CN114888247B - 砂型铸造测温孔处温度与实际温度对应关系的测试方法 - Google Patents

砂型铸造测温孔处温度与实际温度对应关系的测试方法 Download PDF

Info

Publication number
CN114888247B
CN114888247B CN202210420635.1A CN202210420635A CN114888247B CN 114888247 B CN114888247 B CN 114888247B CN 202210420635 A CN202210420635 A CN 202210420635A CN 114888247 B CN114888247 B CN 114888247B
Authority
CN
China
Prior art keywords
temperature
temperature measuring
measuring hole
casting
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210420635.1A
Other languages
English (en)
Other versions
CN114888247A (zh
Inventor
徐青伟
周方
耿率帅
刘盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN202210420635.1A priority Critical patent/CN114888247B/zh
Publication of CN114888247A publication Critical patent/CN114888247A/zh
Application granted granted Critical
Publication of CN114888247B publication Critical patent/CN114888247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/006Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the temperature of the molten metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本发明提供一种砂型铸造测温孔处温度与实际温度对应关系的测试方法,包括:根据实验器材和材料制作砂型,制作砂型时埋入热电偶,并采用钢针在邻近埋入位置处扎制测温孔;测温孔内插入热电偶,插入的热电偶和埋入的热电偶均与温度记录仪电性连接,开启温度记录仪;对砂型进行熔融金属浇注,温度记录仪实时记录插入测温孔的热电偶和埋入的热电偶的温度;分别改变熔融金属的浇注温度、热电偶的埋入位置与铸件之间的距离、钢针的直径和钢针的长度这四个参数中的一种,其他三个参数不变,对应获得不同浇注温度、不同测温孔位置、不同测温孔孔径和不同测温孔深度下,砂型铸造测温孔处温度与实际温度对应关系。本发明测试方法能准确测试砂型的温度。

Description

砂型铸造测温孔处温度与实际温度对应关系的测试方法
技术领域
本发明属于砂型铸造技术领域,具体涉及一种砂型铸造测温孔处温度与实际温度对应关系的测试方法。
背景技术
铸造历史悠久,在国民经济和社会发展中占据重要地位。其中,砂型铸造不受铸件尺寸、铸件结构形状及复杂程度、铸件生产批量等方面的限制,是铸件生产的主要方法,砂型铸造所生产出的铸件约占铸件总产量的80%~90%。
砂型铸造过程中使用的熔融金属温度很高,例如生产铸钢件的熔融金属温度可达1600℃,高温熔融金属蕴含的能量巨大。对于湿型砂铸造过程,如果浇注过程中型腔内含有积水,高温熔融金属遇积水后使水的温度迅速升高汽化、体积瞬间膨胀,大量的气体在有限的空间内不能及时释放,就会导致爆炸事故;或型砂含水率较高,熔融金属的能量经热传导作用传输至砂型,使型砂温度升高、型砂含有的水分汽化,也会导致爆炸事故的发生。
砂型铸造爆炸事故的主要原因之一是:熔融金属的能量经热传导作用传输至砂型,使型砂温度升高,型砂中的粘接剂、固化剂、涂料等材料汽化、热解产生气体,如果产生的气体汇聚在型腔内不能及时排出,就会导致爆炸事故。熔融金属温度越高,砂型温度升高的越快,型砂中的粘接剂、固化剂、涂料等材料汽化、热解产生气体的速度越快,发生爆炸事故的概率也越大。因此,对砂型温度进行测定,准确把握砂型温度变化,对于防止砂型铸造爆炸事故具有重要意义。
砂型铸造过程中,砂型温度测试一般采用热电偶。现场实际铸造时,为了节约成本,一般是采用比热电偶外径更大的钢针制作测温孔,将热电偶插入测温孔中测得砂型的近似温度。但是,由于熔融金属的热传导作用,使得砂型温度升高,型砂中的粘接剂、固化剂、涂料等材料汽化、热解产生气体。例如,对于树脂砂而言,铸造过程中型砂中的粘接剂、固化剂、涂料等材料热解可产生CH4、CO等气体;如果砂型中存在测温孔,CH4、CO等气体将从测温孔逸出,并带走部分能量;如果此时砂型测温孔周围的熔融金属尚未冷却,从砂型测温孔逸出的CH4、CO等气体可能会被点燃。由此可见,将热电偶插入测温孔中测得的砂型温度并不准确,不是砂型的实际温度,且熔融金属温度越高,测得的温度偏差越大。
发明内容
本发明的目的在于提供一种砂型铸造测温孔处温度与实际温度对应关系的测试方法,以解决现有砂型测温孔处测试温度不准确的问题。
为了实现上述目的,本发明提供如下技术方案:
一种砂型铸造测温孔处温度与实际温度对应关系的测试方法,所述测试方法包括以下步骤:
步骤S1,准备实验器材和材料;
步骤S2,根据实验器材和材料制作砂型,制作砂型时埋入热电偶,并采用钢针在邻近埋入位置处扎制测温孔,埋入的热电偶与铸件之间的距离和测温孔与铸件之间的距离相同;
步骤S3,在测温孔内插入热电偶,插入测温孔的热电偶和埋入的热电偶均与温度记录仪电性连接,开启温度记录仪;步骤S4,对砂型进行熔融金属浇注,温度记录仪实时记录插入测温孔的热电偶和埋入的热电偶的温度;
其中,分别改变熔融金属的浇注温度、热电偶的埋入位置与铸件之间的距离、钢针的直径和钢针的长度这四个参数中的一种,其他三个参数不变,对应获得不同浇注温度、不同测温孔位置、不同测温孔孔径和不同测温孔深度下,砂型铸造测温孔处温度与实际温度对应关系。
可选地,步骤S2中,热电偶的埋入数量为一个,测温孔对应设置一个;步骤S3中,插入测温孔的热电偶数量为一个;步骤S4中,浇注时分别设定熔融金属的不同浇注温度进行浇注,由此获得不同浇注温度下砂型铸造测温孔处温度与实际温度对应关系。
可选地,步骤S2中,热电偶的埋入数量为多个,多个热电偶的埋入位置与铸件之间的距离不同,测温孔对应设置多个,多个测温孔采用多个相同直径、相同长度的钢针扎制而成,每个测温孔与铸件之间的距离和对应埋入的热电偶与铸件之间的距离相同;步骤S3中,插入测温孔的热电偶数量为多个,分别对应插入多个测温孔内;经过步骤S4后获得不同测温孔位置下砂型铸造测温孔处温度与实际温度对应关系。
可选地,步骤S2中,热电偶的埋入数量为多个,多个热电偶的埋入位置与铸件之间的距离相同,测温孔对应设置多个,多个测温孔采用多个不同直径、相同长度的钢针扎制而成,每个测温孔与铸件之间的距离和对应埋入的热电偶与铸件之间的距离相同;步骤S3中,插入测温孔的热电偶数量为多个,分别对应插入多个测温孔内;经过步骤S4后获得不同测温孔孔径下砂型铸造测温孔处温度与实际温度对应关系。
可选地,步骤S2中,热电偶的埋入数量为多个,多个热电偶的埋入位置与铸件之间的距离相同,测温孔对应设置多个,多个测温孔采用多个相同直径、不同长度的钢针扎制而成,每个测温孔与铸件之间的距离和对应埋入的热电偶与铸件之间的距离相同;步骤S3中,插入测温孔的热电偶数量为多个,分别对应插入多个测温孔内;经过步骤S4后获得不同测温孔深度下砂型铸造测温孔处温度与实际温度对应关系。
可选地,步骤S1中,实验器材包括砂箱,实验材料包括制作砂型所需的原砂、粘接剂、固化剂、涂料,其中,砂箱包括上砂箱、下砂箱和模具;步骤S2具体为,采用砂箱、原砂、粘接剂、固化剂、涂料制作上砂型和下砂型,制作下砂型时埋入热电偶,并采用钢针在邻近埋入位置处扎制测温孔。
可选地,步骤S2中,采用手工造型工艺制作上砂型和下砂型。
可选地,步骤S2中,测温孔的孔径不小于热电偶的外径,测温孔到铸件的最小距离不小于砂型铸造的最小壁厚。
可选地,步骤S2和步骤S3中,热电偶的测温范围均为0-1800℃;步骤S3中,每个热电偶均通过连接导线与温度记录仪电性连接,且连接导线的外部包裹有石棉布。
可选地,步骤S4具体为:采用熔炼的熔融钢水对砂型进行浇注,温度记录仪实时记录插入测温孔的热电偶和埋入的热电偶的温度。
有益效果:
本发明的测试方法,通过制作砂型时埋入热电偶,用于测试该处的实际温度,并在邻近埋入位置处扎制测温孔,在测温孔内插入热电偶用于测试该处的近似温度,通过对砂型进行熔融金属浇注,可以获得测温孔处温度(即近似温度)与实际温度的对应关系;进一步地,改变熔融金属的浇注温度、热电偶的埋入位置与铸件之间的距离、钢针的直径和钢针的长度这四个参数中的一种,其他三个参数不变,对应获得不同浇注温度、不同测温孔位置、不同测温孔孔径和不同测温孔深度下,砂型铸造测温孔处温度与实际温度对应关系,进而为后续优化砂型配比提供参考。本发明的测试方法操作简单,能够准确测试砂型的温度,对于防止砂型铸造爆炸事故具有重要意义。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:
图1为本发明根据一些实施例提供的砂型的剖面结构示意图;
图2为本发明根据一些实施例提供的砂型的平面示意图;
图3为本发明根据一些实施例提供的热电偶的结构示意图;
图4为本发明根据一些实施例提供的温度记录仪的结构示意图。
图中标号:1-上砂型;2-下砂型;3-浇口;4-直浇道;5-直浇道窝;6-横浇道;7-铸件;8-分型面;9-测温孔;10-埋制热电偶,11-连接导线;12-温度记录仪。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
针对现有技术中将热电偶插入测温孔中测得的砂型温度并不准确,不是砂型的实际温度,且熔融金属温度越高,测得的温度偏差越大。为此,为了准确测试浇注过程中砂型温度,在制作砂型时将热电偶埋入砂型内,埋入的热电偶(即埋制热电偶10)测定的温度即为该处砂型的实际温度,关于砂型测温孔处温度与实际温度的对应关系,目前未有相关的研究报告。基于此,本发明提供了一种砂型铸造测温孔处温度与实际温度对应关系的测试方法。
本发明的砂型铸造测温孔处温度与实际温度对应关系的测试方法,包括以下步骤:
步骤S1,准备实验器材和材料;
步骤S2,根据实验器材和材料制作砂型,制作砂型时埋入热电偶(即埋制热电偶10),并采用钢针在邻近埋入位置处扎制测温孔9,埋入的热电偶(即埋制热电偶10)与铸件7之间的距离和测温孔9与铸件7之间的距离相同;
步骤S3,在测温孔9内插入热电偶,将插入测温孔9的热电偶和埋入的热电偶(即埋制热电偶10)均与温度记录仪12电性连接,开启温度记录仪12;
步骤S4,对砂型进行熔融金属浇注,温度记录仪12实时记录插入测温孔内的热电偶和埋入的热电偶(即埋制热电偶10)的温度;
其中,分别改变熔融金属的浇注温度、热电偶的埋入位置与铸件之间的距离、钢针的直径和钢针的长度这四个参数中的一种,其他三个参数不变,对应获得不同浇注温度、不同测温孔位置、不同测温孔孔径和不同测温孔深度下,砂型铸造测温孔处温度与实际温度对应关系。
需要说明的是,在对砂型进行熔融金属浇注之前,按照《公共场所卫生检验方法第1部分:物理因素》(GB/T 18204.1-2013)标准中所述方法对空气温度进行测量,同时采用温度记录仪12对空气温度进行测量,并根据标准测量结果对温度记录仪12进行校正。温度记录仪12具有自动存储功能,且存储的数据可导出,存储的数据可以通过U盘或USB数据线导出。在对砂型进行熔融金属浇注的过程中,温度记录仪12能够实时记录并自动存储测温孔9内的热电偶和埋入的热电偶(即埋制热电偶10)测定的温度,后续导出便可获得不同条件下砂型铸造测温孔处温度与实际温度对应关系。
本发明的测试方法,通过制作砂型时埋入热电偶(即埋制热电偶10),用于测试该处的实际温度,并在邻近埋入位置处扎制测温孔9,在测温孔9内插入热电偶用于测试该处的近似温度,通过对砂型进行熔融金属浇注,可以获得测温孔处温度(即近似温度)与实际温度的对应关系;进一步地,改变熔融金属的浇注温度、热电偶的埋入位置与铸件之间的距离、钢针的直径和钢针的长度这四个参数中的一种,其他三个参数不变,对应获得不同浇注温度、不同测温孔位置、不同测温孔孔径和不同测温孔深度下,砂型铸造测温孔处温度与实际温度对应关系,进而为后续优化砂型配比提供参考。本发明的测试方法操作简单,能够准确测试砂型的温度,对于防止砂型铸造爆炸事故具有重要意义。
本发明具体实施例中,步骤S1中,实验器材包括砂箱,实验材料包括制作砂型所需的原砂、粘接剂、固化剂、涂料,其中,砂箱包括上砂箱、下砂箱和模具;步骤S2具体为,采用砂箱、原砂、粘接剂、固化剂、涂料制作上砂型1和下砂型2,制作下砂型2时埋入热电偶(即埋制热电偶10),并采用钢针在邻近埋入位置处扎制测温孔9。
需要说明的是,砂箱提供有多个,以用于不同条件下砂型铸造测温孔处温度与实际温度对应关系的测试。
当然地,实验器材还包括有钢针、热电偶、温度记录仪12,其中,钢针提供有多个,多个钢针中具有直径不同或长度不同的钢针,热电偶提供有多个,以供后续测试实验使用。
由于砂型铸造所采用的熔融金属(比如熔融钢水)温度可达1600℃,则需要选择合适量程的热电偶。可选地,步骤S2和步骤S3中,热电偶的测温范围为0-1800℃。
本发明可选实施例中,步骤S2中,采用手工造型工艺制作上砂型1和下砂型2。
下面结合如图1和图2所示的砂型结构图对手工造型工艺进行详细说明。具体地,将下砂箱放置在平板上,铸件7模具、横浇道6模具、直浇道窝5模具放置在下砂箱内的平板上,将热电偶(即埋制热电偶10)、钢针固定在下砂箱指定位置(该位置根据实际情况来确定,埋制热电偶10与铸件7之间的距离和钢针与铸件7之间的距离相同),向下砂箱内填入混制好的型砂并捣实,用刮板沿下砂箱刮平型砂;将下砂箱翻转180°并撒上分型砂,将上砂箱对齐放置在下砂箱上,在上砂箱内放置直浇道4模具,向上砂箱内填入混制好的型砂并捣实,用刮板刮平型砂;取出直浇道4模具,移去上砂箱翻转180°放平;取出铸件7模具、横浇道6模具、直浇道窝5模具,清理分型面8并修复砂型;型砂凝固后,将上砂箱翻转180°与下砂箱进行合箱;如此便可制作得到上砂型1和下砂型2。
步骤S2中,测温孔9的孔径不小于热电偶的外径,以便于热电偶能够顺利地插入测温孔9内。
如图1所示,铸件7前端面、后端面距离铸件7中心面的距离均为l;埋制热电偶10到铸件7的最小距离为a;测温孔9到铸件7的最小距离为c;埋制热电偶10、测温孔9到铸件7中心面的距离均为b;测温孔9到铸件7的最小距离c不小于砂型铸造的最小壁厚。如此的结构设置,可以有效地避免熔融金属浇注时熔融金属对测温孔9造成影响。
如图3和图4所示,本发明具体实施例中,步骤S3中,每个热电偶(包括插入测温孔9内的热电偶和埋制热电偶10)均通过连接导线11与温度记录仪12电性连接,且连接导线11的外部包裹有石棉布。此处连接导线11采用耐火耐热的石棉布包裹,可以起到对连接导线11防护的作用。
本发明可选实施例中,步骤S2中,热电偶(即埋制热电偶10)的埋入数量为一个,测温孔9对应设置一个;步骤S3中,插入测温孔9的热电偶数量为一个;步骤S4中,浇注时分别设定熔融金属的不同浇注温度进行浇注,由此获得不同浇注温度下砂型铸造测温孔处温度与实际温度对应关系。
实际生产过程中,熔融钢水的浇注温度可选为1550-1640℃,本发明具体实施例中,步骤S4中,熔融金属为熔炼的熔融钢水,步骤S4具体为:分别设定熔炼的熔融钢水温度为1550℃、1580℃、1610℃、1640℃,浇注过程熔融钢水按照浇口3、直浇道4、横浇道6、铸件7的方向流动,直至熔融钢水充满铸件7与直浇道4,温度记录仪12实时记录插入测温孔9的热电偶和埋入的热电偶(即埋制热电偶10)的温度,由此获得不同浇注温度下砂型铸造测温孔处温度与实际温度对应关系。
通过测试结果可知,熔融钢水温度越高,砂型铸造测温孔处温度(即近似温度)与实际温度(即埋制热电偶10测定的温度)的差值越大。
本发明的可选实施例中,步骤S2中,热电偶(即埋制热电偶10)的埋入数量为多个,多个热电偶(即埋制热电偶10)的埋入位置与铸件7之间的距离不同,测温孔9对应设置多个,多个测温孔9采用多个相同直径、相同长度的钢针扎制而成,每个测温孔9与铸件7之间的距离和对应埋入的热电偶(即埋制热电偶10)与铸件7之间的距离相同;步骤S3中,插入测温孔9的热电偶数量为多个,分别对应插入多个测温孔9内;经过步骤S4后获得不同测温孔位置下砂型铸造测温孔处温度与实际温度对应关系。
本实施例中,设置多组埋入热电偶(即埋制热电偶10)和测温孔9,多个热电偶(即埋制热电偶10)的埋入位置与铸件7之间的距离不同,也即测温孔9与铸件7之间的距离不同,但多个测温孔9采用多个相同直径、相同长度的钢针扎制而成,也即多个测温孔9的孔径和深度相同,同时熔融金属的浇注温度相同,由此可以获得不同测温孔位置下砂型铸造测温孔处温度与实际温度对应关系。需要说明的是,本实施例中,步骤S4中,熔融金属可选为熔炼的熔融钢水,浇注时设定熔融钢水的浇注温度为1550-1640℃范围内的任一温度值。
通过测试结果可知,热电偶(即埋制热电偶10)的埋入位置与铸件7之间的距离越小,也即测温孔9与铸件7之间的距离越小,砂型铸造测温孔处温度与实际温度的差值越大。
本发明的可选实施例中,步骤S2中,热电偶(即埋制热电偶10)的埋入数量为多个,多个热电偶(即埋制热电偶10)的埋入位置与铸件7之间的距离相同,测温孔9对应设置多个,多个测温孔9采用多个不同直径、相同长度的钢针扎制而成,每个测温孔9与铸件7之间的距离和对应埋入的热电偶(即埋制热电偶10)与铸件7之间的距离相同;步骤S3中,插入测温孔9的热电偶数量为多个,分别对应插入多个测温孔9内;经过步骤S4后获得不同测温孔孔径下砂型铸造测温孔处温度与实际温度对应关系。
本实施例中,设置多组埋入热电偶(即埋制热电偶10)和测温孔9,多个热电偶(即埋制热电偶10)的埋入位置与铸件7之间的距离相同,也即测温孔9与铸件7之间的距离相同,多个测温孔9深度相同,熔融金属的浇注温度相同,但是多个测温孔9采用多个不同直径的钢针扎制而成,即多个测温孔9的孔径不同,由此可以获得不同测温孔孔径下砂型铸造测温孔处温度与实际温度对应关系。需要说明的是,本实施例中,步骤S4中,熔融金属可选为熔炼的熔融钢水,浇注时设定熔融钢水的浇注温度为1550-1640℃范围内的任一温度值。
通过测试结果可知,测温孔的孔径越大,砂型铸造测温孔处温度与实际温度的差值越大。
本发明的可选实施例中,步骤S2中,热电偶(即埋制热电偶10)的埋入数量为多个,多个热电偶(即埋制热电偶10)的埋入位置与铸件7之间的距离相同,测温孔9对应设置多个,多个测温孔9采用多个相同直径、不同长度的钢针扎制而成,每个测温孔9与铸件7之间的距离和对应埋入的热电偶(即埋制热电偶10)与铸件7之间的距离相同;步骤S3中,插入测温孔9的热电偶数量为多个,分别对应插入多个测温孔9内;经过步骤S4后获得不同测温孔深度下砂型铸造测温孔处温度与实际温度对应关系。
本实施例中,设置多组埋入热电偶(即埋制热电偶10)和测温孔9,多个热电偶(即埋制热电偶10)的埋入位置与铸件7之间的距离相同,也即测温孔9与铸件7之间的距离相同,多个测温孔9孔径相同,熔融金属的浇注温度相同,但是多个测温孔9采用多个不同长度的钢针扎制而成,即多个测温孔9的深度不同,由此可以获得不同测温孔深度下砂型铸造测温孔处温度与实际温度对应关系。需要说明的是,测试孔的最小深度设置为热电偶的长度,最大深度设置为贯穿砂型。本实施例中,步骤S4中,熔融金属可选为熔炼的熔融钢水,浇注时设定熔融钢水的浇注温度为1550-1640℃范围内的任一温度值。
通过测试结果可知,测温孔的深度越大,砂型铸造测温孔处温度与实际温度的差值越大。
需要说明的,不同条件(包括不同浇注温度、不同测温孔位置、不同测温孔孔径、不同测温孔深度)下砂型铸造测温孔处温度与实际温度对应关系的测试可以同时进行,也可以先后进行,其先后顺序不做限定,均在本发明的保护范围之内。
可以理解的,本发明的测试方法可以获得不同浇注温度下、不同测温孔位置下、不同测温孔孔径下、不同测温孔深度下,砂型铸造测温孔处温度与实际温度对应关系,进而为后续优化砂型配比提供参考。并且,本发明的测试方法能够准确测试砂型的温度,对于防止砂型铸造爆炸事故具有重要意义。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,所述测试方法包括以下步骤:
步骤S1,准备实验器材和材料;
步骤S2,根据实验器材和材料制作砂型,制作砂型时埋入热电偶,并采用钢针在邻近埋入位置处扎制测温孔,埋入的热电偶与铸件之间的距离和测温孔与铸件之间的距离相同;
步骤S3,在测温孔内插入热电偶,插入测温孔的热电偶和埋入的热电偶均与温度记录仪电性连接,开启温度记录仪;
步骤S4,对砂型进行熔融金属浇注,温度记录仪实时记录插入测温孔的热电偶和埋入的热电偶的温度;
其中,分别改变熔融金属的浇注温度、热电偶的埋入位置与铸件之间的距离、钢针的直径和钢针的长度这四个参数中的一种,其他三个参数不变,对应获得不同浇注温度、不同测温孔位置、不同测温孔孔径和不同测温孔深度下,砂型铸造测温孔处温度与实际温度对应关系。
2.如权利要求1所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S2中,热电偶的埋入数量为一个,测温孔对应设置一个;
步骤S3中,插入测温孔的热电偶数量为一个;
步骤S4中,浇注时分别设定熔融金属的不同浇注温度进行浇注,由此获得不同浇注温度下砂型铸造测温孔处温度与实际温度对应关系。
3.如权利要求1所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S2中,热电偶的埋入数量为多个,多个热电偶的埋入位置与铸件之间的距离不同,测温孔对应设置多个,多个测温孔采用多个相同直径、相同长度的钢针扎制而成,每个测温孔与铸件之间的距离和对应埋入的热电偶与铸件之间的距离相同;
步骤S3中,插入测温孔的热电偶数量为多个,分别对应插入多个测温孔内;
经过步骤S4后获得不同测温孔位置下砂型铸造测温孔处温度与实际温度对应关系。
4.如权利要求1所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S2中,热电偶的埋入数量为多个,多个热电偶的埋入位置与铸件之间的距离相同,测温孔对应设置多个,多个测温孔采用多个不同直径、相同长度的钢针扎制而成,每个测温孔与铸件之间的距离和对应埋入的热电偶与铸件之间的距离相同;
步骤S3中,插入测温孔的热电偶数量为多个,分别对应插入多个测温孔内;
经过步骤S4后获得不同测温孔孔径下砂型铸造测温孔处温度与实际温度对应关系。
5.如权利要求1所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S2中,热电偶的埋入数量为多个,多个热电偶的埋入位置与铸件之间的距离相同,测温孔对应设置多个,多个测温孔采用多个相同直径、不同长度的钢针扎制而成,每个测温孔与铸件之间的距离和对应埋入的热电偶与铸件之间的距离相同;
步骤S3中,插入测温孔的热电偶数量为多个,分别对应插入多个测温孔内;
经过步骤S4后获得不同测温孔深度下砂型铸造测温孔处温度与实际温度对应关系。
6.如权利要求1-5中任一项所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S1中,实验器材包括砂箱,实验材料包括制作砂型所需的原砂、粘接剂、固化剂、涂料,其中,砂箱包括上砂箱、下砂箱和模具;
步骤S2具体为,采用砂箱、原砂、粘接剂、固化剂、涂料制作上砂型和下砂型,制作下砂型时埋入热电偶,并采用钢针在邻近埋入位置处扎制测温孔。
7.如权利要求6所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S2中,采用手工造型工艺制作上砂型和下砂型。
8.如权利要求1-5中任一项所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S2中,测温孔的孔径不小于热电偶的外径,测温孔到铸件的最小距离不小于砂型铸造的最小壁厚。
9.如权利要求1-5中任一项所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S2和步骤S3中,热电偶的测温范围均为0-1800℃;
步骤S3中,每个热电偶均通过连接导线与温度记录仪电性连接,且连接导线的外部包裹有石棉布。
10.如权利要求1-5中任一项所述的砂型铸造测温孔处温度与实际温度对应关系的测试方法,其特征在于,步骤S4具体为:采用熔炼的熔融钢水对砂型进行浇注,温度记录仪实时记录插入测温孔的热电偶和埋入的热电偶的温度。
CN202210420635.1A 2022-04-20 2022-04-20 砂型铸造测温孔处温度与实际温度对应关系的测试方法 Active CN114888247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210420635.1A CN114888247B (zh) 2022-04-20 2022-04-20 砂型铸造测温孔处温度与实际温度对应关系的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210420635.1A CN114888247B (zh) 2022-04-20 2022-04-20 砂型铸造测温孔处温度与实际温度对应关系的测试方法

Publications (2)

Publication Number Publication Date
CN114888247A CN114888247A (zh) 2022-08-12
CN114888247B true CN114888247B (zh) 2023-01-06

Family

ID=82717698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210420635.1A Active CN114888247B (zh) 2022-04-20 2022-04-20 砂型铸造测温孔处温度与实际温度对应关系的测试方法

Country Status (1)

Country Link
CN (1) CN114888247B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2498959A1 (fr) * 1981-02-02 1982-08-06 Siderurgie Fse Inst Rech Detecteur thermosensible de niveau de matiere contenue dans un recipient, notamment dans une lingotiere de coulee continue
JPH0596365A (ja) * 1991-10-04 1993-04-20 Hitachi Metals Ltd 金属溶湯の引け性の判定方法
FR2693136A1 (fr) * 1992-07-03 1994-01-07 Lorraine Laminage Dispositif d'implantation d'un thermocouple dans une paroi, et lingotière de coulée continue équipée d'un tel dispositif.
JP2003214960A (ja) * 2002-01-23 2003-07-30 Hamada Heavy Industries Ltd 熱電対取り付け構造及び温度センサー
JP2013052431A (ja) * 2011-09-06 2013-03-21 Jfe Steel Corp 連続鋳造用鋳型の鋳型内温度測定方法
CN103278253A (zh) * 2013-05-07 2013-09-04 山西太钢不锈钢股份有限公司 一种罩式炉不锈钢退火效果的埋偶验证方法
CN103487157A (zh) * 2013-10-14 2014-01-01 清华大学 用于金属模具内精细多点测温的传感器组件
CN103542953A (zh) * 2013-09-30 2014-01-29 上海交通大学 平板镁合金砂型铸造中砂型温度场的测量方法
TW201427779A (zh) * 2013-01-04 2014-07-16 China Steel Corp 埋入式測溫裝置及其用於偵測熔融金屬鑄坯之水平截面溫度的方法
CN104713657A (zh) * 2015-02-02 2015-06-17 北京科技大学 一种用于确定电阻炉中钢块内部实际温度的测试方法
CN106441612A (zh) * 2016-11-25 2017-02-22 中国矿业大学 一种摩擦副三点融合测温系统及测温方法
CN108318149A (zh) * 2017-01-18 2018-07-24 无锡飞而康精铸工程有限公司 一种高精度的钛锭温度迟滞测量方法
KR20190137312A (ko) * 2018-06-01 2019-12-11 원광밸브주식회사 주조 불량 감소를 위한 주조 공정 시스템
JP2020171949A (ja) * 2019-04-11 2020-10-22 日本製鉄株式会社 連続鋳造用鋳型に対する熱電対の設置構造、連続鋳造用鋳型の温度測定方法、及び、連続鋳造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2498959A1 (fr) * 1981-02-02 1982-08-06 Siderurgie Fse Inst Rech Detecteur thermosensible de niveau de matiere contenue dans un recipient, notamment dans une lingotiere de coulee continue
JPH0596365A (ja) * 1991-10-04 1993-04-20 Hitachi Metals Ltd 金属溶湯の引け性の判定方法
FR2693136A1 (fr) * 1992-07-03 1994-01-07 Lorraine Laminage Dispositif d'implantation d'un thermocouple dans une paroi, et lingotière de coulée continue équipée d'un tel dispositif.
JP2003214960A (ja) * 2002-01-23 2003-07-30 Hamada Heavy Industries Ltd 熱電対取り付け構造及び温度センサー
JP2013052431A (ja) * 2011-09-06 2013-03-21 Jfe Steel Corp 連続鋳造用鋳型の鋳型内温度測定方法
TW201427779A (zh) * 2013-01-04 2014-07-16 China Steel Corp 埋入式測溫裝置及其用於偵測熔融金屬鑄坯之水平截面溫度的方法
CN103278253A (zh) * 2013-05-07 2013-09-04 山西太钢不锈钢股份有限公司 一种罩式炉不锈钢退火效果的埋偶验证方法
CN103542953A (zh) * 2013-09-30 2014-01-29 上海交通大学 平板镁合金砂型铸造中砂型温度场的测量方法
CN103487157A (zh) * 2013-10-14 2014-01-01 清华大学 用于金属模具内精细多点测温的传感器组件
CN104713657A (zh) * 2015-02-02 2015-06-17 北京科技大学 一种用于确定电阻炉中钢块内部实际温度的测试方法
CN106441612A (zh) * 2016-11-25 2017-02-22 中国矿业大学 一种摩擦副三点融合测温系统及测温方法
CN108318149A (zh) * 2017-01-18 2018-07-24 无锡飞而康精铸工程有限公司 一种高精度的钛锭温度迟滞测量方法
KR20190137312A (ko) * 2018-06-01 2019-12-11 원광밸브주식회사 주조 불량 감소를 위한 주조 공정 시스템
JP2020171949A (ja) * 2019-04-11 2020-10-22 日本製鉄株式会社 連続鋳造用鋳型に対する熱電対の設置構造、連続鋳造用鋳型の温度測定方法、及び、連続鋳造方法

Also Published As

Publication number Publication date
CN114888247A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
JP5869536B2 (ja) 鋳造製品の製造データ管理方法
CN2816795Y (zh) 金属流动性测试装置
CN114888247B (zh) 砂型铸造测温孔处温度与实际温度对应关系的测试方法
CN103616401B (zh) 一种用于测定空心铸件内腔收缩率的方法
CN111069539A (zh) 大型挖泥泵叶轮铸造工艺
CN110018195B (zh) 一种无损表征保护渣渣膜传热性能的方法
CN206981718U (zh) 一种制备金属型铸造试样的垂直组合多功能模具
Latte et al. Blow-hole defect analysis of cylinder block-a case study
CN110044507B (zh) 基于测温单元定位的砂型铸造精确测温方法
CN110658106A (zh) 一种铝合金流动性检测装置和方法
CN111781101A (zh) 一种基于蛇形流道的流动性测量装置及测量方法
CN108801845B (zh) 一种测试砂型铸造型腔内与排气孔处压力对应关系的方法
CN114029449B (zh) 重型燃气轮机扩散机匣铸件的铸造方法
CN206967820U (zh) 一种用于浇注环氧树脂复合材料电晕实验所需试样的模具
CN115740367A (zh) 一种解决大尺寸复杂内腔结构铸件内腔多金属的方法
CN214844305U (zh) 用于涡轮叶片的陶瓷型芯收缩率测试模具
CN108108529A (zh) 一种简便测量铸造界面换热系数的反算方法
JP6314113B2 (ja) 鋳造製品の製造データ管理方法
US2736077A (en) Method of making shell mold
CN204286947U (zh) 湿型砂热湿拉强度测试装置
CN112881137A (zh) 用于涡轮叶片的陶瓷型芯收缩率测试模具及测试方法
CN210051662U (zh) 一种测定覆膜砂流动性的设备
CN204666404U (zh) 一种制作钢水取样器的工装
JP6826751B2 (ja) 押湯形成体及びその押湯形成体を用いた鋳物の製造方法
CN206038389U (zh) 一种用于铸造铁水缩孔缩松倾向分析的测试样块

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant