钙溶液的烧杯加转子放置在磁力搅拌器上,搅拌速度700rpm,氯化钙溶液浓度为2wt%,微球固化时间为30min,得到含有1.5wt%的海带纳米纤维素基雨生红球藻胶囊。
对实施例3、实施例4制备获得的微胶囊进行热稳定性测试,其可耐受100℃高温不降解(100℃高温、15分钟),实现对芯材核心成分的良好保护,见图7;对其进行胃肠消化实验测试,微胶囊可以保护食品功能性藻躲避胃酸破坏,在肠道定点释放芯材核心成分,见图8。
实施例5花色苷微胶囊递送系统
含有1.5wt%海带纳米纤维素基水溶性食品功能因子(花色苷)微胶囊地制备,其是由海带纳米纤维素,海藻酸钠和花色苷共混溶液在Ca2+的交联作用下采用离子交联法制备的。制备方法使用上述的微流控技术,使微胶囊的平均粒径可控在微米或毫米,且外观呈现规则的球形。
上述海带纳米纤维素基花色苷微胶囊的制备方法,具体如下:
(1)花色苷的准备:0.2g-0.8g雨生红球藻溶于10ml去离子水中充分搅拌;
(2)海带纳米纤维素,海藻酸钠共混溶液地配置:将0.1g海带纳米纤维素,0.3g海藻酸钠溶于10ml去离子水中,在55℃下搅拌3h,得到含有1wt%的海带纳米纤维素与3wt%海藻酸钠的共混溶液;
(3)海带纳米纤维素,海藻酸钠,花色苷共混溶液地配置,将步骤(3)所得混合溶液与步骤(1)所得花色苷溶液以体积比1:1混合,充分震荡,制得含有花色苷的共混溶液,使体系最终的海带纳米纤维素,海藻酸钠浓度分别为0.5wt%,1.5wt%;
(4)用注射器吸入步骤(3)的混合溶液,如图1所示,通过微流控装置控制注射器中的混合溶液流出针头的流速为3mm/s,针头具氯化钙液面的高度5cm,装有氯化钙溶液的烧杯加转子放置在磁力搅拌器上,搅拌速度700rpm,氯化钙溶液浓度为2wt%,微球固化时间为30min,得到含有1.5wt%的海带纳米纤维素基花色苷胶囊。
实施例6岩藻黄质微胶囊递送系统
含有1.5wt%海带纳米纤维素基水不溶食品功能因子(岩藻黄质)微胶囊地制备,其是由海带纳米纤维素,海藻酸钠和岩藻黄质共混溶液在Ca2+的交联作用下采用离子交联法制备的。制备方法使用上述的微流控技术,使微胶囊的平均粒径可控在微米或毫米,且外观呈现规则的球形。
上述海带纳米纤维素基岩藻黄质微胶囊的制备方法,具体如下:
(1)岩藻黄质的准备:0.2g-0.8g岩藻黄质溶于醇溶液中;
(2)海带纳米纤维素,海藻酸钠共混溶液地配置:将0.1g海带纳米纤维素,0.3g海藻酸钠溶于10ml去离子水中,在55℃下搅拌3h,得到含有1wt%的海带纳米纤维素与3wt%海藻酸钠的共混溶液;
(3)海带纳米纤维素,海藻酸钠,岩藻黄质共混溶液地配置,将步骤(3)所得混合溶液与步骤(1)所得花色苷溶液以体积比1:1混合,充分震荡,制得含有岩藻黄质的共混溶液,使体系最终的海带纳米纤维素,海藻酸钠浓度分别为0.5wt%,1.5wt%;
(4)用注射器吸入步骤(3)的混合溶液,如图1所示,通过微流控装置控制注射器中的混合溶液流出针头的流速为3mm/s,针头具氯化钙液面的高度5cm,装有氯化钙溶液的烧杯加转子放置在磁力搅拌器上,搅拌速度700rpm,氯化钙溶液浓度为2wt%,微球固化时间为30min。得到含有1.5wt%的海带纳米纤维素基雨生红球藻胶囊。
对实施例3、实施例4制备获得的微胶囊进行胃肠消化实验测试,发现微胶囊可以保护食品功能因子躲避胃酸破坏,在肠道定点释放芯材核心成分,见图9。
以上所述仅是本发明的优选实施方式,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (5)

1.一种基于不溶性膳食纤维的微胶囊递送系统,其特征在于,所述微胶囊通过微流控工艺制备,包括微胶囊壁材和微胶囊芯材,所述壁材由海藻酸钠和不溶性膳食纤维组成,所述芯材由核心成分组成;所述不溶性膳食纤维为海带纳米纤维素;
所述海带纳米纤维素制备方法如下:首先提取海带纤维素,然后对其进行纤维素酶酶解,最后通过超声处理获得海带纳米纤维素;
所述核心成分为益生菌或小球藻。
2.权利要求1所述的系统,其特征在于,具体制备方法如下:
(1)海带纤维素的提取:将清洗后的海带置于60℃烘箱中,直至其完全干燥,取出烘干后的海带将其研磨成粉,准确称量20 g粉末分散在2 wt%氢氧化钠1 L水溶液中,在120℃下作用2 h,离心,将沉淀物彻底洗涤,重复2-3次以去除半纤维素,将沉淀物继续分散在含有3.5 wt%NaOH、150 mL冰醋酸、16 g NaClO的1 L水溶液中,在80℃下漂白1 h,离心收集沉淀物并彻底洗涤,重复2-3次直至沉淀物呈现白色为止;将沉淀物悬浮在含有2 wt% NaOH、0.8wt% Na3PO4·12H2O、0.8 wt% Na2SiO3·9H2O的1 L水溶液中,在100℃下反应2 h以去除木质素,离心并充分洗涤沉淀,直至pH为中性,冷冻干燥收集海带纤维素;
(2)海带纳米纤维素的制备:将步骤(1)所得的海带纤维素加入到水中分散,在控制温度、pH下加入纤维素酶反应,离心收集沉淀,使用超声波细胞破碎系统以450 W的功率对溶液进行超声处理15分钟;
(3)共混溶液的制备:首先将步骤(2)所得到的海带纳米纤维素与海藻酸钠配置混合液,然后加入核心成分制成共混溶液;
(4)微胶囊的制备:将步骤(3)制得共混溶液,注入微流控设备,控制喷射装置的流速为1.2-3.6 mm/s,喷射装置距离氯化钙液面的高度2-14 cm,氯化钙溶液浓度为1-5 wt%,搅拌速度300-1100 rpm,固化时间30 min-180 min,制得微胶囊。
3. 权利要求2所述的系统,其特征在于,步骤(2)海带纳米纤维素的制备中:纤维素的浓度为0.2-1 wt%,反应温度55℃-65℃,反应pH为4-6,反应时间为2-4 h,纤维素酶浓度为0.1-1 mg/ml,超声功率150-450W,所述离心是以8000 rpm-10000 rpm的转速离心10-15min。
4. 权利要求2所述的系统,其特征在于,步骤(3)所述共混溶液的制备工艺为:将海带纳米纤维素与海藻酸钠配置混合液,控制海藻酸钠浓度为1-1.5 wt%,海带纳米纤维素浓度为0.5 %-1.5 %,两者混合后加水在55℃下搅拌2 h得到混合溶液,然后加入核心成分混匀制成共混溶液。
5. 权利要求1-4任一所述的系统,其特征在于,所述微流控工艺为:控制喷射装置的流速为1.2-3.6 mm/s,喷射装置距离氯化钙液面的高度2-14 cm,氯化钙溶液浓度为1-5 wt%,搅拌速度300-1100 rpm,固化时间30 min-180 min;所述喷射装置的控制方式可采用气动微阀或驱动泵实现,通过调节气动微阀或驱动泵的顺序开启和关闭,灵活用于液体的操控。
CN202210480195.9A 2022-05-05 2022-05-05 一种基于不溶性膳食纤维的微胶囊递送系统 Active CN114931562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210480195.9A CN114931562B (zh) 2022-05-05 2022-05-05 一种基于不溶性膳食纤维的微胶囊递送系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210480195.9A CN114931562B (zh) 2022-05-05 2022-05-05 一种基于不溶性膳食纤维的微胶囊递送系统

Publications (2)

Publication Number Publication Date
CN114931562A CN114931562A (zh) 2022-08-23
CN114931562B true CN114931562B (zh) 2023-11-07

Family

ID=82865038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210480195.9A Active CN114931562B (zh) 2022-05-05 2022-05-05 一种基于不溶性膳食纤维的微胶囊递送系统

Country Status (1)

Country Link
CN (1) CN114931562B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116035209A (zh) * 2023-03-30 2023-05-02 中国农业大学 一种基于微流控技术的壳聚糖修饰花色苷纳米脂质体及其应用
CN117837763B (zh) * 2024-01-09 2024-08-20 中食安泓(广东)健康产业有限公司 一种高活性缓释益生菌微胶囊及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528691A (zh) * 2019-01-15 2019-03-29 中国农业科学院油料作物研究所 核壳结构纤维素基益生菌微胶囊及其制备方法
CN110538154A (zh) * 2019-09-25 2019-12-06 盐城工业职业技术学院 一种用于载药的桑皮纤维/海藻酸钠凝胶球及其制备方法
CN110590964A (zh) * 2019-10-24 2019-12-20 福州大学 一种海带纤维素纳米纤维及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679809B2 (en) * 2006-05-19 2014-03-25 The University Of Hong Kong Cell-matrix microspheres, methods for preparation and applications
US9816230B2 (en) * 2014-12-31 2017-11-14 Innovatech Engineering, LLC Formation of hydrated nanocellulose sheets with or without a binder for the use as a dermatological treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528691A (zh) * 2019-01-15 2019-03-29 中国农业科学院油料作物研究所 核壳结构纤维素基益生菌微胶囊及其制备方法
CN110538154A (zh) * 2019-09-25 2019-12-06 盐城工业职业技术学院 一种用于载药的桑皮纤维/海藻酸钠凝胶球及其制备方法
CN110590964A (zh) * 2019-10-24 2019-12-20 福州大学 一种海带纤维素纳米纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Alginate based nanocomposite for microencapsulation of probiotic:Effect of cellulose nanocrystal (CNC) and lecithin;Tanzina Huqa 等;《Carbohydrate Polymers》(第168期);第61-69 页 *

Also Published As

Publication number Publication date
CN114931562A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN114931562B (zh) 一种基于不溶性膳食纤维的微胶囊递送系统
Ramos et al. Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics
Homayouni et al. Effect of lecithin and calcium chloride solution on the microencapsulation process yield of calcium alginate beads
Racoviţă et al. Polysaccharides based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems
CN106418547A (zh) 一种益生菌微胶囊及其制备方法
Ding et al. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics
Vaziri et al. Improving survivability of Lactobacillus plantarum in alginate-chitosan beads reinforced by Na-tripolyphosphate dual cross-linking
Zheng et al. An improved pH-responsive carrier based on EDTA-Ca-alginate for oral delivery of Lactobacillus rhamnosus ATCC 53103
Islam et al. Microencapsulation of live probiotic bacteria
Goh et al. Alginates as a useful natural polymer for microencapsulation and therapeutic applications
Mørch et al. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads
Zhu et al. Biomaterial-based encapsulated probiotics for biomedical applications: Current status and future perspectives
CN112544978B (zh) 一种可在肠道定点释放的微胶囊包埋的益生菌及其制备方法
Wang et al. Survivability of probiotics encapsulated in kelp nanocellulose/alginate microcapsules on microfluidic device
Chitprasert et al. Aluminum carboxymethyl cellulose–rice bran microcapsules: Enhancing survival of Lactobacillus reuteri KUB-AC5
Khorasani et al. Starch-and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices
CN106617093B (zh) 耐酸、稳定的益生菌微胶囊及其制备方法和应用
CN107855080A (zh) 高分子凝胶颗粒、其制备方法、包含其的复合凝胶颗粒及用途
CN108524455B (zh) 一种pH响应型释放速率可控的海藻酸钙/球霰石碳酸钙复合微球制备方法及应用
CN103301788B (zh) Peg接枝改性的海藻酸盐-壳聚糖微胶囊及制备和应用
Li et al. Porous cellulose microgel particle: a fascinating host for the encapsulation, protection, and delivery of lactobacillus plantarum
JP6566970B2 (ja) マイクロカプセル化技術及びその生成物
CN109232920A (zh) 鱼明胶/海藻酸钠双网络复合水凝胶、其制备方法及所得益生菌微胶囊
CN114672480A (zh) 植物乳杆菌凝胶珠及其制备方法
CN106701730B (zh) 含半乳糖基壳聚糖分子的海藻酸盐水凝胶微球载体及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant