CN114917928B - 一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用 - Google Patents

一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用 Download PDF

Info

Publication number
CN114917928B
CN114917928B CN202210467962.2A CN202210467962A CN114917928B CN 114917928 B CN114917928 B CN 114917928B CN 202210467962 A CN202210467962 A CN 202210467962A CN 114917928 B CN114917928 B CN 114917928B
Authority
CN
China
Prior art keywords
acetylacetonate
copper
iron
solid solution
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210467962.2A
Other languages
English (en)
Other versions
CN114917928A (zh
Inventor
康雄武
陈钊倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202210467962.2A priority Critical patent/CN114917928B/zh
Publication of CN114917928A publication Critical patent/CN114917928A/zh
Application granted granted Critical
Publication of CN114917928B publication Critical patent/CN114917928B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电催化材料的技术领域,公开了一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用。方法:1)将十六烷基氯化铵分散于油胺中,获得分散液;将乙酰丙酮铂、乙酰丙酮铁、乙酰丙酮钌、乙酰丙酮镍、乙酰丙酮铜、碳纳米管、葡萄糖以及Mo(CO)6分散于分散液中,获得混合分散液;2)将混合分散液进行加热处理,获得星形的铂铁镍铜钌多元合金固溶体多功能电催化材料。本发明的方法简单,成功制备出具有星状形貌的多元合金固溶体电催化材料;本发明的电催化材料具有优异的HER、OER和ORR电催化性能和较好的稳定性。本发明的电催化材料用于锌空电池、电解水制氢和/或氢氧燃料电池。

Description

一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及 其制备与应用
技术领域
本发明属于电催化材料技术领域,具体涉及一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备方法与应用。
背景技术
长期使用化石燃料造成的能源危机和环境危机越来越得到重视,开发可持续的能源材料和绿色纳米技术来制造燃料电池、金属-空气电池和水分解系统成为当下的迫切需求。电化学析氢反应(HER)、析氧反应(OER)和氧还原反应(ORR)是可再生能源技术的核心,优质的催化剂可以降低电化学反应的过电位,加快反应速率,提高其催化性能。
然而,开发高效、稳定的电催化剂仍然具有挑战性。与单金属催化剂相比,双金属和三金属合金催化剂具有更强的电催化性能和可调空间,且通过合金化来定制结合能可以诱导电子的相互作用而优化活性。高熵合金(HEAs)作为催化材料在过去的几年中引起了广泛的关注,其在合成复杂的固溶体材料中形成了大量不同的多元素活性位点,为催化剂设计提供了新的、独特的概念,减少了现有的限制,改变了对构效关系的看法,且高熵合金具有超丰富的元素组合和元素配比,其催化结合能几乎能够以连续的形式进行调控,不同的元素配位环境提供了多类型催化反应的活性位点,更具备开发多功能型催化剂的潜力。
目前,Pt贵金属仍是ORR和HER最有效的电催化剂,而IrO2和RuO2对OER具有较高活性。然而,这些铂类金属稀缺性、高成本和耐受性差的特点,阻碍了其可持续发展应用。因此,可以引入地球储量丰富、廉价的过渡金属元素,如镍、铁和铜等,与Pt族贵金属组成高熵合金,不仅可以调节合金固溶体催化剂的形貌、电子结构,提高其催化活性及稳定性,同时降低催化剂成本。然而,大多数高熵合金催化剂都是在块状或微观尺度下制备的,形貌多为球状,且合成方法多为电弧熔化法,碳热冲击法,熔融纺丝法或气溶胶喷雾热解法等,这些方法通常需要高温高压的苛刻实验条件以及昂贵的仪器设备,不适合后期规模化生产。特别是对于多功能型多元合金催化剂,形貌可控合成仍然具有非常大的挑战性。
发明内容
为了解决现有技术问题,本发明提供了一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备方法。本发明采用简单的湿化学还原法,在低温(<250℃)常压的条件下快速合成了负载于碳纳米管上的呈星型的PtFeNiCuRu多元合金固溶体纳米催化剂,表现出优异的HER(1M KOH,10mA·cm-2电流密度下,η=20mV)、OER(1M KOH,10mA·cm-2电流密度下,η=259mV)和ORR(0.1M HClO4,η=0.87V)电催化性能和较好的稳定性,实现了具有规则形貌的多元合金固溶体多功能型纳米催化剂的合成。
本发明的另一目的在于提供上述电催化材料的应用。所述电催化材料用于锌空电池、电解水制氢和/或氢氧燃料电池。本发明的电催化材料用于锌空电池中,表现出150mW的大功率电流密度及优良的充放电循环稳定性。此外,所述电催化材料优异的碱性HER、OER性能使其能够应用于电化学全解水生产氢气和氧气,大大降低了水解过电位,减少了生产成本;且其优异的酸性ORR性能使其能够应用于氢氧燃料电池中。
为实现上述目的,本发明采用的技术方案为:
一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料的制备方法,包括以下步骤:
1)将十六烷基氯化铵(CTAC)分散于油胺(OAM)中,获得分散液;将乙酰丙酮铂、乙酰丙酮铁、乙酰丙酮钌、乙酰丙酮镍、乙酰丙酮铜、碳纳米管(CNT)、葡萄糖以及Mo(CO)6分散于分散液中,获得混合分散液;
2)将混合分散液进行加热处理,获得星形的铂铁镍铜钌多元合金固溶体多功能电催化材料;所述加热处理的温度为200~230℃。
所述十六烷基氯化铵与油胺的质量体积比为(80~120)mg:25mL。
所述乙酰丙酮铂、乙酰丙酮铁、乙酰丙酮钌、乙酰丙酮镍、乙酰丙酮铜、碳纳米管(CNT)、葡萄糖以及Mo(CO)6的质量比为(13~17):(6~8):(3~5):(8~12):(8~12):(45~65):(80~120):(40~50)。
所述十六烷基氯化铵与乙酰丙酮铂的质量比为(80~120):(13~17)。
步骤2)中所述加热处理的时间为2~4h。
步骤1)中所述将十六烷基氯化铵(CTAC)分散于油胺(OAM)中是指通过超声分散。
步骤1)中所述分散于分散液中是指超声分散。超声的时间为2~4h。
步骤2)中加热处理后,进行后续处理;所述后续处理是指冷却后,将反应产物进行离心,用环己烷和乙醇的混合物进行洗涤,再次离心,用乙酸醇溶液加热浸泡,乙醇洗涤,干燥。
环己烷和乙醇的体积比为1:(1~2);
所述乙酸醇溶液为0.4~0.6M的乙酸醇溶液;加热浸泡的温度为40~60℃,加热浸泡的时间为3~5小时;所述干燥为在30~40℃下真空干燥。
本发明中CTAC可促进催化剂高指数晶面的形成。油胺作为溶剂和还原剂之一。Ru的引入调控了催化剂的形貌和电子结构。
本发明的有益效果是:
1、本发明提供的一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料是以碳纳米管为导电基底的,实现了多元合金纳米颗粒在基底上的均匀分散以及提高了其导电性,减少了实验步骤。
2、本发明的铂铁镍铜钌多元合金固溶体材料是多功能纳米催化剂,表现出优异的HER(1M KOH,10mA·cm-2电流密度下,η=20mV)、OER(1M KOH,10mA·cm-2电流密度下,η=259mV)和ORR(0.1M HClO4,η=0.87V)电催化性能和较好的稳定性,并将其应用于锌空电池上达到150mW的大功率密度,实现了具有规则形貌的多元合金固溶体多功能型纳米催化剂的合成。
3、本发明的催化材料中少量的钌造成的压缩效应导致催化材料的d带中心下移,使其偏离费米能级,削弱了催化剂与表面吸附剂的相互作用,促进了物质转移和化学反应动力学,从而使得合金催化剂的电催化活性显著提高。
4、本发明提供了一种酸泡加热去除催化剂表面油胺的方法,简单快捷。
附图说明
图1是本发明实施例1制备的铂铁镍铜钌多元合金固溶体催化剂(PtFeNiCuRu/CNT)及对比例1制备的铂铁镍铜多元合金固溶体催化剂(PtFeNiCu/CNT)的XRD谱图;
图2是实施例1制备的PtFeNiCuRu/CNT催化剂的透射电镜图像(浅色条状为碳纳米管CNT,深色颗粒为PtFeNiCuRu多元合金纳米颗粒);
图3是对比例1制备的PtFeNiCu/CNT催化剂的透射电镜图像(浅色条状为碳纳米管CNT,深色颗粒为PtFeNiCu多元合金纳米颗粒);
图4是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的HER性能;
图5是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的HER阻抗图谱;
图6是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的OER性能;
图7是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的OER阻抗图谱;
图8是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在0.1M HClO4测得的ORR性能。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明,但本发明的实施方式不限于此。
实施例1:铂铁镍铜钌多元合金固溶体催化剂PtFeNiCuRu/CNT
(1)将100mg十六烷基氯化铵(CTAC)溶于25mL油胺(OAM)中,超声处理30mins,得到分散液Ⅰ;
(2)称取乙酰丙酮铂15mg、乙酰丙酮铁6.7mg、乙酰丙酮钌3.8mg、乙酰丙酮镍9.8mg、乙酰丙酮铜10mg、碳纳米管(CNT)56.6mg、葡萄糖100mg以及Mo(CO)6 45mg,一同加入装有分散液Ⅰ容器中,超声3h,得到分散液Ⅱ;
(3)将分散液Ⅱ移入油浴锅中加热搅拌,油浴温度为220℃,加热搅拌时间为2小时;
(4)将步骤(3)反应产物取出冷却后,用环己烷/乙醇(环己烷和乙醇的体积比为1:1)离心收集干燥,再用0.5M的乙酸醇溶液在45℃下酸泡加热4小时,再用乙醇洗涤几次,在35℃下真空干燥,得到星形的铂铁镍铜钌多元合金固溶体材料PtFeNiCuRu/CNT。
本实施例制备的材料中金属元素的原子比:Pt37%,Fe6%,Ni22%,Cu34%,Ru1%。
对比例1:铂铁镍铜多元合金固溶体催化剂PtFeNiCu/CNT
(1)将90mg十六烷基氯化铵(CTAC)溶于22mL油胺(OAM)中,超声处理30mins,得到分散液Ⅰ;
(2)称取乙酰丙酮铂15mg、乙酰丙酮铁6.7mg、乙酰丙酮镍9.8mg、乙酰丙酮铜10mg、碳纳米管(CNT)52.7mg、葡萄糖100mg以及Mo(CO)6 45mg,一同加入装有分散液Ⅰ的容器中,超声3h,得到分散液Ⅱ;
(3)将分散液Ⅱ移入油浴锅中加热搅拌,油浴温度为220℃,加热搅拌时间为2小时。
(4)将步骤(3)反应产物取出冷却后,通过离心收集黑色产物,再加入环己烷和乙醇混合物洗涤两到三次,环己烷和乙醇的体积比为1:1,离心收集干燥,再用0.5M的乙酸醇溶液在45℃下酸泡加热4小时,再用乙醇洗涤几次,在35℃下真空干燥,得到铂铁镍铜多元合金固溶体材料PtFeNiCu/CNT。
结构表征和性能测试:
图1是本发明实施例1制备的铂铁镍铜钌多元合金固溶体催化剂(PtFeNiCuRu/CNT)及对比例1制备的铂铁镍铜多元合金固溶体催化剂(PtFeNiCu/CNT)的XRD谱图;其中PtFeNiCuRu对应实施例1,PtFeNiCu对应对比例1。如图1,实施例1制备的PtFeNiCuRu/CNT的金属特征衍射峰主要位于41.87°、48.40°、70.59°和85.19°处,与金属单质标准卡片对比,多元金属固溶体催化剂的衍射峰位于金属单质衍射峰位置之间,说明了合金固溶体的成功合成;且对比例1制备的PtFeNiCu/CNT的金属特征衍射峰也位于金属单质衍射峰位置之间,再次说明本发明所提供的合金催化剂制备方法的有效性。
图2是实施例1制备的PtFeNiCuRu/CNT催化剂的透射电镜图像,左右两幅图为不同放大倍数的TEM图。如图2,实施例1制备的PtFeNiCuRu多元合金纳米颗粒均匀分散在碳纳米管上,合金颗粒整体上呈现星状,对角线长度约为38.5nm。
图3是对比例1制备的PtFeNiCu/CNT催化剂的透射电镜图像,左右两幅图为不同放大倍数的图。如图3,对比例1制备的PtFeNiCu多元合金纳米颗粒分散在碳纳米管上,合金颗粒整体上呈现立方状,大小约为11.5nm。
图4是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的HER性能;其中PtFeNiCuRu对应实施例1,PtFeNiCu对应对比例1。如图4,实施例1制备的PtFeNiCuRu多元合金纳米颗粒表现出优秀的HER性能,在1M KOH中,10mA/cm2电流密度时,过电位仅20mV,小于商业Pt/C(40mV)和PtFeNiCu催化剂(51mV)。Ru的引入使得PtFeNiCuRu/CNT的催化性能显著提高,且相对于商业Pt/C,其催化剂极大地降低了Pt的用量和催化剂的成本。
图5是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的HER阻抗图谱;其中PtFeNiCuRu对应实施例1,PtFeNiCu对应对比例1。如图5,实施例1制备的PtFeNiCuRu多元合金纳米颗粒表现出最小的HER阻抗半径,远小于Pt/C和PtFeNiCu催化剂,说明其较后两者具有更小的电阻和更快的HER反应动力学。
图6是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的OER性能;其中PtFeNiCuRu对应实施例1,PtFeNiCu对应对比例1。如图6,实施例1制备的PtFeNiCuRu多元合金纳米颗粒表现出优秀的OER性能,在1M KOH中,10mA/cm2电流密度时,过电位仅259mV,小于RuO2(275mV)和PtFeNiCu催化剂(416mV),催化性能显著提高。
图7是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在1M KOH测得的OER阻抗图谱;其中PtFeNiCuRu对应实施例1,PtFeNiCu对应对比例1。如图7,实施例1制备的PtFeNiCuRu多元合金纳米颗粒表现出最小的OER阻抗半径,远小于Pt/C和PtFeNiCu催化剂,说明其较后两者具有更小的电阻和更快的OER反应动力学。
图8是实施例1制备的PtFeNiCuRu/CNT催化剂及对比例1制备的PtFeNiCu/CNT催化剂在0.1M HClO4测得的ORR性能;其中PtFeNiCuRu对应实施例1,PtFeNiCu对应对比例1。如图8,实施例1制备的PtFeNiCuRu多元合金纳米颗粒表现出优秀的ORR性能,在0.1M HClO4中,半波电位为0.87V,极限扩散电流为5.6mA·cm-2,显著优于Pt/C(0.85V,5mA·cm-2)和PtFeNiCu(0.83V,4.5mA·cm-2)。

Claims (7)

1.一种星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料的制备方法,其特征在于:包括以下步骤:1)将十六烷基氯化铵分散于油胺中,获得分散液;将乙酰丙酮铂、乙酰丙酮铁、乙酰丙酮钌、乙酰丙酮镍、乙酰丙酮铜、碳纳米管、葡萄糖以及Mo(CO)6分散于分散液中,获得混合分散液;2)将混合分散液进行加热处理,获得星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料;所述加热处理的温度为200~230℃;
所述十六烷基氯化铵与油胺的质量体积比为(80~120)mg:25mL;所述乙酰丙酮铂、乙酰丙酮铁、乙酰丙酮钌、乙酰丙酮镍、乙酰丙酮铜、碳纳米管、葡萄糖以及Mo(CO)6的质量比为(13~17):(6~8):(3~5):(8~12):(8~12):(45~65):(80~120):(40~50);所述十六烷基氯化铵与乙酰丙酮铂的质量比为(80~120):(13~17)。
2.根据权利要求1所述星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料的制备方法,其特征在于:步骤2)中所述加热处理的时间为2~4h。
3.根据权利要求1所述星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料的制备方法,其特征在于:步骤2)中加热处理后,进行后续处理;所述后续处理是指冷却后,将反应产物进行离心,用环己烷和乙醇的混合物进行洗涤,再次离心,用乙酸醇溶液加热浸泡,乙醇洗涤,干燥。
4.根据权利要求3所述星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料的制备方法,其特征在于:所述环己烷和乙醇的体积比为1:(1~2);
所述乙酸醇溶液为0.4~0.6M的乙酸醇溶液;加热浸泡的温度为40~60℃,加热浸泡的时间为3~5小时;所述干燥为在30~40℃下真空干燥。
5.一种由权利要求1~4任一项所述制备方法得到的星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料。
6.根据权利要求5所述星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料,其特征在于:所述多功能电催化材料中合金颗粒整体上呈现星状。
7.根据权利要求5或6所述星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料的应用,其特征在于:所述星形的铂铁镍铜钌钼高熵合金固溶体多功能电催化材料用于锌空电池、电解水制氢和/或氢氧燃料电池。
CN202210467962.2A 2022-04-29 2022-04-29 一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用 Active CN114917928B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210467962.2A CN114917928B (zh) 2022-04-29 2022-04-29 一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210467962.2A CN114917928B (zh) 2022-04-29 2022-04-29 一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用

Publications (2)

Publication Number Publication Date
CN114917928A CN114917928A (zh) 2022-08-19
CN114917928B true CN114917928B (zh) 2023-08-22

Family

ID=82807103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210467962.2A Active CN114917928B (zh) 2022-04-29 2022-04-29 一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用

Country Status (1)

Country Link
CN (1) CN114917928B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381743B (zh) * 2022-01-25 2023-08-18 广东电网有限责任公司江门供电局 一种复合析氢催化剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100998948A (zh) * 2006-12-13 2007-07-18 太原理工大学 直接甲醇燃料电池用氧电还原催化剂的制备方法
KR20110033652A (ko) * 2009-09-25 2011-03-31 한화나노텍 주식회사 고 전기 전도성 탄소나노튜브-금속 복합체의 제조방법
CN106623973A (zh) * 2016-12-19 2017-05-10 北京大学 一种镍铂合金纳米颗粒的可控合成方法
WO2017091955A1 (en) * 2015-11-30 2017-06-08 South University Of Science And Technology Of China Bifunctional electrocatalyst for water splitting and preparation method thereof
CN110252335A (zh) * 2019-05-31 2019-09-20 苏州大学 一种碳包覆镍钌纳米材料及其制备方法和应用
CN111129514A (zh) * 2019-12-27 2020-05-08 大连理工大学 一种碳担载Pt/M异质结构纳米线电催化剂的制备方法及应用
CN111293322A (zh) * 2020-02-24 2020-06-16 北京化工大学 一种燃料电池用碳载八面体形貌铂铜钼三元合金催化剂及其制备方法
CN113774422A (zh) * 2021-10-26 2021-12-10 山东理工大学 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法
CN113948729A (zh) * 2021-10-20 2022-01-18 江苏大学 二元金属铂钯棱柱状催化剂的制备方法及其应用于直接甲醇燃料电池
CN114196981A (zh) * 2021-11-29 2022-03-18 北京大学 一种铂基高熵合金纳米线催化剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264598A1 (en) * 2011-04-12 2012-10-18 GM Global Technology Operations LLC Synthesis of platinum-alloy nanoparticles and supported catalysts including the same
KR102141396B1 (ko) * 2018-08-24 2020-08-05 한국과학기술연구원 탄소-담지 백금-전이금속 합금 나노입자 촉매의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100998948A (zh) * 2006-12-13 2007-07-18 太原理工大学 直接甲醇燃料电池用氧电还原催化剂的制备方法
KR20110033652A (ko) * 2009-09-25 2011-03-31 한화나노텍 주식회사 고 전기 전도성 탄소나노튜브-금속 복합체의 제조방법
WO2017091955A1 (en) * 2015-11-30 2017-06-08 South University Of Science And Technology Of China Bifunctional electrocatalyst for water splitting and preparation method thereof
CN106623973A (zh) * 2016-12-19 2017-05-10 北京大学 一种镍铂合金纳米颗粒的可控合成方法
CN110252335A (zh) * 2019-05-31 2019-09-20 苏州大学 一种碳包覆镍钌纳米材料及其制备方法和应用
CN111129514A (zh) * 2019-12-27 2020-05-08 大连理工大学 一种碳担载Pt/M异质结构纳米线电催化剂的制备方法及应用
CN111293322A (zh) * 2020-02-24 2020-06-16 北京化工大学 一种燃料电池用碳载八面体形貌铂铜钼三元合金催化剂及其制备方法
CN113948729A (zh) * 2021-10-20 2022-01-18 江苏大学 二元金属铂钯棱柱状催化剂的制备方法及其应用于直接甲醇燃料电池
CN113774422A (zh) * 2021-10-26 2021-12-10 山东理工大学 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法
CN114196981A (zh) * 2021-11-29 2022-03-18 北京大学 一种铂基高熵合金纳米线催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
微波合成PtRu/CNTs催化剂及其电催化性能;韩小斐 等;浙江大学学报(工学版);第1871-1874页 *

Also Published As

Publication number Publication date
CN114917928A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
Wang et al. Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution
KR101197172B1 (ko) 나노 구조 모양을 가지는 연료 전지용 촉매의 한 반응기 제조 방법
Wang et al. Transition from core-shell to janus segregation pattern in AgPd nanoalloy by Ni doping for the formate oxidation
Adam et al. Facile one-step room temperature synthesis of PdAg nanocatalysts supported on multi-walled carbon nanotubes towards electro-oxidation of methanol and ethanol
Zhao et al. One-dimensional rhodium-nickel alloy assemblies with nanodendrite subunits for alkaline methanol oxidation
CN113774422A (zh) 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法
Xiong et al. Concave Pd–Ru nanocubes bounded with high active area for boosting ethylene glycol electrooxidation
Xu et al. Eco-friendly and facile synthesis of novel bayberry-like PtRu alloy as efficient catalysts for ethylene glycol electrooxidation
Jing et al. Nanoporous carbon supported platinum-copper nanocomposites as anode catalysts for direct borohydride-hydrogen peroxide fuel cell
Gao et al. One step synthesis of PtNi electrocatalyst for methanol oxidation
CN102166523A (zh) 一种镍纳米粒子负载多壁碳纳米管催化剂制备方法
Chen et al. Monodispersed bimetallic platinum-copper alloy nanospheres as efficient catalysts for ethylene glycol electrooxidation
Song et al. Shape-controlled PdSn alloy as superior electrocatalysts for alcohol oxidation reactions
CN111359613B (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
Wu et al. Incorporation of cobalt into Pd2Sn intermetallic nanoparticles as durable oxygen reduction electrocatalyst
CN110586127B (zh) 一种铂钴双金属纳米空心球的制备方法及其应用
CN114917928B (zh) 一种星形的铂铁镍铜钌多元合金固溶体多功能电催化材料及其制备与应用
Yang et al. Simple synthesis of the Au-GQDs@ AgPt Yolk-shell nanostructures electrocatalyst for enhancing the methanol oxidation
Yin et al. High efficiency N/C foam supported Pd electrode for direct sodium borohydride-hydrogen peroxide fuel cell
Ren et al. Fabrication of cobaltous telluride and carbon composite as a promising carrier for boosting electro oxidation of ethylene glycol on palladium in alkaline medium
Zhai et al. Nano-engineered hexagonal PtCuCo nanocrystals with enhanced catalytic activity for ethylene glycol and glycerol electrooxidation
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Yin et al. PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell
Mao et al. Facile preparation of Cu@ Pt/rGO hybrids and their electrocatalytic activities for methanol oxidation
Zhai et al. One-pot fabrication of Nitrogen-doped graphene supported binary palladium-sliver nanocapsules enable efficient ethylene glycol electrocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant