CN114911269A - 一种基于无人机群的组网雷达干扰策略生成方法 - Google Patents

一种基于无人机群的组网雷达干扰策略生成方法 Download PDF

Info

Publication number
CN114911269A
CN114911269A CN202210683593.0A CN202210683593A CN114911269A CN 114911269 A CN114911269 A CN 114911269A CN 202210683593 A CN202210683593 A CN 202210683593A CN 114911269 A CN114911269 A CN 114911269A
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
radar
networking
vehicle cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210683593.0A
Other languages
English (en)
Other versions
CN114911269B (zh
Inventor
张天贤
李健涛
刘凯
朱会柱
李财品
雷红文
方学立
孔令讲
崔国龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210683593.0A priority Critical patent/CN114911269B/zh
Publication of CN114911269A publication Critical patent/CN114911269A/zh
Application granted granted Critical
Publication of CN114911269B publication Critical patent/CN114911269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

本发明公开一种基于无人机群的组网雷达干扰策略生成方法,应用于雷达对抗领域,针对现有技术利用传统欧氏距离方法来设计回报函数时,由于惰性智能体的出现从而导致其状态变化对总回报不产生影响,进而降低强化学习训练的效果的问题;本发明首先建立了一个组网雷达探测‑无人机群协同干扰的博弈对抗场景模型,并设计模型的状态空间和动作空间。之后计算所有雷达和所有无人机的欧氏距离形成矩阵,利用匈牙利算法匹配雷达和无人机群得到每个雷达和无人机之间的一一对应关系的索引,利用这些索引控制无人机群飞行轨迹,使得最终的无人机群总控制量最小。有效的解决了组网雷达和无人机群匹配异常的问题,改进了组网雷达和无人机群博弈对抗的训练策略。

Description

一种基于无人机群的组网雷达干扰策略生成方法
技术领域
本发明属于雷达对抗领域,特别涉及组网雷达探测、无人机群协同干扰和多智能体博弈技术。
背景技术
近年来,组网雷达由于其出色的探测、跟踪、抗干扰和抗打击能力,已成为抗干扰探测的重要手段。面向组网雷达,传统单平台干扰的干扰效能受到严重挑战,协同干扰是应对组网雷达的典型可行方案。协同干扰指使将多个无人机进行组网,通过统一分配各无人机的干扰时间、干扰功率、干扰样式等资源形成具有群体智能的干扰体系,提升干扰方的整体对抗水平。未来雷达干扰博弈的形态必将向着“集群”vs“集群”方向发展。
目前,基于强化学习算法的多智能体对抗技术正广泛应用于复杂环境下军事电子系统中。尤其在多维度、复杂化以及不完全信息条件下的雷达对抗场景中,强化学习算法具有极强的模拟博弈增效性能。强化学习连续随机博弈过程具有探测和干扰的强对抗性、对方信息的不完全性、作战环境的高复杂性以及突然性、作战需求的高实时性等特点。然而,在设计强化学习对抗模型时,回报函数的设计则是至关重要的一环。在组网雷达-无人机群博弈对抗的场景中,通过匹配双方的对应关系可以优化对抗性能。而利用传统的欧氏距离法设计回报函数则可能出现“惰性智能体”,从而影响训练效果,得不到有效的对抗策略。
发明内容
本发明提出一种基于无人机群的组网雷达干扰策略生成方法,基于匈牙利算法的回报函数设计方法来优化无人机和雷达之间的匹配关系。克服了利用传统欧氏距离方法来设计回报函数时,由于惰性智能体的出现从而导致其状态变化对总回报不产生影响,进而降低强化学习训练的效果的问题。
本发明采用的技术方案为:一种基于无人机群的组网雷达干扰策略生成方法,包括:
S1、建立组网雷达探测-无人机群协同干扰的对抗场景模型;
S2、将无人机和雷达想象成质点模型,设计组网雷达和无人机群的状态空间和动作空间;
S3、求组网雷达和各个无人机之间的欧氏距离,从而构建距离矩阵;
S4、采用匈牙利算法对距离矩阵进行处理,得到雷达和无人机之间的一一对应关系的索引;
S5、利用这些索引控制无人机群飞行轨迹,使得最终的无人机群总控制量最小,得到组网雷达和无人机群的对抗博弈策略。
本发明的有益效果:本发明提出了一种基于匈牙利算法的回报函数设计方法来优化无人机和雷达之间的匹配关系;克服了利用传统欧氏距离方法来设计回报函数时,由于惰性智能体的出现从而导致其状态变化对总回报不产生影响,进而降低强化学习训练的效果的问题。它首先建立了一个组网雷达探测-无人机群协同干扰的博弈对抗场景模型,并设计模型的状态空间和动作空间。之后计算所有雷达和所有无人机的欧氏距离形成矩阵,利用匈牙利算法匹配雷达和无人机群得到每个雷达和无人机之间的一一对应关系的索引,利用这些索引控制无人机群飞行轨迹,使得最终的无人机群总控制量最小。有效的解决了组网雷达和无人机群匹配异常的问题,改进了组网雷达和无人机群博弈对抗的训练策略。
附图说明
图1是本发明提供方法的对抗博弈示意图;
其中,(a)为无人机分别对两台雷达进行距离干扰拖引使对雷达的拖引点重合,(b)为无人机群对组网雷达的拖引点不重合。
图2是本发明提供方法的强化学习训练流程框图。
图3是本发明采用欧氏距离法和匈牙利法设计回报函数的训练对比图。
图4是本发明训练生成策略中无人机群初步分散布局示意图;
其中,(a)为最初时各无人机位置随机散布,(b)为三个距离雷达波束较近的无人机选择分散至两波束内以尽可能满足组网雷达的验证机制,实现拖引。
图5是本发明训练生成策略中无人机群平均分配到雷达波束中示意图;
其中,(a)为一侧无人机数量多于另一侧的情况,(b)为无人机(1)由左侧波束转到右侧波束进行拖引。
图6是本发明训练生成策略中组网雷达波束重合示意图。
图7是本发明训练生成策略中组网雷达呈分离态势后无人机群匹配布局示意图;
其中,(a)为最开始只有四架无人机即使到达指定位置的情况,(b)为无人机两两为一组,分别对两台雷达实施干扰的情况,(c)为当其余四台无人机接近时,原先左侧雷达波束上的无人机转到右侧雷达波束上的情况,(d)为无人机数量与雷达数量的均等分配的效果图。
具体实施方式
为便于本领域技术人员理解本发明的技术内容,首先对以下术语进行解释:
术语1:协同干扰
无人机群利用组网雷达相互验证的特性来分配拖引位置达到干扰组网雷达的效果。
术语2:Gumble-softmax函数
一种将数据进行重参化的函数,经过Gumble采样的方式得到当前数据最接近于原始数据的分布,但是又增添了采样的不确定因素
术语3:欧氏距离矩阵
组网雷达和无人机群之间的欧氏距离的集合组成的数据矩阵。
术语4:匈牙利匹配矩阵
组网雷达和无人机群之间的欧氏距离矩阵经过匈牙利算法进行匹配之后输出的组网雷达和无人机群一一对应的匹配索引组成的矩阵。
术语5:价值网络
组网雷达和无人机群在对抗博弈的过程中,会利用环境参数和自身状态和动作预测出当前的价值,来指导下一步的动作。
本发明主要采用仿真实验的方法进行验证,所有步骤、结论都在python3.6上验证正确。下面就具体实施方式对本发明作进一步的详细描述。
步骤一:训练场景建模
本发明以无人机蜂群与雷达组网之间攻防为场景,进攻方是轰炸机和无人机蜂群组成的进攻编队,防守方是多个雷达站点组成的雷达组网。
对于进攻方,轰炸机携带导弹等武器,负责飞入敌方阵地的攻击目标区域。组网雷达对空域内的轰炸机进行探测、跟踪和锁定,充分利用验证信息,提高目标发现概率。无人机群分布在轰炸机周围,通过在轰炸机周围产生虚假航迹来干扰组网雷达,从而降低轰炸机被组网雷达探测到的概率。
在对抗作战的场景中,为了形成有效干扰并保护轰炸机,无人机群根据雷达波束方向改变位置移动到雷达波束范围内形成有效拖引。
为了解决无人机群协同干扰问题,组网雷达会按照一定的周期规律模式改变其工作状态。这样,无人机群需要不断调整位置,重新捕获雷达波束,形成有效的拖引。由于无人机群的飞行能力有限,在某些情况下无法立即移动到雷达波束范围内。双方的控制策略可以表示为:
Figure BDA0003699235080000041
其中,T表示为无人机群从当前位置移动到组网雷达波束范围内的时间。Φ和Ψ为组网雷达和无人机群的控制策略。sradar和Tradar为组网雷达的位置信息和状态转换周期。aUAVs为无人机群的加速度控制量。
步骤二:状态空间设计
根据相互对抗的场景,我们设计以轰炸机的位置为相对坐标模型,以轰炸机的移动方向为x轴正方向,轰炸机左翼方向为y轴正方向。
状态空间可以表示为:
S=Ω([sbomber],[sUAVs,vUAVs],[sradarradar]) (2)
其中,sbomber为轰炸机的位置信息,vUAVs为无人机群的速度信息,θradar为组网雷达的角度信息。
步骤三:动作空间设计
对于神经网络对于每一个无人机的状态向量输入而言会输出一个4维列向量,分别代表了在平面内4个方向运动的收益v,对v进行添加Gumble噪声:
v′=v-log(-log(u)) (3)
其中,u~U(0,1)是经过均匀采样得到的原始噪声,服从均匀分布U(0,1),均值为0,方差为1。可以证明,经过Gumble采样的方式得到v′的分布最接近于原始数据v的分布。最后经过带时间参数的soft-max函数:
Figure BDA0003699235080000042
其中,ai表示输出的动作值,vi,vj表示添加过噪声后的运动收益,t为soft-max中的时间参数。在训练最初阶段,取t=10,使其随训练次数的增加逐渐下降至t=1。最终执行动作时,可去掉Gumble噪声后进行动作选取。
输出后的值经过简单减法运算得到类似于无人机在x,y两方向加速度:
Figure BDA0003699235080000043
本发明设计无人机运动的单位时间dt=4s,积分计算速度及位移。利用类似的设计方法得到组网雷达和无人机群的动作空间如下:
A=Γ([axUAVs,ayUAVs],[s′radar]) (6)
其中,axUAVs,ayUAVs为无人机群的加速度,s′radar为组网雷达的工作状态。
步骤四:回报函数设计
在该场景中,首先需要将雷达数量倍乘
Figure BDA0003699235080000054
实现虚拟雷达数量与无人机数量的匹配,其中,n为组网雷达数量,m为无人机数量。计算得到组网雷达和无人机群的欧氏距离矩阵E。
Figure BDA0003699235080000051
其中,g1,g2,g3,g4表示无人机,w′1,w′2代表虚拟雷达,dist()表示求欧氏距离。
经过初等行列变换后得到行和,列和均只有一个元素,其余元素为0的矩阵。对于图4中的场景,该解为:
Figure BDA0003699235080000052
其中,d(gi,wj)代表经过初等行列变换后的结果。回报函数的计算公式可以表示为:
Figure BDA0003699235080000053
其中,I为匈牙利匹配矩阵的输出索引的集合。
可以看出,相比传统设计方案,在任何时刻,每个智能体的动作均会对回报结果产生影响,且最终实现了无人机相对于雷达数量的均衡分配。
步骤五:强化学习训练
最后搭建强化学习算法框架,将状态空间、动作空间和回报函数的参数输入到强化学习价值网络中进行评估和更新。如图2所示,利用强化学习算法对对抗博弈环境进行采样并存储在记忆池中,之后利用价值神经网络对数据进行训练,从而实现基于强化学习的组网雷达与无人机群的对抗博弈策略生成。
强化学习的策略更新公式如下:
Figure BDA0003699235080000061
其中,
Figure BDA0003699235080000062
为梯度下降的价值函数,
Figure BDA0003699235080000063
为智能体的策略,s为当前智能体的状态,o为智能体的观测值,a为智能体的动作,r为智能体的回报值,s′为下一时刻智能体的状态,o′为下一时刻智能体的观测值,
Figure BDA0003699235080000064
为经验池,ui为第i个智能体的当前执行的动作,u′i为第i个智能体的下一时刻执行的动作,a1,...,an为其他智能体的动作,ωi为当前价值网络更新的参数,θi为当前策略网络更新的参数,
Figure BDA0003699235080000065
为智能体在当前状态s下进行动作a1,...ui,...,an的价值。L(θi)为损失函数,y为目标函数,γ为折扣因子,d为当前回合结束的标志,ω′i为下一时刻价值网络更新的参数,θ′i为下一时刻策略网络更新的参数。
通过强化学习网路的训练,生成组网雷达和无人机群的对抗博弈策略。
表1为模型状态空间参数设置,表2为模型仿真超参数设置;根据表1、表2的数据建立强化学习仿真模型。表3为组网雷达固定策略时,无人机群的性能增效;表4为无人机群固定策略时,组网雷达的性能增效。从表3、表4可以看出,本发明在强化学习的训练过程中,组网雷达和无人机群的对抗性能都不断的增加并逐渐收敛和稳定。
表1状态向量的内容,数据维度及数据类型
Figure BDA0003699235080000066
表2训练使用的超参数
Figure BDA0003699235080000071
表3组网雷达固定策略时,无人机群的性能增效
Figure BDA0003699235080000072
表4无人机群固定策略时,组网雷达的性能增效
Figure BDA0003699235080000073
如图3所示,和欧氏距离算法相比,基于匈牙利算法的回报函数设计使强化学习的训练回报值更好且收敛更快。
如图1中(a)所示,最开始无人机分别对两台雷达进行距离干扰拖引使对雷达的拖引点重合,从而解决由于组网雷达利用JPDA等相互验证算法导致无人机拖引失败的问题。如图1中(b)所示之后组网雷达为了不被无人机群协同干扰,改变了雷达的工作状态(雷达2静默,雷达3工作),此时无人机群对组网雷达的拖引点不重合,从而使无人机群协同干扰失败。无人机群需要重新锁定雷达3的波束位置并到达指定位置进行协同拖引,双方不断重复上述过程从而进行对抗博弈。
如图4中(a)所示,在初始时刻各无人机的运动情况,由于最初时各无人机位置随机散布,因此距离雷达波束较远的无人机无法及时到达,如图4中(b)所示,三个距离雷达波束较近的无人机选择分散至两波束内以尽可能满足组网雷达的验证机制,实现拖引。
如图5所示,经过一次雷达位置变换之后,呈现出如图5中(a)所示的一种典型情况,即一侧无人机数量多于另一侧,运用改进匈牙利算法设计的回报函数可以有效解决这类问题。如图5中(b)所示无人机(1)由左侧波束转到右侧波束进行拖引,实现两波束上无人机数量的均等分配。且由无人机(1)进行拖引目标变更是总飞行距离最短的方案,侧面映证了该回报函数和算法设计的有效性。
如图6所示,当雷达策略随机时的验证图例,可以看到如果两雷达位置过于靠近时(现实中不合理的场景),假定同一无人机可以同时在两台雷达上形成有效干扰,则经过训练得到的策略是只分配其中四架无人机执行干扰任务,另外四架无人机在空白区域等待下一次雷达位置变换的结果,而这四架无人机的位置也是依概率下一次雷达变换最有可能出现波束的位置。该训练结果体现出本文场景建模时马尔科夫决策过程设计的合理性。
如图7所示是雷达位置变换后的一系列态势。如图7中(a)所示,最开始只有四架无人机即使到达指定位置,如图7中(b)所示,为了尽可能快的实现拖引,无人机两两为一组,分别对两台雷达实施干扰。如图7中(c)所示,当其余四台无人机接近时,原先左侧雷达波束上的无人机转到右侧雷达波束上,如图7中(d)所示,从而实现了无人机数量与雷达数量的均等分配。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (6)

1.一种基于无人机群的组网雷达干扰策略生成方法,其特征在于,包括:
S1、建立组网雷达探测-无人机群协同干扰的对抗场景模型;
S2、将无人机和雷达想象成质点模型,设计组网雷达和无人机群的状态空间和动作空间;
S3、求组网雷达和各个无人机之间的欧氏距离,从而构建距离矩阵;
S4、采用匈牙利算法对距离矩阵进行处理,得到雷达和无人机之间的一一对应关系的索引;
S5、利用这些索引控制无人机群飞行轨迹,使得最终的无人机群总控制量最小,得到组网雷达和无人机群的对抗博弈策略。
2.根据权利要求1所述的一种基于无人机群的组网雷达干扰策略生成方法,其特征在于,步骤S1所述的对抗场景具体为:无人机蜂群与雷达组网之间攻防场景,进攻方是轰炸机和无人机蜂群组成的进攻编队,防守方是多个雷达站点组成的雷达组网。
3.根据权利要求2所述的一种基于无人机群的组网雷达干扰策略生成方法,其特征在于,步骤S3所述的距离矩阵表达式为:
Figure FDA0003699235070000011
其中,g1,g2,g3,g4表示无人机,w′1,w′2代表虚拟雷达,dist()表示求欧氏距离。
4.根据权利要求3所述的一种基于无人机群的组网雷达干扰策略生成方法,其特征在于,所述索引表达式为:
Figure FDA0003699235070000012
其中,H表示经过初等行列变换后的距离矩阵,I为匈牙利匹配矩阵的输出索引的集合,H(i,j)为H中的元素。
5.根据权利要求4所述的一种基于无人机群的组网雷达干扰策略生成方法,其特征在于,步骤S5具体采用强化学习算法,生成组网雷达与无人机群的对抗博弈策略;
强化学习的策略更新公式为:
Figure FDA0003699235070000021
Figure FDA0003699235070000022
Figure FDA0003699235070000023
其中,
Figure FDA0003699235070000024
为梯度下降的价值函数,
Figure FDA0003699235070000025
为智能体的策略,s为当前智能体的状态,o为智能体的观测值,a为智能体的动作,r为智能体的回报值,s′为下一时刻智能体的状态,o′为下一时刻智能体的观测值,
Figure FDA0003699235070000026
为经验池,ui为第i个智能体的当前执行的动作,u′i为第i个智能体的下一时刻执行的动作,a1,...,an为其他智能体的动作,ωi为当前价值网络更新的参数,θi为当前策略网络更新的参数,
Figure FDA0003699235070000027
为智能体在当前状态s下进行动作a1,...ui,...,an的价值。L(θi)为损失函数,y为目标函数,γ为折扣因子,d为当前回合结束的标志,ωi′为下一时刻价值网络更新的参数,θi′为下一时刻策略网络更新的参数。
6.根据权利要求5所述的一种基于无人机群的组网雷达干扰策略生成方法,其特征在于,r的计算式为:
Figure FDA0003699235070000028
其中,gi为第i个无人机,wj为第j个雷达。
CN202210683593.0A 2022-06-17 2022-06-17 一种基于无人机群的组网雷达干扰策略生成方法 Active CN114911269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210683593.0A CN114911269B (zh) 2022-06-17 2022-06-17 一种基于无人机群的组网雷达干扰策略生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210683593.0A CN114911269B (zh) 2022-06-17 2022-06-17 一种基于无人机群的组网雷达干扰策略生成方法

Publications (2)

Publication Number Publication Date
CN114911269A true CN114911269A (zh) 2022-08-16
CN114911269B CN114911269B (zh) 2023-05-16

Family

ID=82771478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210683593.0A Active CN114911269B (zh) 2022-06-17 2022-06-17 一种基于无人机群的组网雷达干扰策略生成方法

Country Status (1)

Country Link
CN (1) CN114911269B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116126015A (zh) * 2022-12-19 2023-05-16 南昌航空大学 基于改进人工蜂群算法的动态环境多无人机任务分配方法
RU2807467C1 (ru) * 2023-05-11 2023-11-15 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ скрытого наведения пары перехватчиков на воздушную цель

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140111372A1 (en) * 2012-10-22 2014-04-24 Saab-Sensis Corporation Sensor system and method for determining target location using sparsity-based processing
CN103941238A (zh) * 2014-05-08 2014-07-23 西安电子科技大学 网络化雷达协同抗干扰发射功率分配方法
WO2018098775A1 (en) * 2016-12-01 2018-06-07 SZ DJI Technology Co., Ltd. Systems and methods of unmanned aerial vehicle flight restriction for stationary and moving objects
CN108731684A (zh) * 2018-05-07 2018-11-02 西安电子科技大学 一种多无人机协同区域监视的航路规划方法
CN109460065A (zh) * 2019-01-12 2019-03-12 中国人民解放军国防科技大学 基于势函数的无人机集群队形特征辨识方法及系统
CN111221352A (zh) * 2020-03-03 2020-06-02 中国科学院自动化研究所 基于多无人机协同博弈对抗的控制系统
CN112285664A (zh) * 2020-12-18 2021-01-29 南京信息工程大学 一种雷达-飞行器体系对抗仿真置信度评估方法
CN112651181A (zh) * 2020-12-31 2021-04-13 西安大衡天成信息科技有限公司 一种基于零和博弈的雷达对抗策略建模与仿真方法
CN113641191A (zh) * 2021-10-14 2021-11-12 中国人民解放军空军预警学院 预警机和干扰机协同作业的空域配置方法及设备
CN113741525A (zh) * 2021-09-10 2021-12-03 南京航空航天大学 基于策略集合maddpg多无人机协同攻防对抗方法
CN114397911A (zh) * 2022-01-18 2022-04-26 中科视拓(北京)科技有限公司 一种基于多智能体的无人机集群对抗决策方法
US20220138968A1 (en) * 2020-11-03 2022-05-05 Canadian Uavs Inc. Computer vision aircraft detection
CN114444398A (zh) * 2022-02-08 2022-05-06 扬州宇安电子科技有限公司 一种基于灰狼算法的组网雷达协同干扰资源分配方法
CN114460959A (zh) * 2021-12-15 2022-05-10 北京机电工程研究所 一种基于多体博弈的无人机群协同自主决策方法及装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140111372A1 (en) * 2012-10-22 2014-04-24 Saab-Sensis Corporation Sensor system and method for determining target location using sparsity-based processing
WO2014066360A1 (en) * 2012-10-22 2014-05-01 Saab-Sensis Corporation Sensor system and method for determining target location using sparsity-based processing
CN103941238A (zh) * 2014-05-08 2014-07-23 西安电子科技大学 网络化雷达协同抗干扰发射功率分配方法
WO2018098775A1 (en) * 2016-12-01 2018-06-07 SZ DJI Technology Co., Ltd. Systems and methods of unmanned aerial vehicle flight restriction for stationary and moving objects
CN108731684A (zh) * 2018-05-07 2018-11-02 西安电子科技大学 一种多无人机协同区域监视的航路规划方法
CN109460065A (zh) * 2019-01-12 2019-03-12 中国人民解放军国防科技大学 基于势函数的无人机集群队形特征辨识方法及系统
CN111221352A (zh) * 2020-03-03 2020-06-02 中国科学院自动化研究所 基于多无人机协同博弈对抗的控制系统
US20220138968A1 (en) * 2020-11-03 2022-05-05 Canadian Uavs Inc. Computer vision aircraft detection
CN112285664A (zh) * 2020-12-18 2021-01-29 南京信息工程大学 一种雷达-飞行器体系对抗仿真置信度评估方法
CN112651181A (zh) * 2020-12-31 2021-04-13 西安大衡天成信息科技有限公司 一种基于零和博弈的雷达对抗策略建模与仿真方法
CN113741525A (zh) * 2021-09-10 2021-12-03 南京航空航天大学 基于策略集合maddpg多无人机协同攻防对抗方法
CN113641191A (zh) * 2021-10-14 2021-11-12 中国人民解放军空军预警学院 预警机和干扰机协同作业的空域配置方法及设备
CN114460959A (zh) * 2021-12-15 2022-05-10 北京机电工程研究所 一种基于多体博弈的无人机群协同自主决策方法及装置
CN114397911A (zh) * 2022-01-18 2022-04-26 中科视拓(北京)科技有限公司 一种基于多智能体的无人机集群对抗决策方法
CN114444398A (zh) * 2022-02-08 2022-05-06 扬州宇安电子科技有限公司 一种基于灰狼算法的组网雷达协同干扰资源分配方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116126015A (zh) * 2022-12-19 2023-05-16 南昌航空大学 基于改进人工蜂群算法的动态环境多无人机任务分配方法
RU2807467C1 (ru) * 2023-05-11 2023-11-15 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ скрытого наведения пары перехватчиков на воздушную цель

Also Published As

Publication number Publication date
CN114911269B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Zhihao et al. Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs
CN111240353B (zh) 基于遗传模糊树的无人机协同空战决策方法
Jiandong et al. UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning
Wang et al. Improving maneuver strategy in air combat by alternate freeze games with a deep reinforcement learning algorithm
Yang et al. Evasive maneuver strategy for UCAV in beyond-visual-range air combat based on hierarchical multi-objective evolutionary algorithm
CN113741525B (zh) 基于策略集合maddpg多无人机协同攻防对抗方法
Coon et al. Control strategies for multiplayer target-attacker-defender differential games with double integrator dynamics
CN111077909B (zh) 一种基于视觉信息的新型无人机自组群自洽优化控制方法
Li et al. A Multi-UCAV cooperative occupation method based on weapon engagement zones for beyond-visual-range air combat
Analikwu et al. Multi-agent learning in the game of guarding a territory
Yue et al. Deep reinforcement learning for UAV intelligent mission planning
CN113741186B (zh) 一种基于近端策略优化的双机空战决策方法
CN114911269A (zh) 一种基于无人机群的组网雷达干扰策略生成方法
Yang et al. Online hierarchical recognition method for target tactical intention in beyond-visual-range air combat
Yuan et al. Research on UCAV maneuvering decision method based on heuristic reinforcement learning
Gong et al. UAV cooperative air combat maneuvering confrontation based on multi-agent reinforcement learning
CN115903865A (zh) 一种飞行器近距空战机动决策实现方法
CN112305913A (zh) 基于直觉模糊博弈的多uuv协同动态机动决策方法
Wang et al. Threat potential field based Pursuit–Evasion Games for underactuated Unmanned Surface Vehicles
Xianyong et al. Research on maneuvering decision algorithm based on improved deep deterministic policy gradient
CN113159266B (zh) 基于麻雀搜索神经网络的空战机动决策方法
Li et al. Manoeuvre decision‐making of unmanned aerial vehicles in air combat based on an expert actor‐based soft actor critic algorithm
Duan et al. Autonomous maneuver decision for unmanned aerial vehicle via improved pigeon-inspired optimization
CN115047907B (zh) 一种基于多智能体ppo算法的空中同构编队指挥方法
Xiong et al. Multi-uav 3d path planning in simultaneous attack

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant