CN114904536A - 一种多孔生物炭基MnFe2O4复合物的制备方法 - Google Patents

一种多孔生物炭基MnFe2O4复合物的制备方法 Download PDF

Info

Publication number
CN114904536A
CN114904536A CN202210444812.XA CN202210444812A CN114904536A CN 114904536 A CN114904536 A CN 114904536A CN 202210444812 A CN202210444812 A CN 202210444812A CN 114904536 A CN114904536 A CN 114904536A
Authority
CN
China
Prior art keywords
mnfe
biochar
composite
preparing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210444812.XA
Other languages
English (en)
Inventor
吉远辉
范维康
程龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202210444812.XA priority Critical patent/CN114904536A/zh
Publication of CN114904536A publication Critical patent/CN114904536A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • B01J35/33
    • B01J35/39
    • B01J35/617
    • B01J35/635
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本发明公开了一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:紫花苜蓿用超纯水冲洗,烘干,搅碎,筛分,得到尺寸均一的紫花苜蓿粉末;紫花苜蓿粉末与活化剂混合后,进行共热解反应;将反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭;将黑色粉末生物炭置于超纯水中超声分散,然后与摩尔比为2~4:1的FeCl3·6H2O和MnCl2·4H2O均匀混合,调节pH为碱性,进行高温高压水热反应;用超纯水、乙醇依次冲洗步骤四反应后的混合物,真空干燥。本发明制备原料为农业废弃物紫花苜蓿,来源广,成本低,能够实现废弃物充分再利用,有利于提高物紫花苜蓿附加值。

Description

一种多孔生物炭基MnFe2O4复合物的制备方法
技术领域
本发明涉及MnFe2O4复合物制法,具体为一种多孔生物炭基MnFe2O4复合物的制备方法。
背景技术
近年来,由于农业和制药厂的快速发展,在河流和饮用水中频繁检出抗生素。最新的研究结果表明,抗生素难以降解,在环境中可长期保持。水环境中的抗生素可引发人和动物体内抗生素耐药基因的增加,对生态环境造成潜在的基因污染。如今,抗生素耐药性问题已成为全球公共卫生问题之一。
通过激活过氧单硫酸盐或过氧二硫酸盐的高级氧化技术(AOT)已被广泛用于去除抗生素,并显示出良好的性能。活性氧(ROS)如硫酸盐自由基和羟基自由基可以通过紫外线、过渡金属活化和热活化在原位形成。在储存和运输方面,过硫酸盐比过氧化氢具有更高的稳定性和便利性。虽然过硫酸盐活化法具有上述优点,但基于过硫酸盐的 AOT仍有很大的缺点,如成本高,处理后的水可能会产生毒性。亚硫酸盐作为烟气脱硫过程的副产物,近年来被认为是一种可行的替代品。此外,多种过渡金属,包括锰、铁和钴,已被应用于过硫酸盐的活化。显然,与钴相比,含铁和锰的催化剂成本低、毒性低,是更好的选择。
MnFe2O4作为一种磁性材料,在外加磁场的作用下很容易从水溶液中分离出来,为实际应用提供了一种经济有效的方法。然而,由于颗粒之间的磁性相互作用,磁性纳米颗粒容易在水中聚集,这大大降低了催化活性。有必要选择合适的载体来提高MnFe2O4的应用性能。
现有MnFe2O4制备方法存在以下缺点:催化剂的利用率低,表面活性位点少,容易发生聚集。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明的目的是提供一种来源广泛、成本低廉的多孔生物炭基MnFe2O4复合物的制备方法。
技术方案:本发明所述的一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
步骤一,紫花苜蓿用超纯水冲洗,去除表面杂质,烘干,搅碎,筛分,得到尺寸均一的紫花苜蓿粉末;
步骤二,紫花苜蓿粉末与活化剂混合后,放入管式炉中进行共热解反应;
步骤三,将步骤二反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭;
步骤四,将步骤三中的黑色粉末生物炭置于超纯水中超声分散,然后与摩尔比为2~4:1的FeCl3·6H2O和MnCl2·4H2O均匀混合,调节pH为碱性,进行高温高压水热反应;
步骤五,用超纯水、乙醇依次冲洗步骤四反应后的混合物,真空干燥,得到多孔生物炭基MnFe2O4复合物。
进一步地,步骤一中,紫花苜蓿的氮含量为4~4.5wt%。烘干是在80~110℃烘箱中干燥12~24h,搅碎使用粉碎机,筛分用20~40目筛。
进一步地,步骤二中,活化剂为氢氧化钾、氢氧化钙、氢氧化钠中的一种或多种。活化剂优选为氢氧化钾和氢氧化钙的混合物,其质量比为1~3:1,优选为1:1。紫花苜蓿粉末与活化剂的质量比为1:1~3。共热解反应在管式炉中进行,反应气氛为氮气,温度为500~800℃,升温速率为1~10℃/分钟,时间为1~10h。
进一步地,步骤四中,超声分散时间为10~60分钟,pH用1M浓度的氢氧化钠溶液调节为11~13,优选为12。高温高压水热反应在高温高压釜中进行,反应温度为 150~200℃,反应时间为2~24小时。
进一步地,步骤五,干燥温度为80~120℃,时间为12~24h。多孔生物炭基MnFe2O4复合物的比表面积为655~660m2/g,总孔体积为0.7~0.8cm3/g。
反应原理:Mn、Fe、O在反应过程中容易聚集,通过本申请步骤二到步骤四的处理,能够使其分散均匀。在高级氧化与光催化协同作用过程中,由于生物炭中大量氮掺杂构型的存在,光生电子和空穴对的分离效率提高。由于生物炭表面的孔径,以及生物炭与金属的界面相互作用使其不易聚集。
有益效果:本发明和现有技术相比,具有如下显著性特点:
1、制备原料为农业废弃物紫花苜蓿,来源广,成本低,能够实现废弃物充分再利用,两种不同类型的碱共活化,有利于生成不同尺寸的孔径,有利于四环素的传质与吸附;
2、有利于提高物紫花苜蓿的附加值,利用其富含氮元素的特点,制得的生物炭原位生成了氮掺杂构型,有较大的比表面积、类石墨结构和分级多孔结构,吸附容量大;
3、MnFe2O4中锰元素和铁元素可催化过硫酸盐反应,用于降解废水中的抗生素;且MnFe2O4是磁性材料,在外磁场的作用下易分离,便于回收再利用;
4、生物炭作为MnFe2O4的载体,可以抑制磁性MnFe2O4的聚集,提高其分散性,加速污染物与活性位点的接触,提高降解效率,在高级氧化与光催化协同作用过程中,由于生物炭中大量氮掺杂构型的存在,光生电子和空穴对的分离效率提高。
附图说明
图1是本发明的XRD谱图;
图2是本发明实施例4NBCs的扫描电镜图;
图3是MnFe2O4的扫描电镜图;
图4是本发明实施例5所得产品的扫描电镜图;
图5是本发明实施例4、实施例5所得产品的N2吸附-解吸附等温线图;
图6是本发明实施例4、实施例5所得产品的孔径尺寸分布图;
图7是本发明实施例8的材料在吸附四环素前后的FTIR对比图,其中,a为实施例4所得产品,b为实施例6所得产品,c为实施例7所得产品,d为实施例5所得产品;
图8是本发明实施例8的材料对于四环素的吸附动力学曲线,其中,a为实施例4 所得产品,b为实施例6所得产品,c为实施例7所得产品,d为实施例5所得产品;
图9是本发明实施例9中的材料与其对照样品的降解动力学曲线;
图10是本发明实施例9中的材料的准一级降解速率常数对比图。
具体实施方式
以下各实施例中,紫花苜蓿的氮含量为4~4.5wt%。
实施例1
一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
(1)紫花苜蓿用超纯水冲洗,去除表面杂质,在80℃烘箱中干燥12h,用粉碎机搅碎,用20目筛筛分,得到尺寸均一的紫花苜蓿粉末;
(2)将10g紫花苜蓿粉末与10g活化剂氢氧化钾,混合后,放入管式炉中进行共热解反应1h,反应气氛为氮气,温度为500℃,升温速率为1℃/分钟;
(3)将步骤(2)反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭;
(4)将步骤(3)中的0.05893g黑色粉末生物炭置于超纯水中超声分散10~60分钟,然后与0.1081g的FeCl3·6H2O和0.0396g MnCl2·4H2O均匀混合,用1M浓度的氢氧化钠溶液调节pH为11,在高温高压釜中进行150℃高压水热反应2小时;
(5)用超纯水、乙醇依次冲洗步骤(4)反应后的混合物,80~120℃真空干燥12h,得到多孔生物炭基MnFe2O4复合物。
所得多孔生物炭基MnFe2O4复合物的比表面积为655.36m2/g,总孔体积为0.72cm3/g。
实施例2
一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
(1)紫花苜蓿用超纯水冲洗,去除表面杂质,在110℃烘箱中干燥24h,用粉碎机搅碎,用40目筛筛分,得到尺寸均一的紫花苜蓿粉末;
(2)将10g紫花苜蓿粉末与30g活化剂,活化剂为15g氢氧化钾和15g氢氧化钠混合后,放入管式炉中进行共热解反应10h,反应气氛为氮气,温度为800℃,升温速率为10℃/分钟;
(3)将步骤(2)反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭;
(4)将步骤(3)中的黑色粉末生物炭置于超纯水中超声分散10~60分钟,然后与0.2162g的FeCl3·6H2O和0.0396g MnCl2·4H2O均匀混合,用1M浓度的氢氧化钠溶液调节pH为13,在高温高压釜中进行200℃高压水热反应24小时;
(5)用超纯水、乙醇依次冲洗步骤(4)反应后的混合物,80~120℃真空干燥24h,得到多孔生物炭基MnFe2O4复合物。
所得多孔生物炭基MnFe2O4复合物的比表面积为659.76m2/g,总孔体积为0.79cm3/g。
实施例3
一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
(1)紫花苜蓿用超纯水冲洗,去除表面杂质,在95℃烘箱中干燥18h,用粉碎机搅碎,用40目筛筛分,得到尺寸均一的紫花苜蓿粉末;
(2)将10g紫花苜蓿粉末与20g活化剂氢氧化钠混合后,放入管式炉中进行共热解反应5h,反应气氛为氮气,温度为650℃,升温速率为5℃/分钟;
(3)将步骤(2)反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭;
(4)将步骤(3)中的黑色粉末生物炭置于超纯水中超声分散10~60分钟,然后与0.1081g的FeCl3·6H2O和0.0396g MnCl2·4H2O均匀混合,用1M浓度的氢氧化钠溶液调节pH为12,在高温高压釜中进行180℃高压水热反应13小时;
(5)用超纯水、乙醇依次冲洗步骤(4)反应后的混合物,80~120℃真空干燥1h,得到多孔生物炭基MnFe2O4复合物。
所得多孔生物炭基MnFe2O4复合物的比表面积为657.18m2/g,总孔体积为0.75cm3/g。
实施例4
一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
(1)紫花苜蓿用超纯水冲洗,去除表面杂质,在100℃烘箱中干燥12h,用粉碎机搅碎,用20目筛筛分,得到尺寸均一的紫花苜蓿粉末;
(2)将10g紫花苜蓿粉末与20g活化剂混合,活化剂为10g氢氧化钾和10g氢氧化钙的混合物,放入管式炉中进行共热解反应1h,反应气氛为氮气,温度为700℃,升温速率为8℃/分钟;
(3)将步骤(2)反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭,记为NBCs。
由图2可以看出,NBCs表面光滑,缺陷位点多,孔结构发达。
实施例5
一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
(1)紫花苜蓿用超纯水冲洗,去除表面杂质,在100℃烘箱中干燥12h,用粉碎机搅碎,用20目筛筛分,得到尺寸均一的紫花苜蓿粉末;
(2)将10g紫花苜蓿粉末与20g活化剂混合,活化剂为10g氢氧化钾和10g氢氧化钙的混合物,放入管式炉中进行共热解反应1h,反应气氛为氮气,温度为700℃,升温速率为8℃/分钟;
(3)将步骤(2)反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭,记为NBCs;
(4)将步骤(3)中的黑色粉末生物炭(NBCs)0.117852g置于超纯水中超声分散 20分钟,然后与0.10812g的FeCl3·6H2O和0.0396g MnCl2·4H2O均匀混合,用1M浓度的氢氧化钠溶液调节pH为12,在高温高压釜中进行180℃高压水热反应6小时;
(5)用超纯水、乙醇依次冲洗步骤(4)反应后的混合物,100℃真空干燥18h,得到多孔生物炭基MnFe2O4复合物,记为NBCs/MnFe2O4-2:1。
图3为常规的MnFe2O4的扫描电镜图,呈准球形,并伴有少量棒状和板状结构,直径为50-200nm。图4是本实施例所得MnFe2O4复合物的扫描电镜图。由图4可以看出,最终制得的MnFe2O4复合物为多孔结构,使用NBCs作为载体来装载小尺寸的MnFe2O4纳米颗粒,并且在NBCs/MnFe2O4中,NBCs和MnFe2O4的形态没有显著变化。
图5是实施例4、实施例5所得产品的N2吸附-解吸附等温线图。从图5可以看出:根据IUPAC分类,NBCs和NBCs/MnFe2O4均具有明显回滞环的IV型吸附等温线,这证明制备的样品含有介孔,有利于污染物的传质。当相对压力小于0.01时,由于样品中存在微孔,吸附体积急剧增加。
图6是实施例4、实施例5所得产品的孔径尺寸分布图。从图6可以看出:样品同时含有微孔和介孔,这与吸附等温线分析结果一致。
实施例6
一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
(1)紫花苜蓿用超纯水冲洗,去除表面杂质,在100℃烘箱中干燥12h,用粉碎机搅碎,用20目筛筛分,得到尺寸均一的紫花苜蓿粉末;
(2)将10g紫花苜蓿粉末与20g活化剂混合,活化剂为10g氢氧化钾和10g氢氧化钙的混合物,放入管式炉中进行共热解反应1h,反应气氛为氮气,温度为700℃,升温速率为8℃/分钟;
(3)将步骤(2)反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭,记为NBCs;
(4)将步骤(3)中的黑色粉末生物炭(NBCs)0.058926g置于超纯水中超声分散 20分钟,然后与0.10812g的FeCl3·6H2O和0.0396g MnCl2·4H2O均匀混合,用1M浓度的氢氧化钠溶液调节pH为12,在高温高压釜中进行180℃高压水热反应6小时;
(5)用超纯水、乙醇依次冲洗步骤(4)反应后的混合物,100℃真空干燥18h,得到多孔生物炭基MnFe2O4复合物,记为NBCs/MnFe2O4-1:1。
实施例7
一种多孔生物炭基MnFe2O4复合物的制备方法,包含以下步骤:
(1)紫花苜蓿用超纯水冲洗,去除表面杂质,在100℃烘箱中干燥12h,用粉碎机搅碎,用20目筛筛分,得到尺寸均一的紫花苜蓿粉末;
(2)将10g紫花苜蓿粉末与20g活化剂混合,活化剂为10g氢氧化钾和10g氢氧化钙的混合物,放入管式炉中进行共热解反应1h,反应气氛为氮气,温度为700℃,升温速率为8℃/分钟;
(3)将步骤(2)反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭,记为NBCs;
(4)将步骤(3)中的黑色粉末生物炭(NBCs)0.029463g置于超纯水中超声分散 20分钟,然后与0.10812g的FeCl3·6H2O和0.0396g MnCl2·4H2O均匀混合,用1M浓度的氢氧化钠溶液调节pH为12,在高温高压釜中进行180℃高压水热反应6小时;
(5)用超纯水、乙醇依次冲洗步骤(4)反应后的混合物,100℃真空干燥18h,得到多孔生物炭基MnFe2O4复合物,记为NBCs/MnFe2O4-1:2。
将实施例4~7中得到的NBCs、NBCs/MnFe2O4-1:1、NBCs/MnFe2O4-1:2、 NBCs/MnFe2O4-2:1分别进行XRD测试,如图1,可以看出:纯MnFe2O4的典型衍射峰为尖晶石相,具有较高的结晶度,在制备过程中无杂质生成。对于NBCs,在2θ=26.46°和42.42°处存在特征衍射峰,分别属于石墨的(0 0 2)面和(1 0 0)面。此外,在NBCs/ MnFe2O4-2:1的XRD光谱中,MnFe2O4的特征衍射峰分别位于35.25°和62.46°处。这些结果表明,成功地制备了NBCs/MnFe2O4
实施例8
S1:配置4份50mg/L的四环素溶液100mL于带塞的烧瓶;
S2:将实施例4~7中得到的NBCs、NBCs/MnFe2O4-1:1、NBCs/MnFe2O4-1:2、 NBCs/MnFe2O4-2:1,在避光条件下置于25℃,200rpm的磁力水浴搅拌锅,在特定时间点取样(5分钟、10分钟、20分钟、30分钟、40分钟、50分钟、60分钟、80分钟、 100分钟、120分钟、150分钟、180分钟、240分钟、300分钟、360分钟和420分钟)
S3:取样3000rpm离心后,通过紫外-可见分光光度计测定上清液浓度。
材料对四环素的吸附能力用以下方程计算:
Figure BDA0003616260490000071
其中:V(L)表示四环素溶液的体积;C0(mg/L)和Ct(mg/L)分别表示四环素溶液的初始浓度和平衡浓度。m(g)表示生物炭的质量;Qt(mg/g)表示生物炭对四环素的吸附量。在计算吸附动力学后,分别运用准一级动力学模型与准二级动力学模型模拟。模型方程如下:
准一级动力学模型:
Figure BDA0003616260490000081
准二级动力学模型:
Figure BDA0003616260490000082
式中,Qe为平衡吸附量拟合值,单位mg/g;Qt为t时刻吸附量,单位mg/g;k1为准一级吸附速率常数,单位min-1;k2为准二级吸附速率常数,单位g·mg-1·min-1
从图8可以看出:准二级动力学更能准确的描述吸附动力学实验数据,这意味着TC在NBCs和NBCs/MnFe2O4上的吸附遵循化学吸附机理。
实施例9
S1:配置7份30mg/L的四环素溶液100mL于带塞的烧瓶,并在第1、2、3、4、6、 7号烧瓶中加入3mmol的Na2SO3
S2:分别取实施例2-4中得到的NBCs/MnFe2O4-1:1、NBCs/MnFe2O4-1:2、 NBCs/MnFe2O4-2:1、各10mg于S1配置的第1-3号烧瓶中,并向第4、5号烧瓶中加入 10mg的MnFe2O4,置于25℃,200rpm的磁力水浴搅拌锅,用低压汞灯向1-6号烧瓶照射波长为254nm的紫外光。在特定时间点取样(5分钟、10分钟、20分钟、30分钟、40分钟、50分钟、60分钟、80分钟、100分钟、120分钟、150分钟、180分钟、 240分钟、300分钟、360分钟和420分钟)。
S3:取样3000rpm离心后,通过紫外-可见分光光度计测定上清液浓度。
从图9~10可以看出:NBCs/MnFe2O4-2:1对TC的催化降解效果最好,且其速率常数更大。

Claims (10)

1.一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于,包含以下步骤:
步骤一,紫花苜蓿用超纯水冲洗,烘干,搅碎,筛分,得到尺寸均一的紫花苜蓿粉末;
步骤二,紫花苜蓿粉末与活化剂混合后,进行共热解反应;
步骤三,将步骤二反应得到的混合物冷却至室温,用稀盐酸和超纯水反复冲洗,干燥得黑色粉末生物炭;
步骤四,将步骤三中的黑色粉末生物炭置于超纯水中超声分散,然后与摩尔比为2~4:1的FeCl3·6H2O和MnCl2·4H2O均匀混合,调节pH为碱性,进行高温高压水热反应;
步骤五,用超纯水、乙醇依次冲洗步骤四反应后的混合物,真空干燥,得到多孔生物炭基MnFe2O4复合物。
2.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤一中,紫花苜蓿的氮含量为4~4.5wt%。
3.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤一中,烘干是在80~110℃烘箱中干燥12~24h,搅碎使用粉碎机,筛分用20~40目筛。
4.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤二中,活化剂为氢氧化钾、氢氧化钙、氢氧化钠中的一种或多种。
5.根据权利要求4所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤二中,活化剂为氢氧化钾和氢氧化钙的混合物,其质量比为1~3:1。
6.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤二中,紫花苜蓿粉末与活化剂的质量比为1:1~3。
7.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤二中,共热解反应在管式炉中进行,反应气氛为氮气,温度为500~800℃,升温速率为1~10℃/分钟,时间为1~10h。
8.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤四中,超声分散时间为10~60分钟,pH用氢氧化钠溶液调节为11~13,高温高压水热反应在高温高压釜中进行,反应温度为150~200℃,反应时间为2~24小时。
9.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤五,干燥温度为80~120℃,时间为12~24h。
10.根据权利要求1所述的一种多孔生物炭基MnFe2O4复合物的制备方法,其特征在于:所述步骤五中,多孔生物炭基MnFe2O4复合物的比表面积为655~660m2/g,总孔体积为0.7~0.8cm3/g。
CN202210444812.XA 2022-04-26 2022-04-26 一种多孔生物炭基MnFe2O4复合物的制备方法 Pending CN114904536A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210444812.XA CN114904536A (zh) 2022-04-26 2022-04-26 一种多孔生物炭基MnFe2O4复合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210444812.XA CN114904536A (zh) 2022-04-26 2022-04-26 一种多孔生物炭基MnFe2O4复合物的制备方法

Publications (1)

Publication Number Publication Date
CN114904536A true CN114904536A (zh) 2022-08-16

Family

ID=82764112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210444812.XA Pending CN114904536A (zh) 2022-04-26 2022-04-26 一种多孔生物炭基MnFe2O4复合物的制备方法

Country Status (1)

Country Link
CN (1) CN114904536A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109364940A (zh) * 2018-11-15 2019-02-22 湖南大学 生物炭负载铁锰双金属氧化物光芬顿复合材料及其制备方法
CN110538630A (zh) * 2019-08-27 2019-12-06 华南农业大学 一种耐酸型油茶壳基磁性活性炭及其制备方法
CN113120903A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种活性炭及其制备方法和应用
CN113648969A (zh) * 2021-09-01 2021-11-16 顶鑫环保科技有限公司 一种用于去除水体中镉的负载铁锰水热炭的制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109364940A (zh) * 2018-11-15 2019-02-22 湖南大学 生物炭负载铁锰双金属氧化物光芬顿复合材料及其制备方法
CN110538630A (zh) * 2019-08-27 2019-12-06 华南农业大学 一种耐酸型油茶壳基磁性活性炭及其制备方法
CN113120903A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种活性炭及其制备方法和应用
CN113648969A (zh) * 2021-09-01 2021-11-16 顶鑫环保科技有限公司 一种用于去除水体中镉的负载铁锰水热炭的制备和应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GUANGLI LI,ET AL: "Formation of High Surface Area Hierarchical Porous Carbon Via a Novel Two Step Activation Process for Fast Supercapacitors", CHEMISTRYSELECT, pages 2008 - 2014 *
TINGTING WU,ET AL: "Foam-like porous carbons with ultrahigh surface area from petroleum pitch and their supercapacitive performance", CHEMICAL PHYSICS LETTERS, pages 1 - 7 *
WENFENG MAO,ET AL: "Development of a Synergistic Activation Strategy for the Pilot-Scale Construction of Hierarchical Porous Graphitic Carbon for Energy Storage Applications", ACS NANO, pages 4741 *
俞伟: "苜蓿生物炭的制备及其对水体磺胺甲噁唑和铅离子去除效应与机理研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, pages 015 - 182 *
周力: "不同热解温度下苜蓿和玉米芯生物炭对水中四环素的吸附特性研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, pages 027 - 619 *
张凯: "利用苜蓿基生物炭催化硫化物还原处理顺-二氯乙烯的研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, pages 027 - 640 *
李杰: "生物炭复合金属氧化物的制备及其去除水中重金属的机制研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, pages 027 - 275 *
陈红: "活化苜蓿生物炭对三种酚类有机污染物吸附效果研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, pages 014 - 169 *

Similar Documents

Publication Publication Date Title
Zhang et al. Ultrathin gC 3 N 4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation
Huang et al. Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors
Sun et al. Synthesis of novel lignosulfonate-modified graphene hydrogel for ultrahigh adsorption capacity of Cr (VI) from wastewater
Dai et al. Engineered hydrochar composites for phosphorus removal/recovery: lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw
Cheng et al. Facile one-pot green synthesis of magnetic separation photocatalyst-adsorbent and its application
Lima et al. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties
JP6285438B2 (ja) 磁性活性炭ならびにこのような材料の調製および再生方法
Juela Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review
Pirbazari et al. Fe3O4–wheat straw: preparation, characterization and its application for methylene blue adsorption
CN107876035B (zh) 一种碳量子点/二氧化钛复合光催化材料及其制备方法和应用
Mahdavi Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+ 2, Cu+ 2, and Ni+ 2 from water
Beigi et al. Pyrolyzed magnetic NiO/carbon-derived nanocomposite from a hierarchical nickel-based metal-organic framework with ultrahigh adsorption capacity
Niu et al. Cobalt oxide loaded graphitic carbon nitride as adsorptive photocatalyst for tetracycline removal from aqueous solution
Zhang et al. Polyacrylic acid-functionalized graphene oxide for high-performance adsorption of gallium from aqueous solution
CN103007887A (zh) 碳纳米管负载多级纳米四氧化三铁吸附剂及其制备方法与应用
Allah et al. Green synthesis of AC/ZnO nanocomposites for adsorptive removal of organic dyes from aqueous solution
CN112547105B (zh) 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用
Zhang et al. Biological self-assembled hyphae/starch porous carbon composites for removal of organic pollutants from water
Mostafazadeh et al. Optimization of solvothermally synthesized ZIF-67 metal organic framework and its application for Cr (VI) adsorption from aqueous solution
CN110787826B (zh) 一种Ag负载WO3纳米纤维-多孔碳光催化材料及其制法
CN113426454A (zh) 一种三维多孔石墨烯负载纳米零价铁/锰氧化物复合材料及其制备方法和应用
Kiomarsipour et al. Synthesis and surface-functionalizing of ordered mesoporous carbon CMK-3 for removal of nitrate from aqueous solution as an effective adsorbent
Johnson et al. Simultaneous removal of As (V) and Pb (II) using highly-efficient modified dehydrated biochar made from banana peel via hydrothermal synthesis
Han et al. Activated biochar loaded CuAl-layered double hydroxide composite for the removal of aniline aerofloat in wastewater: Synthesis, characterization, and adsorption mechanism
Nguyen et al. NiCo2O4-loaded sunflower husk-derived biochar as efficient peroxymonosulfate activator for tetracycline removal in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination