CN114899257A - 一种适用于异质结电池的金属化工艺 - Google Patents

一种适用于异质结电池的金属化工艺 Download PDF

Info

Publication number
CN114899257A
CN114899257A CN202210449109.8A CN202210449109A CN114899257A CN 114899257 A CN114899257 A CN 114899257A CN 202210449109 A CN202210449109 A CN 202210449109A CN 114899257 A CN114899257 A CN 114899257A
Authority
CN
China
Prior art keywords
silicon wafer
deposition
metallization process
laser grooving
metallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210449109.8A
Other languages
English (en)
Inventor
卢春晖
崔会旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Dike Electronic Mat Co ltd
Original Assignee
Wuxi Dike Electronic Mat Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Dike Electronic Mat Co ltd filed Critical Wuxi Dike Electronic Mat Co ltd
Priority to CN202210449109.8A priority Critical patent/CN114899257A/zh
Publication of CN114899257A publication Critical patent/CN114899257A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种适用于异质结电池的金属化工艺,属于太阳能电池技术领域。具体方法为在硅片表面依次进行激光开槽、制绒、氢化本征非晶硅沉积、掺杂氢化非晶硅沉积、透明导电膜沉积、金属化;所述凹槽深度为10‑30μm,宽度为10‑30μm。本发明在硅片表面开槽,可以降低硅片表面的遮光度,增加硅片吸收太阳光的面积;由于低温导电银浆是填入凹槽的,因此可以通过控制槽体的表面积/体积来控制浆料湿重,从而降低HJT电池的银单位耗量,降低金属化成本;并且增加了银胶与TCO有效接触面积,降低了接触电阻,提高附着力。

Description

一种适用于异质结电池的金属化工艺
技术领域
本发明涉及太阳能电池技术领域,尤其是涉及一种适用于异质结电池的金属化工艺。
背景技术
异质结太阳电池(heterojunction solar cell,HJT)是一种基于光伏效应的太阳能电池,其P-N结是由非晶硅(α-Si)和晶体硅(c-Si)构成,其中非晶硅又包括本征非晶硅(i型)和掺杂非晶硅(p,n型)。异质结太阳能电池以其转换效率高、结构简单、光致衰减和温度系数低、开路电压高、制备工艺路线较PERC电池少等优点,成为最有潜力的下一代电池技术。
目前制备HJT的常规工艺流程为:首先对切割成为所需尺寸的硅片表面进行制绒清洗,即通过将硅片浸入蚀刻液中得到表面为大量金字塔的外观;而后在硅片两侧沉积本征非晶硅薄膜以及极性相反的掺杂非晶硅薄膜,通常采用化学气相沉积法(CVD);然后沉积透明导电氧化物薄膜(transparent conductive oxide,TCO),通常采用物理气相沉积法(PVD)或反应式等离子体沉积(RPD);最后在TCO薄膜表面进行表面金属化处理,通常采用丝网印刷在最外层印制精细的电路,将光生电子导出电池。
科学家和工程师对HJT的改进方向主要是提高其光电转换效率。其中影响转换效率和降低非硅成本的最为突出的一个方面是最外层金属栅线的导电性能以及单耗,目前HJT电池每片所需银浆用量是PERC电池的3倍,如何能够在降低银浆用量的同时保持良好的导电能力,是个技术难题。
现有技术中,对于降低银浆用量通常是通过开发新型的有机体系,或者引入价格低廉的导电材料来实现的,这种方法研发成本高、开发周期长,并且适应性较窄。因此,亟需开发一种简单易得且应用面广泛的金属化工艺。
发明内容
针对现有技术存在的上述问题,本发明提供了一种适用于异质结电池的金属化工艺。本发明的技术方案如下:
一种适用于异质结电池的金属化工艺,在硅片表面依次进行单面或双面激光开槽、制绒、氢化本征非晶硅沉积、掺杂氢化非晶硅沉积、透明导电膜沉积、金属化。
上述工艺步骤均采用本领域常规设备及技术手段。
进一步地,所述激光开槽是指在硅片表面采用激光雕刻出电池片所需的主栅线和/或副栅线所在位置的凹槽。
进一步地,所述凹槽深度为10-30μm,宽度为10-30μm。
进一步地,所述制绒是指使用RCA法,利用NH4OH溶液在加热条件下将Si(100)晶向腐蚀为Si(111)晶向;所述制绒的高度为2-3μm,并且在激光开槽后所得到的凹槽侧壁及底部的表面制备得到的绒面与硅片表面相同。
进一步地,所述氢化本征非晶硅沉积采用PECVD设备,在辉光放电条件下分解源气体后形成等离子态的粒子和活性基团,在硅片两面进行沉积,单侧沉积厚度为2-5nm;并且在激光开槽后所得到的凹槽侧壁及底部的表面沉积得到的氢化本征非晶硅沉积层与硅片表面相同。
进一步地,所述掺杂氢化非晶硅沉积采用PECVD,在辉光放电条件下分解源气体后形成等离子态的粒子和活性基团,其中硅片正表面气源含磷元素,背表面气源含硼元素;
在硅片的正面沉积得到的N型a-Si:H厚度为2-5nm,在硅片的背面沉积得到的P型a-Si:H厚度为2-5nm;并且在激光开槽后所得到的凹槽侧壁及底部的表面沉积得到的掺杂氢化非晶硅沉积层与该侧的硅片表面相同。
进一步地,所述透明导电膜沉积使用RPD反应等离子体镀膜设备,使用低能量高密度电子束升华靶材产生高解离率的IWO离子镀着在衬底表面,厚度为70-90nm;并且在激光开槽后所得到的凹槽侧壁及底部的表面沉积得到的透明导电膜与硅片表面相同。
进一步地,所述金属化是指采用高精度钢板/丝网印刷或点胶、喷墨、激光转印等手段,将低温导电银浆或者油墨填入激光开槽得到的凹槽内部。
更进一步地,在激光开槽的同时需要施加定位点,定位点雕刻由用于开槽的激光设备同步实现。
更进一步地,所述定位点是指在硅片四个顶点附近加上特征图案(例如圆形),所述定位点是用于在后续向凹槽内部填入导电银浆或者油墨时相应设备进行坐标参考,以确保导电银浆或者油墨的精准填覆。
本发明有益的技术效果在于:
1、本发明在硅片表面开槽,可以降低硅片表面的遮光度,增加硅片吸收太阳光的面积;
2、由于低温导电银浆是填入凹槽的,因此可以通过控制槽体的表面积/体积来控制浆料湿重,从而降低HJT电池的银单位耗量,降低金属化成本;
3、增加了银胶与TCO有效接触面积,降低了接触电阻,提高附着力。
附图说明
图1是本发明激光开槽后制备得到的电池片的栅线局部截面图。
图2是本发明激光开槽后制备得到的电池片的栅线局部立体图。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例及测试例所涉及到的工艺步骤均采用本领域常规设备及技术手段。
实施例1:单面激光开槽
如图1和图2所示,本实施例提供一种单面激光开槽的异质结太阳能电池金属化工艺,包括以下步骤:
S1、按照常规手段清洗M6单晶硅片,其中选用的硅片的厚度为150μm,硅片边长x=166mm,面积为274.15cm2,基底种类为N-type,硅片电阻率为1-3Ω·cm。
S2、设计硅片上下表面的栅线规格,其中:
正面电极的栅线设计:线边距1825μm,主栅根数12,主栅宽度90μm,主栅高度18μm,主栅截面积1620μm2,主栅间距18mm;副栅根数86,副栅宽度30μm,副栅深度30微米,副栅截面积900μm2,副栅间距1910μm。
背面电极的导电设计:主栅根数12,主栅宽度90μm,主栅高度18μm,主栅截面积1620μm2,主栅间距18mm。
S3、利用激光刻蚀机按照硅片正面主栅和副栅的布置设计,在硅片正面烧蚀出相应高度和宽度的凹槽。
在激光开槽的同时需要施加定位点,定位点雕刻由用于开槽的激光设备同步实现。所述定位点是指在硅片四个顶点附近加上特征圆形图案,便于在后续向凹槽内部填入导电银浆时相应的设备进行坐标参考,以确保导电银浆或者油墨的精准填覆。
S4、在激光开槽后的硅片上进行制绒,需注意凹槽内部的竖向侧壁和槽底同样制绒,即凹槽内部和硅片表面所得金字塔细绒高度和形状均相同。
具体方法为:采用捷佳伟创制绒清洗机,利用NH4OH溶液在加热条件下将Si(100)晶向腐蚀为Si(111)晶向;所述制绒的高度为2-3μm。
S5、在制绒后的硅片两面沉积氢化本征非晶硅,需注意凹槽内部的竖向侧壁和槽底同样沉积,即凹槽内部和硅片表面所得氢化本征非晶硅层的厚度相同。
具体方法为:采用捷佳伟创的PECVD设备,在辉光放电条件下分解源气体后形成等离子态的粒子和活性基团,在硅片两面进行沉积,单侧沉积厚度为2-5nm。
S6、在沉积了氢化本征非晶硅的正反两面分别沉积掺杂氢化非晶硅,需注意正面凹槽内部的竖向侧壁和槽底同样沉积,即正面凹槽内部和正面硅片表面所得掺杂氢化非晶硅层的厚度相同。
具体方法为:采用捷佳伟创的PECVD设备,在辉光放电条件下分解源气体后形成等离子态的粒子和活性基团,其中硅片正表面气源含磷元素,背表面气源含硼元素;在硅片的正面沉积得到的N型a-Si:H厚度为2-5nm;在硅片的背面沉积得到的P型a-Si:H厚度为2-5nm。
S7、在沉积了掺杂氢化非晶硅的正反两面分别沉积透明导电膜,需注意凹槽内部的竖向侧壁和槽底同样沉积,即凹槽内部和硅片正表面所得透明导电膜层的厚度相同。
具体方法为:采用捷佳伟创的RPD反应等离子体镀膜设备,使用低能量高密度电子束升华靶材产生高解离率的IWO镀着在衬底表面,其厚度为70-90nm。
S8、采用捷佳伟创的丝网印刷机将低温导电银浆填入沉积了透明导电膜的凹槽内部。所用低温导电银浆的型号为:主栅DK51A-B0C,副栅DK61A-F28D5。
实施例2:双面激光开槽
本实施例提供一种双面激光开槽的异质结太阳能电池金属化工艺,与实施例1不同的是在步骤S3中,利用激光刻蚀机按照硅片正反面主栅和副栅的布置设计,在硅片上下表面分别烧蚀出相应高度和宽度的凹槽,其余工艺和步骤均相同。
需注意的是在步骤S6中,每一面的凹槽内部的竖向侧壁和槽底沉积与该面相同的掺杂氢化非晶硅层,即每一面凹槽内部和改面的硅片所得掺杂氢化非晶硅层的厚度各自相同。
测试例:
在膜光生电流密度为40mA/cm2,光照强度为1000W的条件下,对比常规条件和实施例1单正面激光开槽填入导电浆料后的数据,如表1所示。
传统条件下:不进行激光开槽,按照常规手段将银浆直接印刷在硅片上。使用M6单晶硅片,主栅12根,90um宽,高18um,带焊盘;正面副栅86根,50um宽,18um高。所用导电银浆的型号为:主栅DK51A-B0C,副栅DK61A-F28D5。
实施例1所述单正面激光开槽埋栅条件下:主栅不做改变,86根副栅变为实施例1所述30um深,30um宽。副栅的高度加深是为了获得与TCO更大接触面积,在常规条件下银浆堆积高度无法达到30μm,为了对冲深度提高带来的单耗增加,将其宽度缩小为30μm,从而获得比传统印刷条件所得的副栅更低的高宽比,使得对比实验具有理论优势。
表1
测试项目 单位 传统条件 实施例1单面开槽
Voc mV 746.9 747.1
Jsc mA/cm<sup>2</sup> 38.71 39.05
Vmpp mV 647.9 646.9
Jmpp mA/cm<sup>2</sup> 37.18 37.45
FF 83.31 83.03
Rs 1.62 1.8
Rsh Ω 182 182
EFF 24.09 24.23
J0 fA/cm<sup>2</sup> 9.4 9.5
比较以上数据发现,更小的截面积造成了线电阻的上升,总串联电阻小幅提升,但是优秀的高宽比和低遮光率使电流密度和开路电压有效提升,综上可以有0.14%的光电转化效率增益。因此,通过优化填入浆料的线形以及正反面同时使用,可进一步提高光电转化效率。
目前异质结电池的单片银浆耗量在150-200mg,通过优化激光开槽控制主副删体积,可有效降低单片浆料耗量30%以上,而与异质结电池效率相当的TOPCON技术单耗在120mg左右,因此在非硅成本竞争方面具有巨大优势。此外,异质结电池在乐观情预计下按每年0.5%的光电转化效率增长,通过单正面的栅线优化设计目前可提高0.14%的效率增益,若进行双面优化,降低背面接触电阻,可使光电转化效率和单耗降低进一步得到提升。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,对于本领域的普通技术人员而言,在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (10)

1.一种适用于异质结电池的金属化工艺,其特征在于,在硅片表面依次进行激光开槽、制绒、氢化本征非晶硅沉积、掺杂氢化非晶硅沉积、透明导电膜沉积、金属化;所述激光开槽在硅片单侧表面或者双侧表面实施。
2.根据权利要求1所述的金属化工艺,其特征在于,所述激光开槽是指在硅片表面采用激光雕刻出电池片所需的主栅线和/或副栅线所在位置的凹槽。
3.根据权利要求2所述的金属化工艺,其特征在于,所述凹槽深度为10-30μm,宽度为10-30μm。
4.根据权利要求1所述的金属化工艺,其特征在于,所述制绒是指采用RCA法,利用NH4OH溶液在加热条件下将Si(100)晶向腐蚀为Si(111)晶向;所述制绒的高度为2-3μm,并且在激光开槽后所得到的凹槽侧壁及底部的表面制备得到的绒面与硅片表面相同。
5.根据权利要求1所述的金属化工艺,其特征在于,所述氢化本征非晶硅沉积采用PECVD设备,在辉光放电条件下分解源气体后形成等离子态的粒子和活性基团,在硅片两面进行沉积,单侧沉积厚度为2-5nm;并且在激光开槽后所得到的凹槽侧壁及底部的表面沉积得到的氢化本征非晶硅沉积层与硅片表面相同。
6.根据权利要求1所述的金属化工艺,其特征在于,所述掺杂氢化非晶硅沉积采用PECVD,在辉光放电条件下分解源气体后形成等离子态的粒子和活性基团;
其中硅片正表面气源含磷元素,背表面气源含硼元素;在硅片的正面沉积得到的N型a-Si:H厚度为2-5nm,在硅片的背面沉积得到的P型a-Si:H厚度为2-5nm;并且在激光开槽后所得到的凹槽侧壁及底部的表面沉积得到的掺杂氢化非晶硅沉积层与该面的硅片表面相同。
7.根据权利要求1所述的金属化工艺,其特征在于,所述透明导电膜沉积采用RPD反应等离子体镀膜设备,使用低能量高密度电子束升华靶材产生高解离率的IWO离子镀着在衬底表面,厚度为70-90nm;并且在激光开槽后所得到的凹槽侧壁及底部的表面沉积得到的透明导电膜与硅片表面相同。
8.根据权利要求1所述的金属化工艺,其特征在于,所述金属化是指采用高精度钢板和/或丝网印刷,或者点胶、电镀、喷墨、激光转印的手段,将低温导电银浆或者油墨填入激光开槽得到的凹槽内部。
9.根据权利要求1-8任一项所述的金属化工艺,其特征在于,在激光开槽的同时需要施加定位点,定位点雕刻由用于开槽的激光设备同步实现。
10.根据权利要求9所述的金属化工艺,其特征在于,所述定位点是指在硅片四个顶点附近加上特征图案,所述定位点是用于在后续向凹槽内部填入导电银浆或者油墨时相应设备进行坐标参考,以确保导电银浆或者油墨的精准填覆。
CN202210449109.8A 2022-04-26 2022-04-26 一种适用于异质结电池的金属化工艺 Withdrawn CN114899257A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210449109.8A CN114899257A (zh) 2022-04-26 2022-04-26 一种适用于异质结电池的金属化工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210449109.8A CN114899257A (zh) 2022-04-26 2022-04-26 一种适用于异质结电池的金属化工艺

Publications (1)

Publication Number Publication Date
CN114899257A true CN114899257A (zh) 2022-08-12

Family

ID=82720337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210449109.8A Withdrawn CN114899257A (zh) 2022-04-26 2022-04-26 一种适用于异质结电池的金属化工艺

Country Status (1)

Country Link
CN (1) CN114899257A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117790612A (zh) * 2023-12-29 2024-03-29 天合光能股份有限公司 太阳能电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100119292A (ko) * 2009-04-30 2010-11-09 주식회사 효성 함몰 전극형 hit 태양전지 및 그 제조방법
CN102709347A (zh) * 2012-05-30 2012-10-03 浙江晶科能源有限公司 一种埋栅结构异质结太阳电池
JP2014199875A (ja) * 2013-03-29 2014-10-23 株式会社カネカ 太陽電池、およびその製造方法、ならびに太陽電池モジュール
CN104868019A (zh) * 2015-04-13 2015-08-26 北京工业大学 一种激光刻栅a-Si/c-Si径向异质结电池及其制备方法
CN112885923A (zh) * 2020-08-12 2021-06-01 北京绿波静心新能源科技有限公司 硅太阳能电池制备方法、硅晶片以及硅太阳能电池片
CN113327999A (zh) * 2021-06-17 2021-08-31 中国科学院上海微系统与信息技术研究所 表面具有凹槽的单晶硅片、异质结太阳电池及制备方法
CN114188443A (zh) * 2021-11-18 2022-03-15 晋能清洁能源科技股份公司 一种降低碎片率的薄硅片hjt电池制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100119292A (ko) * 2009-04-30 2010-11-09 주식회사 효성 함몰 전극형 hit 태양전지 및 그 제조방법
CN102709347A (zh) * 2012-05-30 2012-10-03 浙江晶科能源有限公司 一种埋栅结构异质结太阳电池
JP2014199875A (ja) * 2013-03-29 2014-10-23 株式会社カネカ 太陽電池、およびその製造方法、ならびに太陽電池モジュール
CN104868019A (zh) * 2015-04-13 2015-08-26 北京工业大学 一种激光刻栅a-Si/c-Si径向异质结电池及其制备方法
CN112885923A (zh) * 2020-08-12 2021-06-01 北京绿波静心新能源科技有限公司 硅太阳能电池制备方法、硅晶片以及硅太阳能电池片
CN113327999A (zh) * 2021-06-17 2021-08-31 中国科学院上海微系统与信息技术研究所 表面具有凹槽的单晶硅片、异质结太阳电池及制备方法
CN114188443A (zh) * 2021-11-18 2022-03-15 晋能清洁能源科技股份公司 一种降低碎片率的薄硅片hjt电池制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117790612A (zh) * 2023-12-29 2024-03-29 天合光能股份有限公司 太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN109244194B (zh) 一种低成本p型全背电极晶硅太阳电池的制备方法
US7786376B2 (en) High efficiency solar cells and manufacturing methods
CN101118914B (zh) 一种太阳能电池及制造方法
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
US20080121264A1 (en) Thin film solar module and method of fabricating the same
EP3095139A2 (en) High efficiency solar panel
CN101232030A (zh) 用于形成了至少一个通孔的半导体结构的方法和设备
CN113410328A (zh) 一种晶硅异质结太阳能电池
CN114899257A (zh) 一种适用于异质结电池的金属化工艺
CN108352420A (zh) 光伏器件及其制造方法
CN103985778A (zh) 具有选择性发射极的异质结太阳能电池及其制备方法
CN110752274A (zh) 一种用阴罩掩膜镀膜制造hbc电池片及电池的方法
CN101820006B (zh) 高转化率硅基单结多叠层pin薄膜太阳能电池及其制造方法
CN102157572A (zh) 晶体硅太阳能电池
CN114765235A (zh) 异质结太阳能电池及其制造方法
CN210156406U (zh) 具有双层非晶硅本征层的异质结太阳能电池结构
KR20110079107A (ko) 박막 태양전지 기판용 글라스 및 그를 포함하는 박막 태양전지의 제조방법
KR20120077840A (ko) 전후면전계 태양전지 및 그 제조방법
CN108074997B (zh) 管式perc双面太阳电池及其制备方法和专用电镀设备
US20110303270A1 (en) Solar cell structure having high photoelectric conversion efficiency and method of manufacturing the same
CN103187454B (zh) 异质接面太阳能电池及其电极
CN201075389Y (zh) 一种太阳能电池
CN113471308A (zh) 一种无主栅异质结太阳电池及其制备的叠瓦组件
CN203850312U (zh) 具有选择性发射极的异质结太阳能电池
CN202049973U (zh) 一种选择性发射极晶体硅太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220812