CN114883488A - 一种氧化亚铜-磷化亚铜异质结的制备方法 - Google Patents

一种氧化亚铜-磷化亚铜异质结的制备方法 Download PDF

Info

Publication number
CN114883488A
CN114883488A CN202210529947.6A CN202210529947A CN114883488A CN 114883488 A CN114883488 A CN 114883488A CN 202210529947 A CN202210529947 A CN 202210529947A CN 114883488 A CN114883488 A CN 114883488A
Authority
CN
China
Prior art keywords
cuprous
phosphide
oxide
tube
corundum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210529947.6A
Other languages
English (en)
Inventor
陈蔓汝
彭雪
郭欣
吕燕飞
席俊华
赵士超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202210529947.6A priority Critical patent/CN114883488A/zh
Publication of CN114883488A publication Critical patent/CN114883488A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种氧化亚铜‑磷化亚铜异质结的制备方法,本发明先生成磷化亚铜薄膜,之后,在磷化亚铜表面沉积氧化锌薄膜,然后进行热处理,获得p型氧化亚铜。其次,采用模板法在磷化亚铜表面通过磁控溅射沉积氧化锌薄膜,氧化锌薄膜呈叉指形图案,热处理后,表面沉积有氧化锌的部分转变成p型氧化亚铜,形成p型氧化亚铜与p型磷化亚铜的面内异质结。通过热蒸发法在氧化亚铜和磷化亚铜区沉积金电极,制备成异质结器件。本发明制备的由p型氧化亚铜和p型磷化亚铜形成的异质结,成本低,重复性好,忆阻性能好。

Description

一种氧化亚铜-磷化亚铜异质结的制备方法
技术领域
本发明属于材料制备技术领域,具体涉及一种氧化亚铜-磷化亚铜异质结的制备方法。
背景技术
无机非金属半导体材料大多数表现出n型导电性能,如氧化锌,二氧化钛,铟掺杂氧化锡等,相对而言p型半导体材料相对较少。氧化亚铜与多数金属氧化物不同,通常表现出p型导电性质,因为理论分析表明,氧化亚铜本征缺陷的存在或引入不会形成n型磷化亚铜。氧化亚铜表现出较好的光电和荧光性能,随着忆阻器的认识和发展,氧化亚铜在忆阻器领域的应用研究也在发展中。相对于n型半导体材料,基于p型半导体材料忆阻器的研究相对少一些,导电类型的不同将有可能影响到器件忆阻性能,本专利通过构建全同型p型材料异质结,获得了忆阻器。
发明内容
本发明针对现有研究不足,首先提出了一种p型氧化亚铜-p型磷化亚铜异质结的制备方法。
本发明一种氧化亚铜-磷化亚铜异质结的制备方法,具体为:铜磷化后生成磷化亚铜薄膜,之后,在磷化亚铜表面沉积氧化锌薄膜,然后进行热处理,获得p型氧化亚铜。其次,采用模板法在磷化亚铜表面通过磁控溅射沉积氧化锌薄膜,氧化锌薄膜呈叉指形图案,热处理后,表面沉积有氧化锌的部分转变成p型氧化亚铜,形成p型氧化亚铜与p型磷化亚铜的面内异质结。通过热蒸发法在氧化亚铜和磷化亚铜区沉积金电极,制备成异质结器件。
步骤(1).制备磷化亚铜薄膜;
步骤(2).磷化亚铜薄膜表面放置掩膜版,通过磁控溅射法沉积氧化锌薄膜,氧化锌薄膜呈叉指电极形状;磁控溅射设备真空度0.1-1.0Pa,氧气流量1-5sccm,氩气流量20-50sccm,溅射电压300-450V,电流30-60mA,溅射时间20-40min,靶材为金属锌靶;制备的氧化锌薄膜厚度50-200nm;
步骤(3).步骤(3)产物放入管式炉的石英管中,充入惰性气体氩气,加热石英管,石英管升温速率20℃/min,升至760-850℃,并保温60-120min,之后石英管自然冷却至室温,获得由p型氧化亚铜和p型磷化亚铜形成的异质结。
作为优选,所述的制备磷化亚铜薄膜,具体包括以下步骤:
步骤(1).将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖厚度为250-1000微米的铜箔;
步骤(2).将刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
步骤(3).将刚玉管通过管式炉加热至280~300℃,升温速率10℃/min;温度升至280~300℃后保温,保温时间为30~60min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物磷化亚铜薄膜。
作为优选,所述的铜箔替换为生长在氧化铝或氧化硅表面的铜薄膜。
作为优选,所述的铜箔的面积为1-5平方厘米。
作为优选,所述的铜箔厚度为600微米。
本发明的优点是:通过铜磷化法获得磷化亚铜薄膜;通过测控溅射法在磷化亚铜表面局部区域沉积氧化锌薄膜,氧化锌与磷化亚铜两者之间结合紧密,且不会改变磷化亚铜的组成和晶体结构。磷化亚铜薄膜局部沉积有氧化锌的部分,在高温下,经过原子扩散、化学反应以及锌、磷元素的高温挥发,形成p型氧化亚铜区域,n型氧化亚铜区与邻近的磷化亚铜区形成面内异质结。本发明制备的由p型氧化亚铜和p型磷化亚铜形成的异质结,成本低,重复性好,忆阻性能好。
附图说明
图1为本发明产物的结构示意图。
具体实施方式
实施例一:步骤(1).制备磷化亚铜薄膜;具体包括以下步骤:
步骤①.将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖面积为1平方厘米、厚度为250微米的铜箔;
步骤②.将刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
步骤③.将刚玉管通过管式炉加热至280℃,升温速率10℃/min;温度升至280℃后保温,保温时间为30min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物磷化亚铜薄膜。
步骤(2).磷化亚铜薄膜表面放置掩膜版,通过磁控溅射法沉积氧化锌薄膜,氧化锌薄膜呈叉指电极形状;磁控溅射设备真空度0.1Pa,氧气流量2sccm,氩气流量20sccm,溅射电压300V,电流30mA,溅射时间20min,靶材为金属锌靶;制备的氧化锌薄膜厚度50nm;
步骤(3).步骤(2)产物放入管式炉的石英管中,充入惰性气体氩气,加热石英管,石英管升温速率20℃/min,升至760℃,并保温60min,之后石英管自然冷却至室温,获得由p型氧化亚铜和p型磷化亚铜形成的异质结;
步骤(4)、通过热蒸发法在氧化亚铜和磷化亚铜区沉积金电极,制备成异质结器件,如图1所示。
实施例二:
步骤(1).制备磷化亚铜薄膜;具体包括以下步骤:
步骤①.将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖面积为3平方厘米、厚度为600微米的铜箔;
步骤②.将刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
步骤③.将刚玉管通过管式炉加热至290℃,升温速率10℃/min;温度升至290℃后保温,保温时间为40min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物磷化亚铜薄膜。
步骤(2).磷化亚铜薄膜表面放置掩膜版,通过磁控溅射法沉积氧化锌薄膜,氧化锌薄膜呈叉指电极形状;磁控溅射设备真空度0.5Pa,氧气流量3sccm,氩气流量30sccm,溅射电压400V,电流40mA,溅射时间30min,靶材为金属锌靶;制备的氧化锌薄膜厚度100nm;
步骤(3).步骤(3)产物放入管式炉的石英管中,充入惰性气体氩气,加热石英管,石英管升温速率20℃/min,升至790℃,并保温80min,之后石英管自然冷却至室温,获得由p型氧化亚铜和p型磷化亚铜形成的异质结。
实施例三:
步骤(1).制备磷化亚铜薄膜;具体包括以下步骤:
步骤①.将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖面积为5平方厘米、厚度为1000微米的铜箔;
步骤②.将刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
步骤③.将刚玉管通过管式炉加热至300℃,升温速率10℃/min;温度升至300℃后保温,保温时间为60min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物磷化亚铜薄膜。
步骤(2).磷化亚铜薄膜表面放置掩膜版,通过磁控溅射法沉积氧化锌薄膜,氧化锌薄膜呈叉指电极形状;磁控溅射设备真空度1.0Pa,氧气流量5sccm,氩气流量50sccm,溅射电压450V,电流60mA,溅射时间40min,靶材为金属锌靶;制备的氧化锌薄膜厚度200nm;
步骤(3).步骤(3)产物放入管式炉的石英管中,充入惰性气体氩气,加热石英管,石英管升温速率20℃/min,升至850℃,并保温120min,之后石英管自然冷却至室温,获得由p型氧化亚铜和p型磷化亚铜形成的异质结。
实施例四:
步骤(1).制备磷化亚铜薄膜;具体包括以下步骤:
步骤①.将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖面积为3平方厘米、厚度为500微米的铜箔;所述的铜箔为氧化硅表面的铜薄膜;
步骤②.将刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
步骤③.将刚玉管通过管式炉加热至290℃,升温速率10℃/min;温度升至290℃后保温,保温时间为50min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物磷化亚铜薄膜。
步骤(2).磷化亚铜薄膜表面放置掩膜版,通过磁控溅射法沉积氧化锌薄膜,氧化锌薄膜呈叉指电极形状;磁控溅射设备真空度0.8Pa,氧气流量3sccm,氩气流量30sccm,溅射电压380V,电流50mA,溅射时间30min,靶材为金属锌靶;制备的氧化锌薄膜厚度120nm;
步骤(3).步骤(3)产物放入管式炉的石英管中,充入惰性气体氩气,加热石英管,石英管升温速率20℃/min,升至800℃,并保温90min,之后石英管自然冷却至室温,获得由p型氧化亚铜和p型磷化亚铜形成的异质结。
实施例五:
步骤(1).制备磷化亚铜薄膜;具体包括以下步骤:
步骤①.将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖面积为5平方厘米、厚度为800微米的铜箔;所述的铜箔为氧化铝表面的铜薄膜;
步骤②.将刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
步骤③.将刚玉管通过管式炉加热至300℃,升温速率10℃/min;温度升至300℃后保温,保温时间为45min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物磷化亚铜薄膜。
步骤(2).磷化亚铜薄膜表面放置掩膜版,通过磁控溅射法沉积氧化锌薄膜,氧化锌薄膜呈叉指电极形状;磁控溅射设备真空度0.9Pa,氧气流量4sccm,氩气流量30sccm,溅射电压450V,电流60mA,溅射时间40min,靶材为金属锌靶;制备的氧化锌薄膜厚度180nm;
步骤(3).步骤(3)产物放入管式炉的石英管中,充入惰性气体氩气,加热石英管,石英管升温速率20℃/min,升至850℃,并保温120min,之后石英管自然冷却至室温,获得由p型氧化亚铜和p型磷化亚铜形成的异质结。

Claims (6)

1.一种氧化亚铜-磷化亚铜异质结的制备方法,其特征在于,该方法具体包括以下步骤:
步骤(1).制备磷化亚铜薄膜;
步骤(2).磷化亚铜薄膜表面放置掩膜版,通过磁控溅射法沉积氧化锌薄膜,氧化锌薄膜呈叉指电极形状;磁控溅射设备真空度0.1-1.0Pa,氧气流量1-5sccm,氩气流量20-50sccm,溅射电压300-450V,电流30-60mA,溅射时间20-40min,靶材为金属锌靶;制备的氧化锌薄膜厚度50-200nm;
步骤(3).步骤(2)产物放入管式炉的石英管中,充入惰性气体氩气,加热石英管,石英管升温速率20℃/min,升至760-850℃,并保温60-120min,之后石英管自然冷却至室温,获得由p型氧化亚铜和p型磷化亚铜形成的异质结。
2.根据权利要求1所述的一种氧化亚铜-磷化亚铜异质结的制备方法,其特征在于:所述的制备磷化亚铜薄膜,具体包括以下步骤:
步骤(1).将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖厚度为250-1000微米的铜箔;
步骤(2).将刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
步骤(3).将刚玉管通过管式炉加热至280~300℃,升温速率10℃/min;温度升至280~300℃后保温,保温时间为30~60min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物磷化亚铜薄膜。
3.根据权利要求1或2所述的一种氧化亚铜-磷化亚铜异质结的制备方法,其特征在于:所述的铜箔替换为生长在氧化铝或氧化硅表面的铜薄膜。
4.根据权利要求2所述的一种氧化亚铜-磷化亚铜异质结的制备方法,其特征在于:所述的铜箔的面积为1-5平方厘米。
5.根据权利要求2所述的一种氧化亚铜-磷化亚铜异质结的制备方法,其特征在于:所述的铜箔厚度为600微米。
6.根据权利要求2所述的一种氧化亚铜-磷化亚铜异质结的制备方法,其特征在于:所述的磷化亚铜导电类型为p型,氧化亚铜导电类型为p型。
CN202210529947.6A 2022-05-16 2022-05-16 一种氧化亚铜-磷化亚铜异质结的制备方法 Pending CN114883488A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210529947.6A CN114883488A (zh) 2022-05-16 2022-05-16 一种氧化亚铜-磷化亚铜异质结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210529947.6A CN114883488A (zh) 2022-05-16 2022-05-16 一种氧化亚铜-磷化亚铜异质结的制备方法

Publications (1)

Publication Number Publication Date
CN114883488A true CN114883488A (zh) 2022-08-09

Family

ID=82676212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210529947.6A Pending CN114883488A (zh) 2022-05-16 2022-05-16 一种氧化亚铜-磷化亚铜异质结的制备方法

Country Status (1)

Country Link
CN (1) CN114883488A (zh)

Similar Documents

Publication Publication Date Title
US3106489A (en) Semiconductor device fabrication
JPS6252478B2 (zh)
CN108118303A (zh) 一种薄膜及其制备方法
PT1433207E (pt) Processo para a produção em grande escala de células solares em filme fino de cdte/cds
US8257561B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
CN103343318B (zh) 太阳能电池的光吸收层的制备方法
CN103833416B (zh) 一种镍酸镧导电薄膜的化学溶液沉积制备方法
CN107293384B (zh) 一种氧化锡基薄膜压敏电阻器的制备方法
CN110176517A (zh) 结构优化的银掺杂铜锌锡硫薄膜太阳电池及其制备方法
CN102181831A (zh) 一种氧化铜纳米线阵列薄膜的制备方法
CN107195724A (zh) 一种应用石墨烯电极在GaN自支撑衬底上制备AlGaN肖特基日盲紫外探测器的方法
CN104377261B (zh) 一种制备CdTe薄膜太阳能电池板方法
CN114883488A (zh) 一种氧化亚铜-磷化亚铜异质结的制备方法
JP3969959B2 (ja) 透明酸化物積層膜及び透明酸化物p−n接合ダイオードの作製方法
CN105957924A (zh) 一种利用ZnO缓冲层制备择优取向ITO光电薄膜的方法
CN110029308B (zh) 一种铁酸铋光伏薄膜的制备方法及其制备的铁酸铋光伏薄膜
Kim et al. Fabrication and characterization of rapidly oxidized p-type Cu2O films from Cu films and their application to heterojunction thin-film solar cells
JPH07258881A (ja) CuInSe2 膜の製造方法
CN109037390A (zh) 一种锡酸镉基透明导电膜、其生产工艺及太阳能电池
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
CN106449810B (zh) 一种CdTe/CIGS梯度吸收层薄膜太阳能电池及其制备方法
CN114420925B (zh) 一种n型磷化亚铜的制备方法
CN111254404A (zh) 一种择优生长的ito透明导电薄膜的制备方法
CN105576049B (zh) CdTe薄膜太阳电池的背接触结构、其制备方法与CdTe薄膜太阳电池
CN114284384B (zh) 一种基于氧化锌-磷化亚铜光电探测器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination