CN114887056B - 一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用 - Google Patents

一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用 Download PDF

Info

Publication number
CN114887056B
CN114887056B CN202210437033.7A CN202210437033A CN114887056B CN 114887056 B CN114887056 B CN 114887056B CN 202210437033 A CN202210437033 A CN 202210437033A CN 114887056 B CN114887056 B CN 114887056B
Authority
CN
China
Prior art keywords
dlmsns
ultra
small
reaction
dcsafm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210437033.7A
Other languages
English (en)
Other versions
CN114887056A (zh
Inventor
杨晓英
郭朝阳
辛玉嘉
王银松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Medical University
Original Assignee
Tianjin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Medical University filed Critical Tianjin Medical University
Priority to CN202210437033.7A priority Critical patent/CN114887056B/zh
Publication of CN114887056A publication Critical patent/CN114887056A/zh
Application granted granted Critical
Publication of CN114887056B publication Critical patent/CN114887056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0038Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/14Drugs for genital or sexual disorders; Contraceptives for lactation disorders, e.g. galactorrhoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种基于供氧和超小Cu‑Se‑Au的多功能仿生纳米粒子的制备方法和应用,具体为一种基于供氧和超小Cu‑Se‑Au的多功能仿生纳米粒子及其制备方法和在三阴性乳腺癌治疗中的应用。该多功能仿生纳米粒子以树枝状大孔介孔硅纳米粒子为载体,依次利用环氧硅烷和柠檬酸对其外表面进行改性,然后原位沉积具有放射增敏和光热转换性能的超小Cu‑Se‑Au合金纳米粒子;利用全氟硅烷对其内表面进行修饰,用于负载具有高携氧能力的全氟己烷,为乏氧肿瘤提供外源氧供;用白细胞膜进行表面仿生修饰,介导治疗剂的肿瘤靶向递送,进而降低对正常组织的损伤。最终通过联合光热疗法和放疗发挥协同增效的抗肿瘤作用。

Description

一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备 方法和应用
技术领域
本发明涉及一种超小粒径Cu-Se-Au多功能仿生纳米粒子的制备方法和应用,具体为一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子及其制备方法和在三阴性乳腺癌治疗剂中的应用。
背景技术
目前,乳腺癌已成为全球最常见的癌症,其中三阴性乳腺癌是侵袭性强、复发风险高且难治愈的一种亚型。在临床治疗方法中,放疗是针对多种类型乳腺癌的一种基本治疗手段。然而,肿瘤细胞乏氧导致的辐射抵抗以及放射线对正常组织的副作用极大地限制了放疗的临床应用,并且单独使用放疗难以完全消融肿瘤。因此,研发安全有效的放疗增敏剂具有重要的科学意义与临床价值。
增强乏氧环境下肿瘤细胞的辐射敏感性可以有效提高三阴性乳腺癌的放疗疗效。临床上发展了多种供氧策略改善肿瘤乏氧,用于增强放疗抗肿瘤疗效,如高压氧疗法、烟酰胺、输血、促红细胞生成素、硝基咪唑、缺氧细胞毒素破坏缺氧细胞等。然而,这些策略存在各自的局限,如神经毒性、操作复杂以及临床实施难度大等,限制了它们的广泛应用。全氟化碳具有极高的氧亲和性,氧溶解度约为水的20倍,全血的2–3倍,能够有效携载并释放氧气,体内组织利用率可达到其氧容量的90%。因此,临床上全氟化碳可以被用作输血或急救时的血液代用品。然而,由于疏水性强且沸点低,全氟化碳在体内需要理想的载体稳定输送,同时靶向输送全氟化碳和控制氧气释放将其用于改善肿瘤乏氧也十分重要。
另一个提高放疗疗效的重要策略是应用纳米放射增敏剂。近年来,高Z元素半导体放疗增敏剂(如硒化铋、二硫化钨、氧化钨等)因其具有比较强的X射线衰减能力和易于合成等优点而得到了迅猛发展。半导体Cu2-xE(E = S、Se、Te,0≤x≤1)纳米粒子可以通过化学掺杂高Z元素构建放射增敏剂。由于铜缺陷产生强局域表面等离子体共振,Cu2-xE在近红外(NIR)Ⅰ区(750–900 nm)和NIR Ⅱ区(1000–1700 nm)具有较高的吸光度和良好的光热转换效率,还可作为光敏剂应用于肿瘤的光热治疗。有研究将Cu2-xSe与高Z元素结合制备放疗增敏剂,联合放疗与光热疗法实现肿瘤的完全消融和不复发。超小合金纳米粒子可以较快地从体内排出,毒副作用小,被认为是性质优良的放疗增敏剂。
细胞膜仿生修饰能够利用细胞膜特性提高药物的体内递送效率,近年来在肿瘤治疗研究领域得到广泛应用。将纳米载体技术与细胞膜仿生修饰相结合融合了材料学和仿生学的优势而备受关注。表面包覆细胞膜能够延长纳米载体的血液循环时间,避免体内免疫系统清除,有利于通过高通透性和滞留(EPR)效应实现肿瘤靶向递送。白细胞膜表面的淋巴细胞功能相关抗原-1(LFA-1)能够与肿瘤血管内皮细胞表面的细胞间黏附分子-1(ICAM-1)特异性结合,进而黏附和跨越血管内皮迁移至肿瘤组织。
中国专利CN106075443A公开了一种金包覆硒化铜纳米粒子及其制备方法与应用,其中,合成的Cu2-xSe@Au纳米粒子粒径大约为15 nm,具有生物相容性和稳定性,有利于癌细胞吞噬,在激光照射下通过材料的光热效应能够更有效的杀死癌细胞。
目前尚无一种将全氟化碳、超小合金纳米放射增敏剂与白细胞膜修饰的仿生纳米给药系统。本发明提供的多功能仿生纳米粒子能够高效整合肿瘤靶向递送、外源氧供、光热性能和放射增敏多种功能于一体,通过联合低剂量X射线辐射下的放疗与光热疗法,获得对三阴性乳腺癌增效减毒的治疗疗效。
本发明拟联合全氟化碳缓解肿瘤乏氧与超小Cu-Se-Au合金纳米粒子的放疗增敏及其光热性能治疗三阴性乳腺癌。纳米载体技术的发展为高效共载和靶向递送多种治疗剂,以获得协同增效的抗肿瘤作用提供了可能。其中,树枝状大孔介孔硅纳米粒子(Dendritic large-pore mesoporous silica nanoparticles, DLMSNs)具有较高的内表面可达性、可调的孔结构、较大的孔容积和易于表面修饰等优势,近年来被广泛作为载体材料用于肿瘤的诊断与治疗。通过对DLMSNs内外表面双重功能化,能够同时实现对两种治疗剂的携载。
发明内容
本发明的目的在于提供一种超小粒径Cu-Se-Au多功能仿生纳米粒子的制备方法和应用。本发明为一种肿瘤靶向性强、可同时递送全氟化碳和兼具光热及放射增敏性能的超小合金的仿生纳米递送系统,该多功能仿生纳米粒子降低对正常组织的损伤,最终通过联合光热疗法和放疗发挥协同增效的抗肿瘤作用,特别为临床三阴性乳腺癌的精准、高效和联合治疗提供了新方法与新策略。制备方法是通过对DLMSNs孔的内表面修饰氟碳链,将疏水性全氟化碳负载在DLMSNs的孔内,对DLMSNs孔的外表面修饰羧基,原位沉积超小Cu-Se-Au合金纳米粒子,最后用白细胞膜对纳米粒子进行包裹,以实现肿瘤靶向递送、外源氧供、光热性能和放射增敏等多种功能。
本发明利用DLMSNs的放射性大孔径和易于修饰的特点,创新性地对内外表面进行双功能化修饰,高效共载超小Cu-Se-Au合金纳米粒子和全氟己烷,表面仿生修饰白细胞膜,获得肿瘤血管靶向以及跨血管内皮的转运能力。
本发明提供的一种超小粒径Cu-Se-Au多功能仿生纳米粒子的制备方法包括的步骤:
采用双模板法制备树枝状大孔介孔硅纳米粒子(DLMSNs);未除模板的条件下,首先与3-(2,3-环氧丙氧)丙基三甲氧基硅烷反应,对DLMSNs孔的外表面修饰环氧基团,然后利用环氧基团的开环反应在其外表面修饰上柠檬酸,去除模板后得到羧基功能化DLMSNs;
得到的羧基功能化DLMSNs与1H,1H,2H,2H-全氟十七烷三甲基氧硅烷反应,对DLMSNs孔的内表面修饰氟碳基团,得到内外双功能化DLMSNs;
利用羧基和铜离子的络合反应在得到的双功能化DLMSNs表面原位沉积超小Cu2- xSe纳米粒子,利用Cu2-xSe中Cu+与HAuCl4中Au3+之间的氧化还原反应,原位制备超小Cu-Se-Au合金纳米粒子,得到携载超小Cu-Se-Au的DLMSNs;
携载超小Cu-Se-Au的DLMSNs进一步负载氧饱和后的全氟己烷,最后表面包裹细胞膜后,得到基于供氧和超小粒径Cu-Se-Au的多功能仿生纳米粒子。
优选地,未除模板剂的DLMSNs与3-(2,3-环氧丙氧)丙基三甲氧基硅烷反应溶剂为无水甲苯,催化剂为三乙胺。环氧基团的开环反应溶剂为无水丙酮,催化剂为乙酸。
优选地,所述的羧基功能化DLMSNs与1H,1H,2H,2H-全氟十七烷三甲基氧硅烷反应中的反应溶剂为无水甲苯,催化剂为三乙胺。
本发明提供的一种超小粒径Cu-Se-Au多功能仿生纳米粒子的制备方法经过下述的步骤:
1)首先采用双模板法制备DLMSNs(以水为溶剂,加入主模板剂十六烷基三甲基溴化铵、辅助模板剂地拉罗司和三乙醇胺,加热,搅拌0.5–3 h,加入硅源,反应20 min,用乙醇洗沉淀,得到DLMSNs(中国专利文献ZL201910061043.3,微孔介孔二氧化硅纳米粒子的制备方法,授权公告号:CN109607554B)。将DLMSNs分散在无水甲苯中,加入三乙胺和3-(2,3-环氧丙氧)丙基三甲氧基硅烷,加热100–110 ℃,搅拌反应20–24 h,停止反应,离心。沉淀用丙酮至少洗3次后,分散至无水丙酮中,加入柠檬酸和乙酸,加热至60 ℃搅拌反应10–12 h,离心,得到白色产物;用丙酮和乙醇洗涤该白色沉淀产物后重新分散至硝酸铵无水乙醇(浓度为10 mg/mL)溶液中加热至80–85℃搅拌下反应5–6 h,进行去模板反应。该反应重复至少3次,最后用乙醇洗3次,收集得到羧基功能化DLMSNs。
2)将得到的羧基功能化DLMSNs分散至无水甲苯中,加入1H,1H,2H,2H-全氟十七烷三甲基氧硅烷和三乙胺,加热85–95 ℃搅拌反应10–12 h,离心,沉淀分别用丙酮和乙醇洗1次,得到内外双功能化DLMSNs。
3)氩气保护下,取硒粉和硼氢化钠分散至超纯水中,搅拌至溶液无色澄清,得到溶液A;将得到的内外双功能化DLMSNs分散至超纯水中,加入CuCl2·2H2O,超声片刻,然后加入巯基丁二酸得到溶液B;将溶液B加入溶液A中,继续搅拌反应1–2 h;停止反应后,离心,沉淀用超纯水洗至少2次,得到携载超小Cu2-xSe纳米粒子的DLMSNs产物(定义为:DCS)。
4)将得到的DCS分散至柠檬酸钠溶液中,搅拌下加入5 mM的HAuCl4溶液。反应2–4h,离心,沉淀用柠檬酸钠溶液洗至少3次,得到携载超小Cu-Se-Au合金纳米粒子的DLMSNs产物(定义为:DCSA)。
5)将得到的DCSA分散于超纯水中,加入氧饱和后的全氟己烷,用探头超声3 min,即得携载全氟己烷的DCSA产物(定义为:DCSAF)。
6)将处于生长对数期的Raw264.7细胞用胰蛋白酶消化,收集细胞,用预冷的pH=7.4磷酸盐缓冲液洗2次,再用含有Cocktail的Tris-镁盐缓冲液(pH=7.4)重悬;使用组织匀浆器提取白细胞膜。向步骤5)得到的DCSAF溶液中加入从6×106–1.2×107个白细胞提取的白细胞膜,探头超声2 min,即得多功能仿生超小粒径Cu-Se-Au纳米粒子最终产物,定义为:DCSAFm。
进一步地,在步骤1)中,所述得到的DLMSNs粒径为80–120 nm。
进一步地,在步骤3)中,所述Se粉、硼氢化钠和CuCl2·2H2O的摩尔比为1:3:2。
进一步地,在步骤4)中,所述HAuCl4的加入量与DCS中Cu2-xSe的摩尔比为0.25~1:1,x的取值范围为0≤x≤1。
所述的超小Cu-Se-Au合金纳米粒子粒径为5–10 nm。所述的多功能仿生纳米粒子DCSAFm粒径为80–120 nm。
本发明提供了一种上述的制备方法得到的超小粒径Cu-Se-Au多功能仿生纳米粒子产物及其在三阴性乳腺癌治疗剂中的应用。该多功能仿生纳米粒子DCSAFm产品具有良好的近红外光的光热转化性质,可将吸收的近红外光转化为热能。并且多功能仿生纳米粒子DCSAFm具有协同增强的放射增敏性质以及可以利用光热作用触发O2释放,进一步促进X射线辐照下活性氧物质的生成,发挥协同放射增敏作用。
总之,本发明提供了一种多功能仿生纳米粒子DCSAFm的显著优点是:
1)本发明中的多功能仿生纳米粒子DCSAFm,具有如下显著的优点:良好的生物相容性,不会引起体内外不良反应;具有优异的光热性能,能够应用于肿瘤光热治疗;具有强X射线衰减系数,能够应用于肿瘤的放疗增敏;能够给肿瘤组织提供外源氧供,改善肿瘤组织的乏氧状态,提高放疗疗效;具有良好的稳定性,较长的体内循环时间;可通过主动靶向富集于肿瘤部位。
2)本发明中的多功能仿生纳米粒子DCSAFm最大程度地发挥了超小粒径Cu-Se-Au合金纳米粒子的光热和放射增敏性能、外源氧供和肿瘤靶向等多种策略的高效协同,实现了低剂量 X射线辐照下提高放疗效果,降低放疗毒性的目的,为临床三阴性乳腺癌的精准、高效和联合治疗提供了新方法与新策略。
附图说明
图1、实施例1中制备所得不同纳米粒子的透射电镜照片;(a)未除模板的DLMSNs;(b)羧基功能化DLMSNs;(c)双功能化DLMSNs;(d)DCS;(e)DCSA;(f)DCSAFm;
图2、实施例1中(a)通过能量色散X射线谱仪得到的DCSA纳米粒子的元素映射图像;(b)DLMSNs、双功能化DLMSNs、DCS和DCSA纳米粒子的X射线衍射图谱以及标准SiO2(No.51-1377)、Cu2-xSe(No. 06-0680)和Au(No. 04-0784)的X射线衍射图谱;
图3、实施例1中(a)DCSAFm在去离子水和10% 胎牛血清的磷酸缓冲溶液中的稳定性考察结果图(放置过程中水力直径D h 与多分散系数PDI变化);(b)DCSAF、WBCm与DCSAFm经凝胶电泳-考马斯亮蓝染色后的蛋白条带结果图;
图4、实施例1中DCSAFm的光热性能考察;(a)不同浓度的DCSAFm溶液在808 nm激光照射下的温度-时间曲线图;(b)DCSAFm溶液的光热稳定性效果图;(c)DCSAFm溶液和去离子水在808 nm激光照射下的升温-降温曲线及其(d)冷却阶段的冷却时间与驱动力温度的负自然对数的线性关系;
图5、实施例1中DCSAFm的放射增敏性能考察;(a)活性氧荧光探针2',7'-二氯荧光素二乙酸酯在DCS、DCSA和DCSAF溶液中及X射线照射前后的荧光光谱图;(b)•OH捕获剂5,5-二甲基-1-吡咯烷氧基在样品溶液中X射线照射前后的电子自旋共振波谱图;(c)•O2ˉ捕获剂5-叔丁基羰基-5-甲基-1-吡咯啉-N-氧化物在样品溶液中X射线照射前后的电子自旋共振波谱图;
图6、实施例2中不同浓度的DCSAFm及其在808 nm激光照射下对4T1细胞的杀伤效应;
图7、实施例2中DCSAFm对4T1细胞的辐射增敏作用;(a)4T1细胞与DCSA、DCSAF、DCSAm与DCSAFm共孵育后,经不同剂量的X射线照射后的细胞克隆形成照片;(b)由(a)计算得到的不同处理组细胞存活分率的拟合曲线(n=3);(c)由(b)计算得到的DCSA、DCSAF、DCSAm与DCSAFm的准阈剂量(Dq)和增敏比(SER);
图8、实施例2中(a)不同处理组的细胞克隆形成的光学照片;(b)由(a)统计并计算得到的细胞存活分率(数值以均值±SD表示,n=3,* P<0.05;** P<0.01;*** P<0.001);
图9、实施例3静脉注射DiR标记的DCSAF-RBCm与DCSAFm后的活体荧光图像。
图10、实施例3中DCSAFm的体内抗肿瘤性能评估图;(a)肿瘤治疗期间肿瘤体积的变化图;(b)肿瘤治疗期间荷瘤小鼠体重的变化图;(c)治疗后20 d小鼠的离体肿瘤照片。
具体实施方式
下面通过实施例对本发明进行具体描述,它们只用于对本发明进行进一步的说明,不能理解为对本发明保护范围的限制。除特别标明外,所用试剂和测试设备均为市售。
实施例1:多功能仿生纳米粒子DCSAFm的制备和表征
DCSAFm的制备方法:DLMSNs的外表面修饰柠檬酸,原位沉积兼具光热和放射增敏性能的超小Cu-Se-Au合金纳米粒子,制备得到DCSA;孔的内表面修饰氟烷,用以负载具有高溶氧能力的全氟己烷,制备得到DCSAF;最后表面包覆白细胞膜,制备得到多功能仿生纳米粒子DCSAFm。
1)制备未除模板的DLMSNs:
首先,取400 mg 三乙醇胺溶于20 mL超纯水中,加热至80 ℃,以500 rpm的转速搅拌0.5 h,然后加入304 mg 十六烷基三甲基溴化铵,继续搅拌1 h。取91 mg的地拉罗司添加到上述混合物,继续搅拌3 h。最后,加入3.2 mL TEOS,反应20 min。停止反应,以15000 rpm的转速离心20 min,沉淀用乙醇洗3次,离心收集得到未除模板的DLMSNs(详细制备方法参见中国专利文献ZL201910061043.3,微孔介孔二氧化硅纳米粒子的制备方法,授权公告号:CN109607554B)。未除模板的DLMSNs的透射电镜图见附图1 a。
2)制备羧基功能化的DLMSNs:
取100 mg未除模板的DLMSNs分散至50 mL无水甲苯中,加入125 μL三乙胺,加热至110 ℃;于800 rpm的转速搅拌下,迅速加入100 μL 3-(2,3-环氧丙氧)丙基三甲氧基硅烷,110 ℃恒温反应24 h。停止反应后,反应液在转速15000 rpm下离心20 min,收集白色沉淀,丙酮洗3次后分散至50 mL无水丙酮中,加入100mg柠檬酸和100 μL乙酸,加热至60 ℃;于800 rpm的转速下搅拌反应12 h。停止反应后,以15000 rpm的转速离心20 min,弃去上清后分别用丙酮和乙醇洗1次,离心收集得到白色产物。将产物分散至50 mL硝酸铵无水乙醇(10mg/mL),加热至85 ℃搅拌下反应6 h,进行去模板反应。停止反应后,以15000 rpm的转速离心20 min,该反应重复3次后,用乙醇洗3次,收集得到羧基功能化的DLMSNs。此纳米粒子的透射电镜图见附图1 b。
3)制备双功能化DLMSNs:
取100 mg羧基功能化DLMSNs分散至50 mL无水甲苯中,加入100 μL 1H,1H,2H,2H-全氟十七烷三甲基氧硅烷和100 μL三乙胺,溶液加热至95 ℃,搅拌反应12 h。停止反应后,15000 rpm转速下离心20 min,弃去上清液分别用丙酮和乙醇洗1次,离心收集得到内外双功能化DLMSNs。此纳米粒子的透射电镜图见附图1 c。
4)制备DCS:
氩气保护下,取0.5 mM 硒粉和1.5 mM硼氢化钠分散至40 mL超纯水中,500 rpm转速下搅拌至溶液无色澄清,得到溶液A;取25 mg 双功能化DLMSNs分散至10 mL超纯水中,加入1.0 mM CuCl2·2H2O,超声30 min,然后加入1.0 g巯基丁二酸得到溶液B;将溶液B加入溶液A中,继续搅拌反应2 h。停止反应后,12000 rpm转速下离心20 min,弃去上清液水洗2次,离心收集得到棕黑色产物DCS。此纳米粒子的透射电镜图见附图1 d。
5)制备DCSA:
取20 mg DCS分散至20 mL浓度为0.25 mg/mL柠檬酸钠溶液中,在1000 rpm转速搅拌下逐滴加入适量5 mM的HAuCl4溶液。反应4 h后,于12000 rpm转速下离心20 min,弃去上清液用1 mg/mL柠檬酸钠溶液洗3次,离心收集得到黑色产物DCSA。此纳米粒子的透射电镜图、元素映射图像和X射线衍射图谱分别见附图1 e、图2 a和图2 b。
6)制备DCSAF和DCSAFm:
(1)取3 mg DCSA分散于1 mL超纯水中,加入3 μL氧饱和后的全氟己烷,探头超声3min,即得DCSAF。
(2)提取白细胞膜(WBCm):将处于对数生长期的Raw264.7细胞用胰蛋白酶消化,收集细胞用预冷的pH=7.4磷酸盐缓冲液洗2次,再用含有Cocktail的Tris-镁盐缓冲液(pH=7.4)重悬;以1×108个/mL的细胞密度分装于2 mL EP管中,使用组织匀浆器提取WBCm。将细胞悬液置于冰浴中,用组织匀浆机破碎30 s,然后以500 g的转速对处理后的细胞悬液离心10 min;收集上清,下层沉淀使用含有Cocktail的Tris-镁盐缓冲液重悬后,重复上一步操作,直至获得的下层沉淀重悬的溶液中没有完整的细胞结构为止;将所有的上清收集后,在4 ℃的低温与15000 g转速下离心20 min,收集下层沉淀即为WBCm。
(3)在步骤(1)得到的DCSAF溶液中加入步骤(2)的来源于9×106个细胞的WBCm,探头超声2 min(功率100 W,开3 s /关5 s),即得多功能仿生纳米粒子DCSAFm。
此纳米粒子的透射电镜图、稳定性考察结果和凝胶电泳-考马斯亮蓝染色后的蛋白条带结果分别见附图1 f、图3 a和图3 b。
按照实施例1得到的多功能仿生纳米粒子DCSAFm的平均粒径为101.0±11.7 nm,在去离子水和10% FBS的PBS溶液中均表现出良好的稳定性,本发明中的仿生修饰方法能够实现WBCm在DCSAF表面的有效包覆,并能够保留膜蛋白成分。
多功能仿生纳米粒子DCSAFm的光热性能和放射增敏性能考察结果分别见附图4和图5。图4的实验结果表明DCSAFm纳米粒子的光热性能具有浓度依赖性;当浓度为125 μg/mL时,DCSAFm溶液的温度从27 ℃迅速升至66 ℃,证实其具有良好的光热性能,光热转化效率为45.7%,并具有良好的光热稳定性。图5的实验结果表明,在X射线照射下DCSAF溶液的荧光信号最强,说明该溶液中活性氧生成水平最高。并且X射线照射下DCSAF溶液表现出最强的•OH和•O2ˉ信号,证实DCSAF中高Z元素Au和携氧的全氟己烷分别在促进•OH和•O2ˉ生成方面发挥了关键作用,表明DCSAF具有优异的放射增敏作用。
实施例2:多功能仿生纳米粒子DCSAFm的协同抗肿瘤作用的体外考察
第一步:检测从实施例1获得的多功能仿生纳米粒子DCSAFm对鼠三阴性乳腺癌细胞4T1的生物学毒性,具体操作如下:将4T1细胞接种到96孔板上,使其生长24 h后,分别加入不同浓度的DCSAFm,并孵育4 h;将细胞用808 nm激光以2 W/cm2的功率密度照射10 min,弃去含药培养基,加入新鲜完全培养基,继续培养24 h;每孔加入20 μL浓度为5 mg/mL的四甲基偶氮唑盐溶液,继续培养4 h;弃去培养基,每孔加入150 μL二甲基亚砜,震荡反应10min,于全波长酶标仪上样测定各孔波长490 nm处的吸光值。
该多功能仿生纳米粒子DCSAFm对4T1细胞的毒性结果参见附图6。单纯的激光照射不会影响细胞的生长,细胞存活率可达95.2%。在相同参数的激光照射下,细胞存活率随着DCSAFm浓度的增加而逐渐下降;当DCSAFm浓度为100 μg/mL时,细胞存活率降至44.5%;当DCSAFm浓度增大至160 μg/mL时,细胞存活率仅为15.6%。以上实验说明DCSAFm的光热作用能够有效杀伤4T1细胞。
第二步:通过细胞集落形成实验考察DCSAFm对4T1细胞的放射增敏作用,具体操作如下:将4T1细胞接种到6孔板上,使其生长24 h后,加入同浓度的DCSA、DCSAF、DCSAm以及DCSAFm含药培养基并孵育4 h;弃去含药培养基,加入新鲜完全培养基,分别以不同剂量的X射线(0 Gy、2 Gy、4 Gy和6 Gy)照射接种不同细胞数(250、500、1000和2000)的6孔板;弃去培养基,加入新鲜完全培养基,继续培养7‒9天,在此期间每隔3天更换一次培养基,直至多数细胞集落中细胞数大于50;停止培养,甲醇对细胞固定,然后采用吉姆萨染液染色35min,弃去染液,然后使用蒸馏水冲洗残留染液,干燥过夜,次日拍照,在显微镜下对细胞数大于50的细胞集落进行计数,按照以下公式计算细胞存活分数SF。
接种效率=对照组形成的集落数/接种细胞数。
SF = X射线辐射后形成的克隆数/(接种的细胞数×接种效率)。
利用SPSS软件根据下列公式计算准阈剂量(Dq)和增敏比(SER)。其中D0代表SF为37%时对应的X射线辐射剂量;D代表X射线辐射剂量;n为外推值,表示细胞在X射线辐射后的自我修复能力,由拟合方程计算所得:
该多功能仿生纳米粒子DCSAFm对4T1细胞的放射增敏作用参见附图7。当X射线剂量为0 Gy时,DCSA、DCSAF、DCSAm与DCSAFm对细胞活性均没有明显的影响;增加X射线剂量,这些纳米粒子均表现出逐渐增强的细胞生长抑制作用;在相同X射线剂量下,细胞存活率(SF)具有以下规律:SFcontrol>SFDCSA>SFDCSAF>SFDCSAm>SFDCSAFm。并且和其它处理组相比,DCSAFm处理组的4T1细胞表现出最大SER(2.3)和最小Dq(1.50 Gy),证明DCSAFm对4T1细胞放射增敏作用非常显著。
第三步:通过细胞集落形成实验考察DCSAFm联合光热疗法和放疗对4T1细胞的协同抑制效应,具体操作如下:将4T1细胞接种到6孔板上,使其生长24 h后,在相应孔加入100μg/mL浓度的DCSAm和DCSAFm含药培养基并孵育4 h;取对应组细胞,实施激光照射(808 nm,2 W/cm2,10 min)和/或X射线辐照(4 Gy);弃去含药培养基,加入新鲜完全培养基,继续培养7‒9 d,期间每隔3 d更换培养基,直至多数细胞集落中细胞数大于50;对细胞进行吉姆萨染色;对细胞集落进行拍照,显微镜下对细胞数大于50的细胞集落进行计数,计算细胞存活分数SF。
该多功能仿生纳米粒子DCSAFm对4T1细胞的协同抑制作用参见附图8。808 nm激光照射或X射线辐照下,DCSAFm处理组的细胞存活率分别降至52.4%和37.8%,说明DCSAFm发挥了细胞光热杀伤和放射增敏作用。808 nm激光照射联合X射线辐照下,DCSAm处理组的细胞存活率降至10.8%,而DCSAFm处理组的细胞存活率仅为3.5%。以上实验结果说明,DCSAFm能够通过整合多种功能WBCm仿生修饰、全氟己烷携氧释氧、光热疗法与放疗显著抑制4T1细胞的体外生长。
实施例3
第一步:多功能仿生纳米粒子DCSAFm在4T1荷瘤小鼠体内组织分布与肿瘤靶向性考察,具体操作如下:选择处于对数生长期的4T1细胞,胰酶消化,离心,计数,用无菌注射器将细胞悬液注射至小鼠背部右下侧皮下。接种后的裸鼠继续饲养2周后,然后从其中挑选出裸鼠移植瘤体积200 mm3以上的用于接下来的实验。首先,以红细胞膜(RBCm)制备的DCSAF-RBCm(等量纳米粒子上包被RBCm的蛋白量和WBCm相等)作为对照组,采用DiR细胞膜荧光探针对DCSAFm和DCSAF-RBCm进行荧光标记。尾静脉注射给药,其中DCSAF和DiR给药剂量分别为15 mg/kg和1.2 mg/kg。给药后2 h、8 h、24 h和48 h时,利用小动物活体成像系统监测荷瘤小鼠体内的荧光分布。
该多功能仿生纳米粒子DCSAFm在4T1荷瘤小鼠体内组织分布与肿瘤靶向性参见附图9。静脉注射给药后各个时间点,DCSAFm均表现出显著强于DCSAF-RBCm的肿瘤荧光信号,证明仿生修饰WBCm修饰赋予DCSAFm体内肿瘤靶向性。静脉注射2‒24 h,DCSAFm在肿瘤部位的荧光逐渐增强,而后48h时荧光信号减弱,说明DCSAFm静脉注射后24 h在肿瘤部位的蓄积量最多,后续我们选择这个时间点实施激光照射与X-ray辐照治疗的最佳时间点。
第二步:多功能仿生纳米粒子DCSAFm联合光热疗法与放疗的体内抗肿瘤效果考察,具体操作如下:选取肿瘤体积约100 mm3的4T1荷瘤小鼠,尾静脉注射给药,其中DCSAm和DCSAFm的剂量均为30 mg/kg。给药24 h后,对小鼠的肿瘤部位进行脱毛处理,然后对相应组别的小鼠实施肿瘤局部NIR激光照射和/或X-ray辐照。NIR激光照射参数:波长808 nm,功率2 W/cm2,时间10 min;X-ray辐照剂量为6 Gy。从开始治疗起,每2天测量1次肿瘤体积和体重,连续测量20 d。治疗结束后,对所有荷瘤小鼠实施安乐死,收集肿瘤进行拍照。
该多功能仿生纳米粒子DCSAFm联合光热疗法与放疗的体内抗肿瘤作用参见附图10。808 nm激光照射下或X射线辐照下,DCSAFm显著地抑制了小鼠体内肿瘤生长,抑制率分别分别为65%和60%,证明DCSAFm的光热作用和放射增敏作用可以分别有效抑制肿瘤体内生长。808 nm激光照射和X射线辐照共同作用下,DCSAFm的抗肿瘤作用进一步增强,几乎完全消融肿瘤,仅1只小鼠还残留肿瘤病灶,表明发挥了显著的光热和放疗的协同抗肿瘤效应。开始治疗后20 d内,各组小鼠的体重变化均不显著,说明联合光热疗法和放疗的治疗策略具有良好的生物安全性。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种超小粒径Cu-Se-Au多功能仿生纳米粒子的制备方法,其特征在于包括的步骤:
1)采用双模板法制备树枝状大孔介孔硅纳米粒子DLMSNs;未除模板的条件下,首先与3-(2,3-环氧丙氧)丙基三甲氧基硅烷反应,对DLMSNs孔的外表面修饰环氧基团,然后利用环氧基团的开环反应在其外表面修饰上柠檬酸,去除模板后得到羧基功能化DLMSNs;所述的双模板法中的主模板剂为十六烷基三甲基溴化铵,辅助模板剂为地拉罗司;
2)将得到的羧基功能化DLMSNs与1H,1H,2H,2H-全氟十七烷三甲基氧硅烷反应,对DLMSNs孔的内表面修饰氟碳基团,得到内外双功能化DLMSNs;
3)利用羧基和铜离子的络合反应在得到的双功能化DLMSNs表面原位沉积超小Cu2-xSe纳米粒子,利用Cu2-xSe中Cu+与HAuCl4中Au3+之间的氧化还原反应,原位制备超小Cu-Se-Au合金纳米粒子,得到携载超小Cu-Se-Au的DLMSNs;
4)携载超小Cu-Se-Au的DLMSNs进一步负载氧饱和后的全氟己烷,最后表面包裹细胞膜后,得到基于供氧和超小粒径Cu-Se-Au的多功能仿生纳米粒子;所述的细胞膜为白细胞膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)中未除模板剂的DLMSNs与3-(2,3-环氧丙氧)丙基三甲氧基硅烷反应溶剂为无水甲苯,催化剂为三乙胺;环氧基团的开环反应溶剂为无水丙酮,催化剂为乙酸。
3.根据权利要求1所述的制备方法,其特征在于,步骤2)中的反应溶剂为无水甲苯,催化剂为三乙胺。
4.一种超小粒径Cu-Se-Au多功能仿生纳米粒子的制备方法,其特征在于它是包括下述的步骤:
1)首先采用双模板法制备DLMSNs:以水为溶剂,加入主模板剂十六烷基三甲基溴化铵、辅助模板剂地拉罗司和三乙醇胺,加热,搅拌0.5–3h,加入硅源,反应20min,用乙醇洗沉淀,得到DLMSNs;
将DLMSNs分散在无水甲苯中,加入三乙胺和3-(2,3-环氧丙氧)丙基三甲氧基硅烷,加热100–110℃,搅拌反应20–24h,停止反应,离心;沉淀用丙酮至少洗3次后,分散至无水丙酮中,加入柠檬酸和乙酸,加热至60℃搅拌反应10–12h,离心,得到白色产物;用丙酮和乙醇洗涤该白色沉淀产物后重新分散至浓度为10mg/mL的硝酸铵无水乙醇溶液中加热至80–85℃搅拌下反应5–6h,进行去模板反应,该反应重复至少3次,最后用乙醇洗3次,收集得到羧基功能化DLMSNs;
2)将得到的羧基功能化DLMSNs分散至无水甲苯中,加入1H,1H,2H,2H-全氟十七烷三甲基氧硅烷和三乙胺,加热85–95℃搅拌反应10–12h,离心,沉淀分别用丙酮和乙醇洗1次,得到内外双功能化DLMSNs;
3)氩气保护下,取硒粉和硼氢化钠分散至超纯水中,搅拌至溶液无色澄清,得到溶液A;将得到的内外双功能化DLMSNs分散至超纯水中,加入CuCl2·2H2O,超声片刻,然后加入巯基丁二酸得到溶液B;将溶液B加入溶液A中,继续搅拌反应1–2h;停止反应后,离心,沉淀用超纯水洗至少2次,得到携载超小Cu2-xSe纳米粒子的DLMSNs产物,定义为DCS;
4)将得到的DCS分散至柠檬酸钠溶液中,搅拌下加入5mM的HAuCl4溶液,反应2–4h,离心,沉淀用柠檬酸钠溶液洗至少3次,得到携载超小Cu-Se-Au合金纳米粒子的DLMSNs产物,定义为DCSA;
5)将得到的DCSA分散于超纯水中,加入氧饱和后的全氟己烷,用探头超声3min,即得携载全氟己烷的DCSA产物,定义为DCSAF;
6)将处于生长对数期的Raw264.7细胞用胰蛋白酶消化,收集细胞,用预冷的pH=7.4磷酸盐缓冲液洗2次,再用含有Cocktail的pH=7.4Tris-镁盐缓冲液重悬;使用组织匀浆器提取白细胞膜;向步骤5)得到的DCSAF溶液中加入从6×106–1.2×107个白细胞提取的白细胞膜,探头超声2min,即得超小粒径Cu-Se-Au多功能仿生纳米粒子产物,定义为DCSAFm。
5.根据权利要求4所述的制备方法,其特征在于步骤1)所述的DLMSNs粒径为80–120nm。
6.根据权利要求4所述的制备方法,其特征在于在步骤3)所述的Se粉、硼氢化钠和CuCl2·2H2O的摩尔比为1:3:2。
7.根据权利要求4所述的制备方法,其特征在于步骤4)所述HAuCl4的加入量与DCS中Cu2-xSe的摩尔比为0.25-1:1,x的取值范围为0≤x≤1。
8.权利要求1-7任一所述的制备方法得到的超小粒径Cu-Se-Au多功能仿生纳米粒子,即DCSAFm。
9.根据权利要求8所述的超小粒径Cu-Se-Au多功能仿生纳米粒子,其特征在于该超小粒径Cu-Se-Au合金纳米粒子的粒径为5–10nm;所述的多功能仿生纳米粒子DCSAFm粒径为80–120nm。
10.权利要求8所述的超小粒径Cu-Se-Au多功能仿生纳米粒子DCSAFm在制备三阴性乳腺癌治疗剂中的应用。
CN202210437033.7A 2022-04-25 2022-04-25 一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用 Active CN114887056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210437033.7A CN114887056B (zh) 2022-04-25 2022-04-25 一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210437033.7A CN114887056B (zh) 2022-04-25 2022-04-25 一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用

Publications (2)

Publication Number Publication Date
CN114887056A CN114887056A (zh) 2022-08-12
CN114887056B true CN114887056B (zh) 2024-01-26

Family

ID=82718038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210437033.7A Active CN114887056B (zh) 2022-04-25 2022-04-25 一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用

Country Status (1)

Country Link
CN (1) CN114887056B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870494B (zh) * 2022-10-20 2024-05-28 武汉理工大学 一种戊烯酸-异丙基丙烯酰胺共聚物修饰超小金纳米材料及制备方法
CN116077657A (zh) * 2023-02-28 2023-05-09 中国科学院长春应用化学研究所 一种用于调节肿瘤微环境的活性氧纳米材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103845743A (zh) * 2012-12-05 2014-06-11 中国科学院上海硅酸盐研究所 金颗粒负载二氧化硅基多模式造影剂及hifu增效剂
CN106075443A (zh) * 2016-07-15 2016-11-09 上海工程技术大学 一种金包覆硒化铜纳米粒子及其制备方法与应用
CN109607554A (zh) * 2019-01-23 2019-04-12 天津医科大学 大孔二氧化硅纳米粒子的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103845743A (zh) * 2012-12-05 2014-06-11 中国科学院上海硅酸盐研究所 金颗粒负载二氧化硅基多模式造影剂及hifu增效剂
CN106075443A (zh) * 2016-07-15 2016-11-09 上海工程技术大学 一种金包覆硒化铜纳米粒子及其制备方法与应用
CN109607554A (zh) * 2019-01-23 2019-04-12 天津医科大学 大孔二氧化硅纳米粒子的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Boosting the Radiosensitizing and Photothermal Performance of Cu2-xSe Nanocrystals for Synergetic Radiophotothermal Therapy of Orthotopic Breast Cancer;Qian Huang等;《ACS Nano》;第1342-1353页 *
Formation of Gold Nanostar-Coated Hollow Mesoporous Silica for Tumor Multimodality Imaging and Photothermal Therapy;Xin Li等;《ACS Appl. Mater. Interfaces》;第5817-5827页 *
Light-Responsive Core-Shell Nanoplatform for Bimodal ImagingGuided Photothermal Therapy-Primed Cancer Immunotherapy;Wei Zhang等;《ACS Appl. Mater. Interface》;第48420-48431页 *

Also Published As

Publication number Publication date
CN114887056A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Ma et al. Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy
Zhou et al. Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy
Wang et al. Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer
Chang et al. Cu2MoS4/Au Heterostructures with Enhanced Catalase‐Like Activity and Photoconversion Efficiency for Primary/Metastatic Tumors Eradication by Phototherapy‐Induced Immunotherapy
CN114887056B (zh) 一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用
Yu et al. Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy
Zhang et al. SnWO4-based nanohybrids with full energy transfer for largely enhanced photodynamic therapy and radiotherapy
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
Sun et al. Silicon nanowires decorated with platinum nanoparticles were applied for photothermal-enhanced sonodynamic therapy
Wang et al. A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated WS 2 nanodots
Liu et al. A smart theranostic agent based on Fe-HPPy@ Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy
CN111671914B (zh) 一种近红外光响应的纳米颗粒及控释系统
Gao et al. W-doped TiO2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors
CN111840549B (zh) 载铂类药物/光敏剂的蛋白纳米粒及其制备方法和应用
CN107007835B (zh) 载普鲁士蓝靶向纳米复合物及其制备方法
Zhang et al. Intelligent protein-coated bismuth sulfide and manganese oxide nanocomposites obtained by biomineralization for multimodal imaging-guided enhanced tumor therapy
Yin et al. Synergistically enhanced multienzyme catalytic nanoconjugates for efficient cancer therapy
CN113599518A (zh) 一种复合声敏剂及其制备方法
CN110893237B (zh) 铜钯合金纳米颗粒和自噬抑制剂在制备基于光热效应杀伤肿瘤的药物或试剂盒中的应用
CN105106958B (zh) 具有近红外光热效应的铜基人血白蛋白纳米复合物及其制备方法和应用
CN112641946A (zh) 聚多巴胺包裹金纳米复合物及其制备方法与在肿瘤多模态诊疗中的应用
Cao et al. A multimodal imaging-guided nanoreactor for cooperative combination of tumor starvation and multiple mechanism-enhanced mild temperature phototherapy
CN113559064B (zh) 一种新型自供氧脂质体纳米粒及其制备方法与应用
Hu et al. Multifunctional carbon dots with near-infrared absorption and emission for targeted delivery of anticancer drugs, tumor tissue imaging and chemo/photothermal synergistic therapy
Liu et al. Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant