CN114907360A - 一种无金属铁电纳米晶mdabco-nh4i3的制备方法 - Google Patents

一种无金属铁电纳米晶mdabco-nh4i3的制备方法 Download PDF

Info

Publication number
CN114907360A
CN114907360A CN202210643166.XA CN202210643166A CN114907360A CN 114907360 A CN114907360 A CN 114907360A CN 202210643166 A CN202210643166 A CN 202210643166A CN 114907360 A CN114907360 A CN 114907360A
Authority
CN
China
Prior art keywords
mdabco
nanocrystalline
metal
solid
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210643166.XA
Other languages
English (en)
Inventor
刘文超
周云
鲁峰
谷东航
冯贤斌
宋挺辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210643166.XA priority Critical patent/CN114907360A/zh
Publication of CN114907360A publication Critical patent/CN114907360A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种宽带隙无金属钙钛矿铁电纳米晶MDABCO‑NH4I3的制备方法,包括如下步骤:(1)将NH4I(固体溶解在N,N‑二甲基甲酰胺和HI酸的混合溶液中,再向其中加入一定量的油酸和正辛胺;(2)将MDABCOI固体单独溶解在N,N‑二甲基甲酰胺中,再加入到上述前驱体溶液中,充分反应,加入乙酸乙酯,迅速产生白色固体;(3)用乙酸乙酯洗涤离心,40℃干燥,得到成品。本发明利用长链的油酸和正辛胺,在室温条件下有效控制NH4I与MDABCOI的反应过程,通过有效调节两者比例,制备出纯相结构的无金属钙钛矿纳米晶MDABCO‑NH4I3。这种方法具有反应时间短、设备简单、成本低等优点,是一种全新的制备宽带隙无金属钙钛矿铁电纳米晶MDABCO‑NH4I3的方法。

Description

一种无金属铁电纳米晶MDABCO-NH4I3的制备方法
技术领域
本发明涉及压电材料领域,具体涉及一种光/压电催化剂无金属钙钛矿纳米晶MDABCO-NH4I3的制备方法。
背景技术
传统能源的枯竭问题和环境问题日益严重。而压电材料可以将环境中的一次能源(如机械能)转换为二次能源(如化学能),为获取可再生能源提供了良好的范例。
卤化钙钛矿因其结构简单、光吸收强、载流子迁移率高等优点,已被广泛应用于太阳能电池、发光二极管等领域。卤化钙钛矿材料在催化领域的研究则刚刚起步。然而,传统的窄带隙钙钛矿材料由于阳离子的毒性仍然会引起环境问题,很难实现大规模的商用。无金属钙钛矿铁电材料是一类新型宽带隙的钙钛矿材料,显示出有吸引力的铁电和压电特性。由于其铁电/压电性,可以与常见的光催化进行联动,大大拓宽其在催化领域的应用。
无金属铁电钙钛矿单晶制备已有所报道,铁电单晶材料主要应用于非线性激光器等。本发明首次实现了纳米结构的无金属钙钛矿铁电纳米晶MDABCO-NH4I3的制备,由于不含金属、常温制备以及纳米结构等特质,在光/压电催化等领域具有很好的应用前景。
据申请人所知,无金属钙钛矿铁电纳米晶MDABCO-NH4I3的制备还没被报道过,是一种全新的合成方法。
发明内容
本发明的目的是制备无金属钙钛矿铁电MDABCO-NH4I3纳米晶,可以避免重金属毒性、成本昂贵等问题。
本发明的具体技术方案如下:
一种无金属钙钛矿铁电纳米晶MDABCO-NH4I3的制备方法,包括如下步骤:
(1)将10mL DMF和2.5mL氢碘酸加入到圆底三颈烧瓶中,再加入1mL磷酸防止碘离子氧化,溶解后,称取5mmol,0.72g NH4I固体,充分溶解后,将1mL油酸和0.5mL正辛胺加入到上述混合液中,搅拌2h;
(2)MDABCOI(典化N,N-二氨基-1,4-二氮杂二环[2.2.2]辛烷)的制备:将2g,0.0178mol DABCO(1,4-二氮杂二环[2.2.2]辛烷)加入到三颈烧瓶中,加入到50mL正己烷中使其完全溶解,然后向溶液中缓慢加入1.11mL碘甲烷(0.0178mol),继续反应1.5h,反应完全后,将白色沉淀在离心速度为12000rpm条件下离心5min,用正己烷反复洗涤3-5次后,样品于40℃下烘干,密封保存以备后用;
(3)称取1.5mmol MDABCOI固体单独溶解在DMF中后,快速加入到(1)溶液中,继续搅拌5min;
(4)加入20mL乙酸乙酯,迅速形成白色乳浊液,收集沉淀于12000rpm高速离心机中离心,反复洗涤5-7次后,干燥备用。
NH4I和MDABCOI的摩尔比对于得到纯相结构的无金属钙钛矿铁电MDABCO-NH4I3纳米晶至关重要,当两者摩尔比大于等于10∶2且小于等于10∶3时,能够得到有纯的钙钛矿相。而如果采用化学剂量比的1∶1,则得不到纯相结构的MDABCO-NH4I3
步骤(3)中,所述MDABCOI加入前驱体后的反应时间为5min,较短的反应时间可以抑制单晶的成核,从而形成较小的纳米尺寸。
步骤(3)中,所述洗涤溶液为乙酸乙酯。
本发明在室温条件下有效控制NH4I与MDABCOI的反应过程,第一次制备出纳米量级纯相结构的无金属钙钛矿铁电纳米晶MDABCO-NH4I3。这种方法具有反应时间短、操作简单等优点,是一种全新的制备无金属全有机铁电MDABCO-NH4I3纳米晶的方法。
附图说明
图1无金属钙钛矿铁电材料MDABCO-NH4I3的化学结构;
图2为实施例1制备的MDABCO-NH4I3成品的XRD图谱;
图3为实施例1中所获得的成品的SEM图及元素分析能谱图;
图4为实施例1中所获得的成品的TEM图谱;
图5为实施例1中所获得的成品的紫外可见吸收谱;
图6为实施例1中所获得的成品的(a)热重曲线,(b)差热分析DSC图。
图7MDABCO-NH4I3纳米晶压电催化降解苏丹红(III)吸收光谱
具体实施方式
实施例1
向100mL单颈烧瓶中加入10mL N,N-二甲基甲酰胺和2.5mL盐酸,称取5mmol NH4I固体,搅拌使之完全溶解,再向其中加入1mL油酸和0.5mL正辛胺,搅拌2h。然后称取1.5mmolMDABCOI固体单独溶解在N,N-二甲基甲酰胺中后逐滴加入到前驱体溶液中,继续搅拌5min,向其中加入20mL乙酸乙酯,迅速产生白色沉淀,将溶液在12000r/min高速离心机中洗涤离心5-7次,将洗涤离心后固体于40℃下干燥12小时,得到MDABCO-NH4I3成品。
实施例2
图1无金属钙钛矿铁电材料MDABCO-NH4I3的结构和化学结构。图2是各种比例的前驱体材料合成的纳米晶的XRD图。与报道的MDABCO-NH4I3单晶衍射峰对比,当前驱体NH4I与MDABCOI摩尔比大于10∶3时,衍射峰在20.1°、23.8°以及25.84°出现轻微的杂峰(图中星号代表杂相)。当前驱体摩尔比小于等于10∶3并大于等于10∶2时,晶型与单晶纯相一致。结果表明,制备出纯相的MDABCO-NH4I3纳米晶。
实施例3
为了进一步表征其尺寸大小和形貌,我们对MDABCO-NH4I3样品进行了SEM、EDS和TEM的表征。图3为低倍率下MDABCO-NH4I3纳米晶的SEM图像,可以明显看出纳米晶的形状和均匀性,表明制备的纳米晶几乎是单分散的。在中等放大率下该图像清楚地显示了尺寸在370-650nm之间的均匀纳米立方体。此外,从SEM图像中未观察到团聚或其他结构,表明成功制备了这一新型纳米尺寸的纯有机无金属卤化钙钛矿材料。SEM-EDS结果表明了纳米晶的表面形貌,证实了钙钛矿结构中存在C、N和I元素,N与I的元素比为1∶1。TEM图像(图4)进一步证实了MDABCO-NH4I3纳米立方体的形成。
实施例4
如图5,通过紫外可见吸收分别对上述实施例1制得的MDABCO-NH4I3纳米晶溶液的光学吸收和发光特性进行了分析。根据公式(αhv)n=A(hv-Eg),其中α,h,v,Eg和A分别是吸光系数、普朗克常量、光子频率、半导体禁带宽度和常数,n值取决于半导体的带间跃迁类型,即直接带隙还是间接带隙。我们将MDABCO-NH4I3样品的吸收光谱曲线拟合成(αhv)2与hv之间的关系曲线(图4插图),发现MDABCO-NH4I3样品的带隙为5.63eV,是一种有别于常见窄带隙钙钛矿材料的宽带隙钙钛矿铁电材料。
实施例5
图6(a)为MDABCO-NH4I3纳米晶重量随温度的变化曲线。分析表明热分解温度约为517.9K。由图6(b)的差热分析可知,升温曲线在431K附近的峰表明发生了铁电-顺电的相变,而在降温曲线中在372K附近的峰是因为发生了顺电-铁电的相变。这个相变温度高于绝大多数高温分子铁电体和典型的铁电体BaTiO3(393K),表明这个材料可以在室温到较高温度下(431K)保持铁电/压电性能,具有很好的应用前景。
实施例6
将MDABCO-NH4I3纳米晶分散至的苏丹红(III)溶液中。室温下在100W超声环境下开始压电催化过程。通过紫外分光光度计在特征波长处分析剩余苏丹红(III)浓度的变化。图7为纳米晶压电光催化降解苏丹红(III)的紫外吸收图,通过紫外吸收的下降表明纳米晶有明显的压电催化降解有机物效果。
本发明不限于上述实施方式,任何采用与本结构相同或相似的制备方法,均在本发明的保护范围内。

Claims (5)

1.一种无金属钙钛矿铁电纳米晶MDABCO-NH4I3的制备方法,其特征在于包含如下步骤:
(1)将NH4I固体溶解在N,N-二甲基甲酰胺和HI酸的混合溶液中,向其中加入一定量的油酸和正辛胺,搅拌反应使之完全溶解;
(2)通过DABCO与碘甲烷在正己烷中反应制备MDABCOI;
(3)将MDABCOI固体加入到上述前驱体溶液中,继续搅拌反应5分钟,加入乙酸乙酯,迅速产生白色固体;
(4)用乙酸乙酯洗涤,在12000r/min高速离心机中离心,干燥,得到成品。
2.根据权利要求1所述的方法,其特征在于步骤(1)中,所述N,N-二甲基甲酰胺和HI酸的混合溶液中两者体积比为4∶1。
3.根据权利要求1所述的方法,其特征在于步骤(1)中,所述油酸和正辛胺的体积比为2∶1。
4.根据权利要求1所述的方法,其特征在于步骤(3)中,所述NH4I和MDABCOI的摩尔比为大于等于10∶2且小于等于10∶3。
5.根据权利要求1所述的方法,其特征在于步骤(4)中,所述洗涤溶液为乙酸乙酯。
CN202210643166.XA 2022-06-08 2022-06-08 一种无金属铁电纳米晶mdabco-nh4i3的制备方法 Pending CN114907360A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210643166.XA CN114907360A (zh) 2022-06-08 2022-06-08 一种无金属铁电纳米晶mdabco-nh4i3的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210643166.XA CN114907360A (zh) 2022-06-08 2022-06-08 一种无金属铁电纳米晶mdabco-nh4i3的制备方法

Publications (1)

Publication Number Publication Date
CN114907360A true CN114907360A (zh) 2022-08-16

Family

ID=82770729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210643166.XA Pending CN114907360A (zh) 2022-06-08 2022-06-08 一种无金属铁电纳米晶mdabco-nh4i3的制备方法

Country Status (1)

Country Link
CN (1) CN114907360A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445656A (zh) * 2022-09-26 2022-12-09 南京工业大学 钙钛矿型光/压电共催化剂(4-氨基四氢吡喃)2PbBr4纳米晶的制备与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028955A (zh) * 2019-05-20 2019-07-19 南京工业大学 无金属钙钛矿量子点DABCO-NH4X3(X=Cl,Br,I)的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028955A (zh) * 2019-05-20 2019-07-19 南京工业大学 无金属钙钛矿量子点DABCO-NH4X3(X=Cl,Br,I)的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HENG-YUN YE ET AL.: "Metal-free three-dimensional perovskite ferroelectrics" *
THOMAS W. KASEL ET AL.: "Metal-free perovskites for non linear optical materials" *
季丽君: "几类杂化有机-无机钙钛矿材料的力学性质研究" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445656A (zh) * 2022-09-26 2022-12-09 南京工业大学 钙钛矿型光/压电共催化剂(4-氨基四氢吡喃)2PbBr4纳米晶的制备与应用
CN115445656B (zh) * 2022-09-26 2023-12-19 南京工业大学 钙钛矿型光/压电共催化剂(4-氨基四氢吡喃)2PbBr4纳米晶的制备与应用

Similar Documents

Publication Publication Date Title
Prasad et al. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction
Kotkata et al. Synthesis and structural characterization of CdS nanoparticles
Xu et al. High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties
CN105417507A (zh) 一种氮化碳纳米颗粒的制备方法及所得产品
CN105879884A (zh) 一维ZnS/CdS-C纳米复合材料及其制备方法
Zikalala et al. Facile green synthesis of ZnInS quantum dots: temporal evolution of their optical properties and cell viability against normal and cancerous cells
Wang et al. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties
WO2011005440A2 (en) Aggregate particles of titanium dioxide for solar cells
Anandan et al. Tuning the crystalline size of template free hexagonal ZnO nanoparticles via precipitation synthesis towards enhanced photocatalytic performance
CN109261181A (zh) 利用异丙胺插层和分层的Ti3C2原位合成TiO2@Ti3C2的方法及产物
Mamiyev et al. CuS nanoparticles synthesized by a facile chemical route under different pH conditions
CN114907360A (zh) 一种无金属铁电纳米晶mdabco-nh4i3的制备方法
CN110368954B (zh) 水热掺杂法制备Cu:Ag-In-Zn-S量子点光催化剂及其应用
Steky et al. Bcl morphology formation strategy on nanostructured titania via alkaline hydrothermal treatment
Zlobin et al. Formation and growth of anatase TiO2 nanocrystals under hydrothermal conditions
CN106964388B (zh) 一种钨酸亚锡掺杂二维石墨相氮化碳复合光催化剂的制备方法
CN109261180A (zh) 利用二甲亚砜插层和分层的Ti3C2原位合成TiO2@Ti3C2的方法及产物
Gusatti et al. Effect of reaction parameters on the formation and properties of ZnO nanocrystals synthesized via a rapid solochemical processing
CN110028955B (zh) 无金属钙钛矿量子点DABCO-NH4X3(X=Cl,Br,I)的制备方法
Anwar et al. Hierarchical flower-like nanostructures of rutile TiO2 and their photocatalytic activity
Choubey et al. Microwave assisted synthesis of CdS nanoparticles for structural and optical characterization
Duo et al. Fabrication, mechanism, formic acid− tuned degradation and photocatalytic hydrogen production of novel modified ZnO spheres by L− TA− DMF assisted hydrothermal method
Santhosh Kumar et al. Synthesis, structural and morphological studies of CdS nanopowder
Koao et al. Dependent of reaction time on Cu-doped ZnO nanostructures prepared by chemical bath method
CN112877059B (zh) 一种长荧光寿命MAPbBr3钙钛矿纳米晶的制备方法和光催化降解有机污染物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220816

RJ01 Rejection of invention patent application after publication