CN114915184A - 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 - Google Patents
一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 Download PDFInfo
- Publication number
- CN114915184A CN114915184A CN202210603645.9A CN202210603645A CN114915184A CN 114915184 A CN114915184 A CN 114915184A CN 202210603645 A CN202210603645 A CN 202210603645A CN 114915184 A CN114915184 A CN 114915184A
- Authority
- CN
- China
- Prior art keywords
- voltage
- capacitor
- current
- neutral point
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001629 suppression Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004458 analytical method Methods 0.000 title claims abstract description 15
- 239000003990 capacitor Substances 0.000 claims abstract description 72
- 230000007935 neutral effect Effects 0.000 claims abstract description 45
- 230000014509 gene expression Effects 0.000 claims abstract description 28
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 238000004088 simulation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/293—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/26—Arrangements for eliminating or reducing asymmetry in polyphase networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/297—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开了一种六角形模块化多电平交‑交变换器的电容电压波动分析方法及抑制方法,包括以下步骤:步骤1,对六角形模块化多电平交‑交变换器建模,通过功率守恒定律以及电容的伏安特性,得到子模块电容电压表达式;步骤2:引入中性点电压和环流,存在中性点电压和环流的条件下更新子模块电容电压表达式;步骤3,分析步骤2得到的更新子模块电容电压表达式,得到能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件。本发明能够将子模块电容电压控制在一定范围内,同时使变换器的开关损耗最小。
Description
技术领域
本发明涉及一种电源电压波动抑制方法,尤其涉及一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法。
背景技术
六角形模块化多电平交-交变换器(Hexagonal Modular Multilevel AC/ACConverter,Hexverter)是一种较为新颖的实现交交变换的拓扑,能够实现三相间交流变频。兼具模块化多电平矩阵变换器(Modular Multilevel Matrix Converter,M3C)模块化、电平数多等优点的同时,与M3C相比支路数更少,所需的电容和电感的数量更少。在低频运行环境下,是一种极具竞争性的可以降低设备体积和成本、减小功率损耗的方案。如图1所示即为Hexverter变换器及其子模块拓扑结构:Hexverter拓扑结构共有6个支路,每个支路上均由一个支路电感L以及若干个子模块串联而成;每个子模块均由一个全桥和一个电容并联形成;每个全桥均由4个电力电子开关器件(IGBT)组成。
Hexverter运行时,由于支路交直流侧的无功交换,电容电压不可避免地存在周期性波动。电容纹波电压的幅值过大会导致开关管耐压要求过高,严重时将导致电能质量和系统可靠性明显降低,影响系统的正常运行,因此如何抑制Hexverter的电容电压波动对提高系统电能质量及安全性具有非常重要的意义。
发明内容
发明目的:针对以上问题,本发明提出一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法,能够解决Hexverter在输入/输出无功不平衡时,子模块电容电压波动过大的问题。
技术方案:本发明所采用的技术方案是一种六角形模块化多电平交-交变换器的电容电压波动分析方法,包括以下步骤:
步骤1,对六角形模块化多电平交-交变换器建模,通过功率守恒定律以及电容的伏安特性,得到子模块电容电压表达式;所述子模块为H桥结构,电力电子开关器件构成桥臂,电容跨接在桥臂之间;所述子模块电容电压表达式为:其中,各项表达式见公式(1)。
公式(1)中,n为支路序号,uc,n为支路n中子模块的电容电压,为平均功率电压分量,为频率为2f1的电容电压分量,为频率为2f2的电容电压分量,为频率为f1-f2的电容电压分量,为频率为f1+f2的电容电压分量;C为电容值,N为子模块数量,Uc为电容电压额定值,P1、Q1为输入侧有功、无功功率,P2、Q2为输出侧有功、无功功率,为输入相电压和电流的幅值,为输出相电压和电流的幅值,ω1和ω2是角频率,和是功率因数角,ψ代表相位差。
公式(2)中,u′c,n为更新的子模块电容电压,为存在中性点电压和环流的条件下平均功率电压分量,为存在中性点电压和环流的条件下新增的频率为f1、f2的电容电压分量,Vst为中性点电压,Icir为环流。
步骤3,分析步骤2得到的更新子模块电容电压表达式,得到能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件。
如果需要进一步确定中性点电压和环流的值,还包括步骤4,以变换器开关损耗最小为目标计算中性点电压和环流。所述变换器开关损耗表达式为:PSW(|Icir|),其中,PSW见公式(3),
最终计算得到变换器开关损耗最小时,中性点电压和环流分别为:
基于以上分析方法,本发明还提出一种六角形模块化多电平交-交变换器的电容电压波动抑制方法,通过引入中性点电压和环流消去电容平均功率电压分量来抑制纹波电压,其中,中性点电压和环流需要满足的技术条件是:其中Q1为输入侧无功功率,Q2为输出侧无功功率。
进一步的,以变换器开关损耗最小为目标计算中性点电压和环流,得到中性点电压和环流如公式(4)。
有益效果:相比于现有技术,本发明具有以下优点:给出了一种Hexverter电容电压的波动分析方法,通过该分析方法得到的具体表达式为进一步分析电源波动来源给出了切入点;本发明通过控制中性点电压和环流,消去电容电压中的平均功率电压分量,将子模块电容电压控制在一定范围内,应用本方法能够使Hexverter的开关损耗最小。
附图说明
图1是六角形模块化多电平交-交变换器的拓扑图;
图2是应用本发明所述的抑制方法前后子模块电容电压的波形图;
图3是应用本发明所述的抑制方法后子模块电容电压仿真值与理论值对比图;
图4是本发明所述的环流值变化时开关损耗的变化情况。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,包括以下步骤:
步骤1,根据系统的输入及输出的电压和电流对变换器进行建模,利用功率守恒定律以及电容的伏安特性得到子模块电容电压的表达式;
Hexverter的拓扑结构如图1所示,含有6个支路,每个支路上包括N个子模块单元以及一个支路电感,每个子模块单元包括一个全桥以及一个电容C。每个全桥均为由4个电力电子开关器件(IGBT)组成的全桥结构。
定义输入电压和电流为:
输出电压和电流为:
其中,v1,k、i1,k为输入电压电流,v2,k、i2,k为输出电压电流,k=1,2,3表示三相。为输入相电压和电流的幅值,为输出相电压和电流的幅值,ω1和ω2是角频率,和是功率因数角,ψ代表两个系统的相位差。
基于上述定义式,输入/输出侧系统的有功功率和无功功率分别为:
其中,P1、Q1为输入侧有功、无功功率,P2、Q2为输出侧有功、无功功率。
依据基尔霍夫电压及电流定律:
式中,vb,n、ib,n为支路电压和电流,i1,12、i1,23、i1,31、i2,12、i2,23、i2,31分别表示输入侧和输出侧节点a-b、b-c、c-a、u-v、v-w、w-u间的线电流,该组线电流的具体表达式为:
从而得到支路n(n=1...6)的电压和电流为:
进而得到支路n的功率:
根据电容元件的伏安特性,电容纹波电压为
步骤2,引入恒定中性点电压和环流,存在中性点电压和环流的条件下更新子模块电容电压表达式。
根据上述得到的子模块电容电压波动的表达式,我们可以具体分析出引起大幅波动的主要因素。
从子模块电容纹波电压的表达式上看到,当平均功率电压分量不为0时,电容电压将随时间线性变化,呈现持续上升/下降趋势,危害系统安全运行。
分析平均功率电压分量的产生机理:从平均功率电压的表达式上可以看到,平均功率电压分量的大小与输入/输出侧的有功/无功功率有关。一般情况下,换流器输入/输出侧的有功功率平衡,即P1+P2=0。当输入/输出侧无功功率平衡时,Q1-Q2=0,支路平均功率为0,电容纹波电压中平均功率电压分量为0,电容电压整体呈周期性变化趋势;当输入/输出侧无功功率不平衡时,Q1-Q2≠0,支路平均功率不为0,电容纹波电压中平均功率电压分量不为0,电容电压整体呈持续增大/减小趋势。注意到此时相邻支路的支路平均功率大小相等方向相反,这表明,系统无功功率的不平衡导致相邻支路之间存在大小为的功率传输,引起支路能量变化,表现为相邻两支路一方电容电压持续上升而另一方电容电压持续下降。
引入恒定中性点电压和环流后支路电压和电流表达式:
其中,中性点电压Vst为输入侧中性点相对于输出侧中性点的电压值,环流Icir表示支路电流之和的1/6。
支路功率表达式为
其中,由于新的支路电压和支路电流相比之前都新增了一个直流量,因此相比之前,修正后支路功率的直流分量将会发生变化,并将新增频率为输入/输出频率的交流分量。
电容纹波电压表达式为
步骤3,分析更新的平均功率电压表达式,针对输入/输出无功不平衡的情况,提出纹波抑制方法:利用满足一定条件的恒定中性点电压和环流消去电容平均功率电压分量。
步骤4,以变换器开关损耗最小为目标计算中性点电压和环流。
单个半导体器件的最大开关损耗由最大阻塞电压和最大正向电流的乘积来定义,对于Hexverter,可以根据最大支路电压vb,max和最大支路电流ib,max进行估计。Hexverter的最大支路电压和最大支路电流可以表示为
总开关损耗是系统内所有半导体器件开关损耗之和。对于Hexverter,共有6个支路,每个支路有N个子模块,每个子模块由4个开关组成,因此最大总开关损耗可以表示为
可知当函数PSW(|Icir|)最小时,环流为
因此,假定环流参考值大于零,开关损耗最小时对应的环流和中性点电压参考值为
式中:“+”对应Q1>Q2,“-”对应Q1<Q2。
本实施例在MATLAB/Simulink中搭建Hexverter电容电压波动抑制系统的仿真模型,以对本发明的有效性进行验证,本实施例的仿真参数如表1所示。
表1Hexverter电容电压波动抑制系统的MATLAB仿真模型参数表
为了验证纹波抑制策略对电容电压的修正效果,对电容电压进行时域分析。设置t1=0.3s、t2=1s。系统从t1时刻开始运行,t1至t2时间段,不使用纹波抑制策略;t2时刻纹波抑制策略投入使用。电容电压纹波抑制策略投入使用前后整体的电容电压波形如图2所示。由图2可知,输入/输出侧无功功率不平衡时,电容电压首先随着时间持续增大/减小,直到纹波抑制策略投入使用后,电容电压逐渐回归额定值,最终稳定在额定值附近上下波动。说明电容电压中存在不为0的平均功率电压分量,纹波抑制策略有效地消除了此分量,证明了本文纹波抑制策略的有效性。
图3给出纹波抑制策略投入使用后电容电压的局部波形图。由图3可知,电容电压各分量的理论计算与仿真的结果在误差允许范围内相一致,验证了电容电压公式的正确性。
为了分析不同的环流参考值对开关损耗的影响,观察环流值变化时开关损耗的变化情况,如图4所示。由图4可知,本发明方法能够使系统的开关损耗最小。
Claims (9)
1.一种六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于:包括以下步骤:
步骤1,对六角形模块化多电平交-交变换器建模,通过功率守恒定律以及电容的伏安特性,得到子模块电容电压表达式;所述子模块为H桥结构,电力电子开关器件构成桥臂,电容跨接在桥臂之间;
步骤2:引入中性点电压和环流,存在中性点电压和环流的条件下更新子模块电容电压表达式;
步骤3,分析步骤2得到的更新子模块电容电压表达式,得到能够抑制电容电压纹波的中性点电压和环流需要满足的技术条件。
5.根据权利要求1所述的六角形模块化多电平交-交变换器的电容电压波动分析方法,其特征在于,该方法还包括:
步骤4,以变换器开关损耗最小为目标计算中性点电压和环流。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210603645.9A CN114915184A (zh) | 2022-05-30 | 2022-05-30 | 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210603645.9A CN114915184A (zh) | 2022-05-30 | 2022-05-30 | 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114915184A true CN114915184A (zh) | 2022-08-16 |
Family
ID=82770772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210603645.9A Pending CN114915184A (zh) | 2022-05-30 | 2022-05-30 | 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114915184A (zh) |
-
2022
- 2022-05-30 CN CN202210603645.9A patent/CN114915184A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | A study on MMC model and its current control strategies | |
CN107465359B (zh) | 模块化多电平换流器的环流抑制方法及装置 | |
Rathika et al. | Fuzzy logic–based approach for adaptive hysteresis band and dc voltage control in shunt active filter | |
CN107046375A (zh) | 一种桥臂单传感器的mmc环流控制方法 | |
CN111654052B (zh) | 基于动态相量法的柔直换流器建模装置及方法 | |
CN110601201A (zh) | 一种基于直接交-交换流器h-mmc的upfc系统及其无源化控制方法 | |
WO2002052709A1 (en) | A damping system | |
CN111244980B (zh) | 一种基于mmc结构的电力电子变压器非线性控制方法 | |
CN107659194B (zh) | 一种模块化多电平变换器的优化控制集模型预测控制方法 | |
CN112468010B (zh) | 一种基于桥臂电流的模块化多电平变流器模型预测控制方法 | |
CN103762828B (zh) | 一种多级电力电子变换器系统的控制方法及装置 | |
CN117526675A (zh) | 一种t型三相三电平逆变器的模型预测电压控制方法 | |
KR102498483B1 (ko) | 3-레벨 컨버터의 직류측 중간점 전류를 일정하게 유지하면서 필요에 따라 가변할 수 있는 pwm 제어 방법 및 장치 | |
CN111756264A (zh) | 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法 | |
CN109347352B (zh) | 级联型变流器子模块电容电压平衡控制方法 | |
CN112865177B (zh) | 一种多台逆变器并联运行的多目标协调控制方法 | |
CN114915184A (zh) | 一种六角形模块化多电平交-交变换器的电容电压波动分析方法及抑制方法 | |
Chavan et al. | Shunt Active Filter for Harmonic Compensation Using Fuzzy Logic Technique | |
Rajesvaran et al. | Modeling modular multilevel converters using extended-frequency dynamic phasors | |
CN106877674B (zh) | 谐振型dc/dc变换器功率均衡控制方法和控制系统 | |
CN115395797A (zh) | 一种六角形模块化多电平交-交变换器的支路能量平衡分析方法 | |
CN104393777A (zh) | 半桥模块化多电平变换器子模块电压控制方法 | |
CN115313834A (zh) | 六角形模块化多电平交-交变换器电容电压波动抑制方法和装置 | |
Benazza et al. | Adaptive backstepping control of three-phase three-level neutral point clamped shunt active power filter with LCL output filter | |
CN108574288B (zh) | 一种电压型高压无功发生器中电容的均压切换控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |