CN114915184A - 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 - Google Patents

一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 Download PDF

Info

Publication number
CN114915184A
CN114915184A CN202210603645.9A CN202210603645A CN114915184A CN 114915184 A CN114915184 A CN 114915184A CN 202210603645 A CN202210603645 A CN 202210603645A CN 114915184 A CN114915184 A CN 114915184A
Authority
CN
China
Prior art keywords
voltage
capacitor
current
neutral point
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210603645.9A
Other languages
English (en)
Inventor
王小红
杨帆
杨合民
郭海山
胡静
钱政旭
潘武略
方愉冬
曹文斌
裘鹏
裘愉涛
戚宣威
吴俊�
吴佳毅
王松
陈明
方芳
孙文文
霍峙昕
简优宗
吴彦飞
原晓琦
吉同军
王国雨
徐伟
邸卉芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
Original Assignee
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Zhejiang Electric Power Co Ltd, China Electric Power Research Institute Co Ltd CEPRI, Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd, Nari Technology Co Ltd, NARI Nanjing Control System Co Ltd filed Critical State Grid Zhejiang Electric Power Co Ltd
Priority to CN202210603645.9A priority Critical patent/CN114915184A/zh
Publication of CN114915184A publication Critical patent/CN114915184A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种六角形模块化多电平交‑交变换器的电容电压波动分析方法及抑制方法,包括以下步骤:步骤1,对六角形模块化多电平交‑交变换器建模,通过功率守恒定律以及电容的伏安特性,得到子模块电容电压表达式;步骤2:引入中性点电压和环流,存在中性点电压和环流的条件下更新子模块电容电压表达式;步骤3,分析步骤2得到的更新子模块电容电压表达式,得到能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件。本发明能够将子模块电容电压控制在一定范围内,同时使变换器的开关损耗最小。

Description

一种六角形模块化多电平交-交变换器的电容电压波动分析 方法及抑制方法
技术领域
本发明涉及一种电源电压波动抑制方法,尤其涉及一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法。
背景技术
六角形模块化多电平交-交变换器(Hexagonal Modular Multilevel AC/ACConverter,Hexverter)是一种较为新颖的实现交交变换的拓扑,能够实现三相间交流变频。兼具模块化多电平矩阵变换器(Modular Multilevel Matrix Converter,M3C)模块化、电平数多等优点的同时,与M3C相比支路数更少,所需的电容和电感的数量更少。在低频运行环境下,是一种极具竞争性的可以降低设备体积和成本、减小功率损耗的方案。如图1所示即为Hexverter变换器及其子模块拓扑结构:Hexverter拓扑结构共有6个支路,每个支路上均由一个支路电感L以及若干个子模块串联而成;每个子模块均由一个全桥和一个电容并联形成;每个全桥均由4个电力电子开关器件(IGBT)组成。
Hexverter运行时,由于支路交直流侧的无功交换,电容电压不可避免地存在周期性波动。电容纹波电压的幅值过大会导致开关管耐压要求过高,严重时将导致电能质量和系统可靠性明显降低,影响系统的正常运行,因此如何抑制Hexverter的电容电压波动对提高系统电能质量及安全性具有非常重要的意义。
发明内容
发明目的:针对以上问题,本发明提出一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法,能够解决Hexverter在输入/输出无功不平衡时,子模块电容电压波动过大的问题。
技术方案:本发明所采用的技术方案是一种六角形模块化多电平交-交变换器的电容电压波动分析方法,包括以下步骤:
步骤1,对六角形模块化多电平交-交变换器建模,通过功率守恒定律以及电容的伏安特性,得到子模块电容电压表达式;所述子模块为H桥结构,电力电子开关器件构成桥臂,电容跨接在桥臂之间;所述子模块电容电压表达式为:
Figure BDA0003668793040000011
其中,各项表达式见公式(1)。
Figure BDA0003668793040000021
公式(1)中,n为支路序号,uc,n为支路n中子模块的电容电压,
Figure BDA0003668793040000022
为平均功率电压分量,
Figure BDA0003668793040000023
为频率为2f1的电容电压分量,
Figure BDA0003668793040000024
为频率为2f2的电容电压分量,
Figure BDA0003668793040000025
为频率为f1-f2的电容电压分量,
Figure BDA0003668793040000026
为频率为f1+f2的电容电压分量;C为电容值,N为子模块数量,Uc为电容电压额定值,P1、Q1为输入侧有功、无功功率,P2、Q2为输出侧有功、无功功率,
Figure BDA0003668793040000027
为输入相电压和电流的幅值,
Figure BDA0003668793040000028
为输出相电压和电流的幅值,ω1和ω2是角频率,
Figure BDA0003668793040000029
Figure BDA00036687930400000210
是功率因数角,ψ代表相位差。
步骤2:引入中性点电压和环流,存在中性点电压和环流的条件下更新子模块电容电压表达式;所述的存在中性点电压和环流的条件下更新子模块电容电压表达式为:
Figure BDA00036687930400000211
其中,各项表达式见公式(2),
Figure BDA00036687930400000212
公式(2)中,u′c,n为更新的子模块电容电压,
Figure BDA0003668793040000031
为存在中性点电压和环流的条件下平均功率电压分量,
Figure BDA0003668793040000032
为存在中性点电压和环流的条件下新增的频率为f1、f2的电容电压分量,Vst为中性点电压,Icir为环流。
步骤3,分析步骤2得到的更新子模块电容电压表达式,得到能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件。
所述的能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件是:
Figure BDA0003668793040000033
Figure BDA0003668793040000034
其中Q1为输入侧无功功率,Q2为输出侧无功功率。
如果需要进一步确定中性点电压和环流的值,还包括步骤4,以变换器开关损耗最小为目标计算中性点电压和环流。所述变换器开关损耗表达式为:PSW(|Icir|),其中,PSW见公式(3),
Figure BDA0003668793040000035
式3中,PSW为所述变换器的开关损耗,N为子模块数量,
Figure BDA0003668793040000036
为输入相电压和电流的幅值,
Figure BDA0003668793040000037
为输出相电压和电流的幅值,Icir为环流,Q1为输入侧无功功率,Q2为输出侧无功功率。
最终计算得到变换器开关损耗最小时,中性点电压和环流分别为:
Figure BDA0003668793040000038
式中:“+”对应Q1>Q2,“-”对应Q1<Q2,Vst为中性点电压,Icir为环流,
Figure BDA0003668793040000039
为输入相电压和电流的幅值,
Figure BDA00036687930400000310
为输出相电压和电流的幅值,Q1为输入侧无功功率,Q2为输出侧无功功率。
基于以上分析方法,本发明还提出一种六角形模块化多电平交-交变换器的电容电压波动抑制方法,通过引入中性点电压和环流消去电容平均功率电压分量来抑制纹波电压,其中,中性点电压和环流需要满足的技术条件是:
Figure BDA00036687930400000311
其中Q1为输入侧无功功率,Q2为输出侧无功功率。
进一步的,以变换器开关损耗最小为目标计算中性点电压和环流,得到中性点电压和环流如公式(4)。
有益效果:相比于现有技术,本发明具有以下优点:给出了一种Hexverter电容电压的波动分析方法,通过该分析方法得到的具体表达式为进一步分析电源波动来源给出了切入点;本发明通过控制中性点电压和环流,消去电容电压中的平均功率电压分量,将子模块电容电压控制在一定范围内,应用本方法能够使Hexverter的开关损耗最小。
附图说明
图1是六角形模块化多电平交-交变换器的拓扑图;
图2是应用本发明所述的抑制方法前后子模块电容电压的波形图;
图3是应用本发明所述的抑制方法后子模块电容电压仿真值与理论值对比图;
图4是本发明所述的环流值变化时开关损耗的变化情况。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,包括以下步骤:
步骤1,根据系统的输入及输出的电压和电流对变换器进行建模,利用功率守恒定律以及电容的伏安特性得到子模块电容电压的表达式;
Hexverter的拓扑结构如图1所示,含有6个支路,每个支路上包括N个子模块单元以及一个支路电感,每个子模块单元包括一个全桥以及一个电容C。每个全桥均为由4个电力电子开关器件(IGBT)组成的全桥结构。
定义输入电压和电流为:
Figure BDA0003668793040000041
Figure BDA0003668793040000042
Figure BDA0003668793040000043
输出电压和电流为:
Figure BDA0003668793040000044
Figure BDA0003668793040000045
Figure BDA0003668793040000046
其中,v1,k、i1,k为输入电压电流,v2,k、i2,k为输出电压电流,k=1,2,3表示三相。
Figure BDA0003668793040000047
为输入相电压和电流的幅值,
Figure BDA0003668793040000048
为输出相电压和电流的幅值,ω1和ω2是角频率,
Figure BDA0003668793040000049
Figure BDA00036687930400000410
是功率因数角,ψ代表两个系统的相位差。
基于上述定义式,输入/输出侧系统的有功功率和无功功率分别为:
Figure BDA00036687930400000411
Figure BDA00036687930400000412
Figure BDA0003668793040000051
Figure BDA0003668793040000052
其中,P1、Q1为输入侧有功、无功功率,P2、Q2为输出侧有功、无功功率。
依据基尔霍夫电压及电流定律:
Figure BDA0003668793040000053
Figure BDA0003668793040000054
式中,vb,n、ib,n为支路电压和电流,i1,12、i1,23、i1,31、i2,12、i2,23、i2,31分别表示输入侧和输出侧节点a-b、b-c、c-a、u-v、v-w、w-u间的线电流,该组线电流的具体表达式为:
Figure BDA0003668793040000055
Figure BDA0003668793040000056
Figure BDA0003668793040000057
Figure BDA0003668793040000058
Figure BDA0003668793040000059
Figure BDA00036687930400000510
从而得到支路n(n=1...6)的电压和电流为:
Figure BDA0003668793040000061
Figure BDA0003668793040000062
进而得到支路n的功率:
Figure BDA0003668793040000063
Figure BDA0003668793040000064
Figure BDA0003668793040000065
Figure BDA0003668793040000066
Figure BDA0003668793040000067
Figure BDA0003668793040000068
由于支路中电感存储的能量与电容相比很小,因此可以忽略支路电感。计算子模块电容电流为:
Figure BDA0003668793040000069
根据电容元件的伏安特性,电容纹波电压为
Figure BDA00036687930400000610
式中:
Figure BDA00036687930400000611
分量由支路平均功率积分而来,与时间线性相关,本文将其记为平均功率电压分量;
Figure BDA00036687930400000612
分量由支路功率的交流分量积分而来。
Figure BDA0003668793040000071
步骤2,引入恒定中性点电压和环流,存在中性点电压和环流的条件下更新子模块电容电压表达式。
根据上述得到的子模块电容电压波动的表达式,我们可以具体分析出引起大幅波动的主要因素。
从子模块电容纹波电压的表达式上看到,当平均功率电压分量不为0时,电容电压将随时间线性变化,呈现持续上升/下降趋势,危害系统安全运行。
分析平均功率电压分量的产生机理:从平均功率电压的表达式上可以看到,平均功率电压分量的大小与输入/输出侧的有功/无功功率有关。一般情况下,换流器输入/输出侧的有功功率平衡,即P1+P2=0。当输入/输出侧无功功率平衡时,Q1-Q2=0,支路平均功率为0,电容纹波电压中平均功率电压分量为0,电容电压整体呈周期性变化趋势;当输入/输出侧无功功率不平衡时,Q1-Q2≠0,支路平均功率不为0,电容纹波电压中平均功率电压分量不为0,电容电压整体呈持续增大/减小趋势。注意到此时相邻支路的支路平均功率大小相等方向相反,这表明,系统无功功率的不平衡导致相邻支路之间存在大小为
Figure BDA0003668793040000072
的功率传输,引起支路能量变化,表现为相邻两支路一方电容电压持续上升而另一方电容电压持续下降。
引入恒定中性点电压和环流后支路电压和电流表达式:
Figure BDA0003668793040000073
Figure BDA0003668793040000074
其中,中性点电压Vst为输入侧中性点相对于输出侧中性点的电压值,环流Icir表示支路电流之和的1/6。
支路功率表达式为
Figure BDA0003668793040000075
其中,由于新的支路电压和支路电流相比之前都新增了一个直流量,因此相比之前,修正后支路功率的直流分量将会发生变化,并将新增频率为输入/输出频率的交流分量。
Figure BDA0003668793040000081
电容纹波电压表达式为
Figure BDA0003668793040000082
Figure BDA0003668793040000083
步骤3,分析更新的平均功率电压表达式,针对输入/输出无功不平衡的情况,提出纹波抑制方法:利用满足一定条件的恒定中性点电压和环流消去电容平均功率电压分量。
分析更新后的平均功率电压的表达式可知,当
Figure BDA0003668793040000084
时,电容平均功率电压被消去,可以实现对电容电压纹波的抑制。
步骤4,以变换器开关损耗最小为目标计算中性点电压和环流。
仅有
Figure BDA0003668793040000085
不足以计算出两变量Vst和Icir的具体值,还需要一个另外的限定条件。开关损耗PSW是换流器中决定功率半导体成本的一个重要指标,本发明中Vst和Icir参数的设计基于开关损耗的最小化进行。
单个半导体器件的最大开关损耗由最大阻塞电压和最大正向电流的乘积来定义,对于Hexverter,可以根据最大支路电压vb,max和最大支路电流ib,max进行估计。Hexverter的最大支路电压和最大支路电流可以表示为
Figure BDA0003668793040000091
总开关损耗是系统内所有半导体器件开关损耗之和。对于Hexverter,共有6个支路,每个支路有N个子模块,每个子模块由4个开关组成,因此最大总开关损耗可以表示为
Figure BDA0003668793040000092
可知当函数PSW(|Icir|)最小时,环流为
Figure BDA0003668793040000093
因此,假定环流参考值大于零,开关损耗最小时对应的环流和中性点电压参考值为
Figure BDA0003668793040000094
式中:“+”对应Q1>Q2,“-”对应Q1<Q2
本实施例在MATLAB/Simulink中搭建Hexverter电容电压波动抑制系统的仿真模型,以对本发明的有效性进行验证,本实施例的仿真参数如表1所示。
表1Hexverter电容电压波动抑制系统的MATLAB仿真模型参数表
Figure BDA0003668793040000095
Figure BDA0003668793040000101
为了验证纹波抑制策略对电容电压的修正效果,对电容电压进行时域分析。设置t1=0.3s、t2=1s。系统从t1时刻开始运行,t1至t2时间段,不使用纹波抑制策略;t2时刻纹波抑制策略投入使用。电容电压纹波抑制策略投入使用前后整体的电容电压波形如图2所示。由图2可知,输入/输出侧无功功率不平衡时,电容电压首先随着时间持续增大/减小,直到纹波抑制策略投入使用后,电容电压逐渐回归额定值,最终稳定在额定值附近上下波动。说明电容电压中存在不为0的平均功率电压分量,纹波抑制策略有效地消除了此分量,证明了本文纹波抑制策略的有效性。
图3给出纹波抑制策略投入使用后电容电压的局部波形图。由图3可知,电容电压各分量的理论计算与仿真的结果在误差允许范围内相一致,验证了电容电压公式的正确性。
为了分析不同的环流参考值对开关损耗的影响,观察环流值变化时开关损耗的变化情况,如图4所示。由图4可知,本发明方法能够使系统的开关损耗最小。

Claims (9)

1.一种六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于:包括以下步骤:
步骤1,对六角形模块化多电平交-交变换器建模,通过功率守恒定律以及电容的伏安特性,得到子模块电容电压表达式;所述子模块为H桥结构,电力电子开关器件构成桥臂,电容跨接在桥臂之间;
步骤2:引入中性点电压和环流,存在中性点电压和环流的条件下更新子模块电容电压表达式;
步骤3,分析步骤2得到的更新子模块电容电压表达式,得到能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件。
2.根据权利要求1所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于,步骤1中所述子模块电容电压表达式为:
Figure FDA0003668793030000011
其中,
Figure FDA0003668793030000012
式中,n为支路序号,uc,n为支路n中子模块的电容电压,
Figure FDA0003668793030000013
为平均功率电压分量,
Figure FDA0003668793030000014
为频率为2f1的电容电压分量,
Figure FDA0003668793030000015
为频率为2f2的电容电压分量,
Figure FDA0003668793030000016
为频率为f1-f2的电容电压分量,
Figure FDA0003668793030000017
为频率为f1+f2的电容电压分量;C为电容值,N为子模块数量,Uc为电容电压额定值,P1、Q1为输入侧有功、无功功率,P2、Q2为输出侧有功、无功功率,
Figure FDA0003668793030000018
为输入相电压和电流的幅值,
Figure FDA0003668793030000019
Figure FDA00036687930300000110
为输出相电压和电流的幅值,ω1和ω2是角频率,
Figure FDA00036687930300000111
Figure FDA00036687930300000112
是功率因数角,ψ代表相位差。
3.根据权利要求2所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于:步骤2中所述的存在中性点电压和环流的条件下更新子模块电容电压表达式为:
Figure FDA00036687930300000113
Figure FDA0003668793030000021
式中,u′c,n为更新的子模块电容电压,
Figure FDA0003668793030000022
为存在中性点电压和环流的条件下平均功率电压分量,
Figure FDA0003668793030000023
为存在中性点电压和环流的条件下新增的频率为f1、f2的电容电压分量,Vst为中性点电压,Icir为环流。
4.根据权利要求1所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于,步骤3中所述的能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件是:
Figure FDA0003668793030000024
其中Q1为输入侧无功功率,Q2为输出侧无功功率。
5.根据权利要求1所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于,该方法还包括:
步骤4,以变换器开关损耗最小为目标计算中性点电压和环流。
6.根据权利要求5所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于,所述变换器开关损耗表达式为:PSW(|Icir|),其中,
Figure FDA0003668793030000025
式中,PSW为所述变换器的开关损耗,N为子模块数量,
Figure FDA0003668793030000026
为输入相电压和电流的幅值,
Figure FDA0003668793030000027
Figure FDA0003668793030000028
为输出相电压和电流的幅值,Icir为环流,Q1为输入侧无功功率,Q2为输出侧无功功率。
7.根据权利要求5所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于,变换器开关损耗最小时,中性点电压和环流分别为:
Figure FDA0003668793030000029
式中:“+”对应Q1>Q2,“-”对应Q1<Q2,Vst为中性点电压,Icir为环流,
Figure FDA0003668793030000031
为输入相电压和电流的幅值,
Figure FDA0003668793030000032
为输出相电压和电流的幅值,Q1为输入侧无功功率,Q2为输出侧无功功率。
8.一种六角形模块化多电平交-交变换器的电容电压波动抑制方法,其特征在于:引入中性点电压和环流消去电容平均功率电压分量来抑制纹波电压,其中,中性点电压和环流需要满足的技术条件是:
Figure FDA0003668793030000033
其中Q1为输入侧无功功率,Q2为输出侧无功功率。
9.根据权利要求8所述的六角形模块化多电平交-交变换器的电容电压波动抑制方法,其特征在于:以变换器开关损耗最小为目标计算中性点电压和环流,得到中性点电压和环流分别为:
Figure FDA0003668793030000034
式中:“+”对应Q1>Q2,“-”对应Q1<Q2,Vst为中性点电压,Icir为环流,
Figure FDA0003668793030000035
为输入相电压和电流的幅值,
Figure FDA0003668793030000036
为输出相电压和电流的幅值,Q1为输入侧无功功率,Q2为输出侧无功功率。
CN202210603645.9A 2022-05-30 2022-05-30 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 Pending CN114915184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210603645.9A CN114915184A (zh) 2022-05-30 2022-05-30 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210603645.9A CN114915184A (zh) 2022-05-30 2022-05-30 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法

Publications (1)

Publication Number Publication Date
CN114915184A true CN114915184A (zh) 2022-08-16

Family

ID=82770772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210603645.9A Pending CN114915184A (zh) 2022-05-30 2022-05-30 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法

Country Status (1)

Country Link
CN (1) CN114915184A (zh)

Similar Documents

Publication Publication Date Title
Yan et al. A study on MMC model and its current control strategies
CN107465359B (zh) 模块化多电平换流器的环流抑制方法及装置
Rathika et al. Fuzzy logic–based approach for adaptive hysteresis band and dc voltage control in shunt active filter
CN107046375A (zh) 一种桥臂单传感器的mmc环流控制方法
CN111654052B (zh) 基于动态相量法的柔直换流器建模装置及方法
CN110601201A (zh) 一种基于直接交-交换流器h-mmc的upfc系统及其无源化控制方法
WO2002052709A1 (en) A damping system
CN111244980B (zh) 一种基于mmc结构的电力电子变压器非线性控制方法
CN107659194B (zh) 一种模块化多电平变换器的优化控制集模型预测控制方法
CN112468010B (zh) 一种基于桥臂电流的模块化多电平变流器模型预测控制方法
CN103762828B (zh) 一种多级电力电子变换器系统的控制方法及装置
CN117526675A (zh) 一种t型三相三电平逆变器的模型预测电压控制方法
KR102498483B1 (ko) 3-레벨 컨버터의 직류측 중간점 전류를 일정하게 유지하면서 필요에 따라 가변할 수 있는 pwm 제어 방법 및 장치
CN111756264A (zh) 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法
CN109347352B (zh) 级联型变流器子模块电容电压平衡控制方法
CN112865177B (zh) 一种多台逆变器并联运行的多目标协调控制方法
CN114915184A (zh) 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法
Chavan et al. Shunt Active Filter for Harmonic Compensation Using Fuzzy Logic Technique
Rajesvaran et al. Modeling modular multilevel converters using extended-frequency dynamic phasors
CN106877674B (zh) 谐振型dc/dc变换器功率均衡控制方法和控制系统
CN115395797A (zh) 一种六角形模块化多电平交-交变换器的支路能量平衡分析方法
CN104393777A (zh) 半桥模块化多电平变换器子模块电压控制方法
CN115313834A (zh) 六角形模块化多电平交-交变换器电容电压波动抑制方法和装置
Benazza et al. Adaptive backstepping control of three-phase three-level neutral point clamped shunt active power filter with LCL output filter
CN108574288B (zh) 一种电压型高压无功发生器中电容的均压切换控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination