CN114864729B - 硅基异质结太阳电池及其制备方法 - Google Patents

硅基异质结太阳电池及其制备方法 Download PDF

Info

Publication number
CN114864729B
CN114864729B CN202210449883.9A CN202210449883A CN114864729B CN 114864729 B CN114864729 B CN 114864729B CN 202210449883 A CN202210449883 A CN 202210449883A CN 114864729 B CN114864729 B CN 114864729B
Authority
CN
China
Prior art keywords
layer
silicon
nano
solar cell
heterojunction solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210449883.9A
Other languages
English (en)
Other versions
CN114864729A (zh
Inventor
徐琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longi Green Energy Technology Co Ltd
Original Assignee
Longi Green Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longi Green Energy Technology Co Ltd filed Critical Longi Green Energy Technology Co Ltd
Priority to CN202210449883.9A priority Critical patent/CN114864729B/zh
Publication of CN114864729A publication Critical patent/CN114864729A/zh
Application granted granted Critical
Publication of CN114864729B publication Critical patent/CN114864729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种硅基异质结太阳电池及其制备方法,其中,硅基异质结太阳电池,包括依次叠层设置的基底、钝化层、电子传输层及透明导电氧化物层,所述电子传输层为纳米硅氧层,所述纳米硅氧层与透明导电氧化物层之间设置有n型掺杂非晶硅层。上述方案可以改善电子传输层的电学性能。

Description

硅基异质结太阳电池及其制备方法
本申请是申请日为2020年8月21日,申请号为202010852298.4,发明名称为硅基异质结太阳电池及其制备方法的分案申请。
技术领域
本发明一般涉及太阳能光伏发电技术领域,具体涉及一种硅基异质结太阳电池及其制备方法。
背景技术
硅基异质结(Silicon Hetero-Junction;SHJ)太阳电池具有较高的转化效率,最高的转化效率可以超过25%。现有主流SHJ电池技术路线,由于纳米硅氧以其带隙大,吸收系数小,且光折射率可调节等优势,成为太阳能电池广为采用的一种窗口层材料(也即电子传输层材料)。然而,众所周知,纳米硅氧材料随着氧原子(O)的引入,光学性能提高,但其电学性能单调递减,从而导致电池电流(Isc)的提升和填充因子(FF)的下降程度不同,最终使得SHJ电池的效率提升幅度较小。因此,如何在保持纳米硅氧材料优良光学性能的同时改善其电学性能成为进一步获得高效SHJ电池亟待解决的问题。
发明内容
鉴于现有技术中的上述缺陷或不足,期望提供一种硅基异质结太阳电池及其制备方法,用以至少改善电子传输层的电学性能。
第一方面,本发明提供一种硅基异质结太阳电池,包括依次叠层设置的基底、钝化层、电子传输层及透明导电氧化物(Transparent Conductive Oxide;TCO)层,所述电子传输层为纳米硅氧层;
所述纳米硅氧层与透明导电氧化物层之间设置有n型掺杂非晶硅层。
作为可实现方式,所述n型掺杂非晶硅层的厚度为2nm-4nm。
作为可实现方式,所述纳米硅氧层的折射率为1.9-2.3之间,晶化率为35%-50%。
作为可实现方式,所述纳米硅氧层包括层叠设置的纳米硅氧材料层和纳米硅材料层。
作为可实现方式,所述纳米硅氧材料层的厚度为8nm-15nm,所述纳米硅材料层的厚度为2nm-5nm。
作为可实现方式,所述纳米硅氧层与钝化层之间设置有本征纳米硅层。
作为可实现方式,所述本征纳米硅层的厚度为0.1nm-4nm。
作为可实现方式,所述钝化层及所述本征纳米硅层的H的总含量在20%-28%,或所述钝化层及所述本征纳米硅层的微结构因子在 55%-70%。
第二方面,本发明提供一种上述硅基异质结太阳电池的制备方法,包括以下步骤:
依次形成所述基底、所述钝化层、所述电子传输层及透明导电氧化物层,所述电子传输层为纳米硅氧层;
在所述纳米硅氧层与透明导电氧化物层之间形成n型掺杂非晶硅层。
作为可实现方式,在进行所述n型掺杂非晶硅层沉积时,工艺条件为:
向RF-PECVD工艺腔通入第二工作气体,所述第二工作气体包括 PH3和SiH4,所述PH3和所述SiH4的流量比为1:5-2:5,所述RF-PECVD 工艺腔内压强为0.3mbar~0.8mbar,电源功率密度为 20mW/cm2-30mW/cm2
上述方案,通过在纳米硅氧层与透明导电氧化物层之间设置n型掺杂非晶硅层,可以改善纳米硅氧层与透明导电氧化物层的接触,在低氧化的界面处,透明导电氧化物材料的扩散相对较小,从而可以降低纳米硅氧层与透明导电氧化物层之间的带阶,改善载流子传输,利于填充因子的改善。
除此之外,通过在纳米硅氧层与钝化层之间设置本征纳米硅层,使得钝化层的表面处于非晶硅与纳米硅的晶相转化区,有利于诱导纳米硅氧加速成核,提高纳米硅氧的晶化率,提高了材料的电学性能,进而提高了电子传输层的电学性能。此外,本征纳米硅层还可以阻挡电子传输层中的磷(P)元素扩散,防止因磷元素扩散而影响钝化层的钝化效果,且本征纳米硅层可以使钝化层的微结构因子(R*)增大,在一定程度上提高了钝化层表面的钝化效果。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为本发明实施例提供的硅基异质结太阳电池的结构示意图;
图2为本发明另一实施例提供的硅基异质结太阳电池的结构示意图;
图3为本发明又一实施例提供的硅基异质结太阳电池的结构示意图;
图4为本发明实施例提供的硅基异质结太阳电池的制备方法的流程图;
图5为图4流程图的制备过程示意图;
图6为本发明另一实施例提供的硅基异质结太阳电池的制备方法的流程图;
图7为图6流程图的制备过程示意图;
图8为本发明又一实施例提供的硅基异质结太阳电池的制备方法的流程图;
图9为图8流程图的制备过程示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
至少如图1所示,本发明实施例提供的硅基异质结太阳电池,包括依次叠层设置的基底1、钝化层2、p型掺杂非晶硅层6、电子传输层4及TCO层5,所述电子传输层4为纳米硅氧层;所述纳米硅氧层与TCO层5之间设置有n型掺杂非晶硅层8。
这里所说的依次叠层设置是指各层按照一定的先后顺序来形成,依次叠层设置的各层之间可以设置其它层,也可以不设置其它层。例如,钝化层2是直接设置在基底1上的,钝化层2与基底1之间可以不设置其他层;而钝化层2与电子传输层2之间设置有其它层,这里设置的是本征纳米硅层3。
基底1例如可以为n型或者p型掺杂的晶硅基底。
钝化层2可以为本征非晶硅层。
电子传输层4可以为n型掺杂的纳米硅氧层。
可以只在电子传输层4与钝化层2之间设置本征纳米硅层3,如图1所示。也可以只在电子传输层4与TCO层5之间设置n型掺杂非晶硅层8,如图2所示。还可以既在电子传输层4与钝化层2之间设置本征纳米硅层3,又在电子传输层4与TCO层5之间设置n型掺杂非晶硅层8,如图3所示;该三种结构形式详见下述制备方法的描述。
上述方案,通过在电子传输层4与TCO层5之间设置n型掺杂非晶硅层8,可以改善电子传输层4与TCO层5的接触,在低氧化的界面处,透明导电氧化物材料的扩散相对较小,从而可以降低电子传输层4与TCO层5之间的带阶,改善载流子传输,利于填充因子的改善。
通过在电子传输层4与钝化层2之间设置本征纳米硅层3,使得钝化层2的表面处于非晶硅与电子传输层4中的纳米硅的晶相转化区,有利于诱导纳米硅氧加速成核,提高纳米硅氧的晶化率,提高了材料的电学性能,进而提高了电子传输层4的电学性能,其中,纳米硅氧材料的激活能下降5%-10%,电导提升20%-30%。此外,本征纳米硅层3还可以阻挡电子传输层4,如n型掺杂的纳米硅氧层中的磷(P) 元素扩散,防止因磷元素扩散而影响钝化层2的钝化效果,且本征纳米硅层3可以使钝化层2的微结构因子(R*)增大,在一定程度上提高了钝化层2表面的钝化效果。
在既设置本征纳米硅层3,又设置n型掺杂非晶硅层8的情况下,电子传输层4中的纳米硅氧材料激活能下降:35%-60%,电导提升: 25%-40%。
作为可实现方式,所述纳米硅氧层的折射率为1.9-2.3之间,晶化率为35%-50%。
作为可实现方式,所述纳米硅氧层包括层叠设置的纳米硅氧材料层和纳米硅材料层。例如可以先在本征纳米硅层3上形成纳米硅材料层,然后在纳米硅材料层上形成纳米硅氧材料层。
作为可实现方式,所述纳米硅氧材料层的厚度为8nm-15nm,所述纳米硅材料层的厚度为2nm-5nm。
作为可实现方式,所述本征纳米硅层3的厚度为0.1nm-4nm。
作为可实现方式,所述钝化层2及所述本征纳米硅层3的H的总含量在20%-28%。在沉积本征纳米硅层3时,采用高氢稀释比的第一工作气体,例如,第一工作气体包括H2和SiH4,H2和SiH4的流量比为90:1-220:1,以达到高氢稀释比。
作为可实现方式,为了提高电学性能,所述钝化层2及所述本征纳米硅层3的微结构因子在55%-70%。
作为可实现方式,所述n型掺杂非晶硅层8的厚度为2nm-4nm。
第二方面,本发明提供一种上述硅基异质结太阳电池的制备方法,包括以下步骤:
依次形成所述基底1、所述钝化层2、所述电子传输层4及TCO 层5,所述电子传输层4为纳米硅氧层;
在所述电子传输层4与TCO层5之间形成n型掺杂非晶硅层8。
这里所说的依次形成指各层按照一定的先后顺序来形成,依次形成的各层之间可以设置其它层,也可以不设置其它层。例如,钝化层 2是直接形成在基底1上的,钝化层2与基底1之间可以不设置其他层;而钝化层2与电子传输层4之间形成有其它层,这里设置的是本征纳米硅层3。
可以仅在形成钝化层2后,在钝化层2上沉积本征纳米硅层3。也可以仅在形成纳米硅氧层后,在纳米硅氧层上沉积n型掺杂非晶硅层8。还可以既在形成钝化层2后,在钝化层2上沉积本征纳米硅层3,还在形成纳米硅氧层后,在纳米硅氧层上沉积n型掺杂非晶硅层8。
该制备方法用于上述实施例中的硅基异质结太阳电池,其效果及原理参见上述实施例,这里不再赘述。
作为可实现方式,在进行所述本征纳米硅层3沉积时,工艺条件为:
向VHF-PECVD工艺腔通入第一工作气体,所述第一工作气体包括H2和SiH4,所述H2和所述SiH4的流量比为90:1-220:1,所述 VHF-PECVD工艺腔内压强为3mbar~5mbar,电源功率密度为 55mW/cm2-85mW/cm2
作为可实现方式,在进行所述n型掺杂非晶硅层8沉积时,工艺条件为:
向RF-PECVD工艺腔通入第二工作气体,所述第二工作气体包括 PH3和SiH4,所述PH3和所述SiH4的流量比为1:5-2:5,所述RF-PECVD 工艺腔内压强为0.3mbar~0.8mbar,电源功率密度为 20mW/cm2-30mW/cm2
作为可实现方式,所述纳米硅氧层的折射率为1.9-2.3之间,晶化率为35%-50%。
作为可实现方式,所述纳米硅氧层包括层叠设置的纳米硅氧材料层和纳米硅材料层。
作为可实现方式,所述纳米硅氧材料层的厚度为8nm-15nm,所述纳米硅材料层的厚度为2nm-5nm。
作为可实现方式,所述n型掺杂非晶硅层8的厚度为2nm-4nm。
以下以几种具体实现方式,对该发明提供的硅基异质结太阳电池的制备方法,予以示例性说明,其并非是对本发明的唯一性限定。
第一种实现方式,如图4、图5所示:
S101:对基底1进行表面结构化。
提供一基底1,该基底1可以是n型或者p型掺杂的晶硅基底,在该实现方式中以n型掺杂的晶硅基底为例。使用含有KOH的溶液对基底1表面进行制绒,以完成表面织构化。其中,KOH溶液的浓度可以为5%wt,温度80℃。并在此过程使用含有氢氟酸的溶液进行清洗,并在清洗后进行水洗及烘干等工序。
S102:沉积钝化层2。
将经过表面结构化的基底1放置于射频等离子体增强化学气相沉积系统(RadioFrequency Plasma Enhanced Chemical Vapor Deposition; RF-PECVD)内,分别在基底1的正面和背面沉积钝化层2,钝化层2 可以为本征非晶硅层。例如但不限于,RF-PECVD采用的射频频率为 13.56MHz。沉积的本征非晶硅层的厚度在5nm-10nm。
S103:沉积本征纳米硅层3。
将上述步骤沉积过钝化层2的部件,放入到甚高频等离子体增强化学气相沉积设备(Very High Frequency Plasma Enhanced Chemical Vapor Deposition;VHF-PECVD)内,并向VHF-PECVD工艺腔通入第一工作气体,所述第一工作气体包括H2和SiH4,所述H2和所述SiH4的流量比为90:1-120:1,所述VHF-PECVD工艺腔内压强为3mbar~5 mbar,电源功率密度为55mW/cm2-85mW/cm2。沉积厚度为0.1nm-4nm 的本征纳米硅层3。
S104:沉积电子传输层4。
该电子传输层4采用n型纳米硅氧层。
将沉积过本征纳米硅层3的部件,放入到13.56MHz的RF-PECVD 设备中,在本征纳米硅层3上沉积10nm-20nm厚的n型纳米硅氧层。
S105:沉积背面p型掺杂非晶硅层6。
在沉积过n型纳米硅氧层的部件的背面,通过13.56MHz的 RF-PECVD设备在基底1背面的钝化层2上沉积5nm-15nm厚的p型掺杂非晶硅层6。
S106:沉积透明导电氧化物层5。
通过物理气相沉积(Physical Vapour Deposition;PVD),如磁控溅射工艺,分别在n型纳米硅氧层及p型掺杂非晶硅层6上沉积透明导电氧化物层5。
S107:制备电极7。
通过丝网印刷等放置,在正面及背面的透明导电氧化物层5上印制导电浆料,并烧结形成对应的电极7。导电浆料例如但不限于为银浆。
第二种实现方式,如图6、图7所示:
S201:对基底1进行表面结构化。
提供一基底1,该基底1可以是n型或者p型掺杂的晶硅基底,在该实现方式中以n型掺杂的晶硅基底为例。使用含有KOH的溶液对基底1表面进行制绒,以完成表面织构化。其中,KOH溶液的浓度可以为5%wt,温度80℃。并在此过程使用含有氢氟酸的溶液进行清洗,并在清洗后进行水洗及烘干等工序。
S202:沉积钝化层2。
将经过表面结构化的基底1放置于射频等离子体增强化学气相沉积系统(RadioFrequency Plasma Enhanced Chemical Vapor Deposition; RF-PECVD)内,分别在基底1的正面和背面沉积钝化层2,钝化层2 可以为本征非晶硅层。例如但不限于,RF-PECVD采用的射频频率为 13.56MHz。沉积的本征非晶硅层的厚度在5nm-10nm。
S203:沉积电子传输层4。
该电子传输层4采用n型纳米硅氧层。
将沉积过钝化层2的部件,放入到13.56MHz的RF-PECVD设备中,在钝化层2上沉积10nm-20nm厚的n型纳米硅氧层4。
S204:沉积n型掺杂非晶硅层8。
将沉积过电子传输层2的部件放入到RF-PECVD设备,例如但不限于,RF-PECVD采用的射频频率为13.56MHz。向RF-PECVD工艺腔通入第二工作气体,所述第二工作气体包括PH3和SiH4,所述PH3和所述SiH4的流量比为1:5-2:5,所述RF-PECVD工艺腔内压强为 0.3mbar~0.8mbar,电源功率密度为20mW/cm2-30mW/cm2。沉积 2nm-4nm厚的n型掺杂非晶硅层8。
S205:沉积背面p型掺杂非晶硅层6。
在沉积过n型纳米硅氧层的部件的背面,通过13.56MHz的 RF-PECVD设备在基底1背面的钝化层2上沉积5nm-15nm厚的p型掺杂非晶硅层6。
S206:沉积TCO层5。
通过物理气相沉积(Physical Vapour Deposition;PVD),如磁控溅射工艺,分别在电子传输层4(也即n型纳米硅氧层)及p型掺杂非晶硅层6上沉积TCO层5。
S207:制备电极7。
通过丝网印刷等放置,在正面及背面的透明导电氧化物层5上印制导电浆料,并烧结形成对应的电极7。导电浆料例如但不限于为银浆。
第三种实现方式,如图8、图9所示:
S301:对基底1进行表面结构化。
提供一基底1,该基底1可以是n型或者p型掺杂的晶硅基底,在该实现方式中以n型掺杂的晶硅基底为例。使用含有KOH的溶液对基底1表面进行制绒,以完成表面织构化。其中,KOH溶液的浓度可以为5%wt,温度80℃。并在此过程使用含有氢氟酸的溶液进行清洗,并在清洗后进行水洗及烘干等工序。
S302:沉积钝化层2。
将经过表面结构化的基底1放置于射频等离子体增强化学气相沉积系统(RadioFrequency Plasma Enhanced Chemical Vapor Deposition; RF-PECVD)内,分别在基底1的正面和背面沉积钝化层2,钝化层2 可以为本征非晶硅层。例如但不限于,RF-PECVD采用的射频频率为 13.56MHz。沉积的本征非晶硅层的厚度在5nm-10nm。
S303:沉积本征纳米硅层3。
将上述步骤沉积过钝化层2的部件,放入到甚高频等离子体增强化学气相沉积设备(Very High Frequency Plasma Enhanced Chemical Vapor Deposition;VHF-PECVD)内,并向VHF-PECVD工艺腔通入第一工作气体,所述第一工作气体包括H2和SiH4,所述H2和所述SiH4的流量比为90:1-120:1,所述VHF-PECVD工艺腔内压强为3mbar~5 mbar,电源功率密度为55mW/cm2-85mW/cm2。沉积厚度为0.1nm-4nm 的本征纳米硅层3。
S304:沉积电子传输层4。
该电子传输层4采用n型纳米硅氧层。
将沉积过本征纳米硅层3的部件,放入到13.56MHz的RF-PECVD 设备中,在本征纳米硅层3上沉积10nm-20nm厚的n型纳米硅氧层。
S305:沉积n型掺杂非晶硅层8。
将沉积过电子传输层2的部件放入到RF-PECVD设备,例如但不限于,RF-PECVD采用的射频频率为13.56MHz。向RF-PECVD工艺腔通入第二工作气体,所述第二工作气体包括PH3和SiH4,所述PH3和所述SiH4的流量比为1:5-2:5,所述RF-PECVD工艺腔内压强为 0.3mbar~0.8mbar,电源功率密度为20mW/cm2-30mW/cm2。沉积 2nm-4nm厚的n型掺杂非晶硅层8。
S306:沉积背面p型掺杂非晶硅层6。
在沉积过n型纳米硅氧层的部件的背面,通过13.56MHz的 RF-PECVD设备在基底1背面的钝化层2上沉积5nm-15nm厚的p型掺杂非晶硅层6。
S307:沉积TCO层5。
通过物理气相沉积(Physical Vapour Deposition;PVD),如磁控溅射工艺,分别在n型纳米硅氧层及p型掺杂非晶硅层6上沉积TCO层 5。
S308:制备电极7。
通过丝网印刷等放置,在正面及背面的透明导电氧化物层5上印制导电浆料,并烧结形成对应的电极7。导电浆料例如但不限于为银浆。
需要理解的是,上文如有涉及术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

1.一种硅基异质结太阳电池,包括依次叠层设置的基底、钝化层、电子传输层及透明导电氧化物层,所述电子传输层为纳米硅氧层,其特征在于;
所述纳米硅氧层与透明导电氧化物层之间设置有n型掺杂非晶硅层。
2.根据权利要求1所述的硅基异质结太阳电池,其特征在于,所述n型掺杂非晶硅层的厚度为2 nm-4 nm。
3.根据权利要求1所述的硅基异质结太阳电池,其特征在于,所述纳米硅氧层的折射率为1.9-2.3之间,晶化率为35%-50%。
4.根据权利要求1所述的硅基异质结太阳电池,其特征在于,所述纳米硅氧层包括层叠设置的纳米硅氧材料层和纳米硅材料层。
5.根据权利要求4所述的硅基异质结太阳电池,其特征在于,所述纳米硅氧材料层的厚度为8 nm-15 nm,所述纳米硅材料层的厚度为2 nm-5 nm。
6.根据权利要求1-5任一项所述的硅基异质结太阳电池,其特征在于,所述纳米硅氧层与钝化层之间设置有本征纳米硅层。
7.根据权利要求6所述的硅基异质结太阳电池,其特征在于,所述本征纳米硅层的厚度为0.1 nm-4 nm。
8.根据权利要求6所述的硅基异质结太阳电池,其特征在于,所述钝化层及所述本征纳米硅层的H的总含量在20%-28%,或所述钝化层及所述本征纳米硅层的微结构因子在55%-70%。
9.一种如权利要求1-8任一项所述硅基异质结太阳电池的制备方法,其特征在于,包括以下步骤:
依次形成所述基底、所述钝化层、所述电子传输层及透明导电氧化物层,所述电子传输层为纳米硅氧层;
在所述纳米硅氧层与透明导电氧化物层之间形成n型掺杂非晶硅层。
10.根据权利要求9所述的制备方法,其特征在于,在进行所述n型掺杂非晶硅层沉积时,工艺条件为:
向RF-PECVD工艺腔通入第二工作气体,所述第二工作气体包括PH3和SiH4,所述PH3和所述SiH4的流量比为1:5-2:5,所述RF-PECVD工艺腔内压强为0.3 mbar~0.8 mbar,电源功率密度为20 mW/cm2-30 mW/cm2
CN202210449883.9A 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法 Active CN114864729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210449883.9A CN114864729B (zh) 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210449883.9A CN114864729B (zh) 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法
CN202010852298.4A CN112151636B (zh) 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202010852298.4A Division CN112151636B (zh) 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN114864729A CN114864729A (zh) 2022-08-05
CN114864729B true CN114864729B (zh) 2023-08-01

Family

ID=73889041

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010852298.4A Active CN112151636B (zh) 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法
CN202210449883.9A Active CN114864729B (zh) 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010852298.4A Active CN112151636B (zh) 2020-08-21 2020-08-21 硅基异质结太阳电池及其制备方法

Country Status (1)

Country Link
CN (2) CN112151636B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768549A (zh) * 2021-02-09 2021-05-07 通威太阳能(成都)有限公司 一种高光电转换效率的hjt电池及其制备方法
CN112802910A (zh) * 2021-02-09 2021-05-14 通威太阳能(成都)有限公司 一种高效硅异质结太阳能电池及其制备方法
CN113921661B (zh) * 2021-09-23 2023-12-01 理想万里晖半导体设备(上海)股份有限公司 用于制造异质结太阳能电池的方法及异质结太阳能电池
CN116995118A (zh) * 2023-09-26 2023-11-03 无锡华晟光伏科技有限公司 太阳能电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009094578A2 (en) * 2008-01-24 2009-07-30 Applied Materials, Inc. Improved hit solar cell structure
CN202549860U (zh) * 2012-02-23 2012-11-21 上海中智光纤通讯有限公司 一种异质结太阳电池
CN104733557A (zh) * 2015-01-13 2015-06-24 福建铂阳精工设备有限公司 Hit太阳能电池及提高hit电池的短路电流密度的方法
CN106098835A (zh) * 2016-08-19 2016-11-09 山东新华联新能源科技有限公司 异质结太阳能电池及其制备方法
CN109449227A (zh) * 2018-12-13 2019-03-08 江苏爱康能源研究院有限公司 叠层本征层的晶硅异质结太阳能电池电极结构及其制备方法
CN111244278A (zh) * 2018-11-29 2020-06-05 中国科学院大连化学物理研究所 非掺杂晶硅异质结钙钛矿叠层太阳电池结构及制备方法
CN111509058A (zh) * 2020-05-02 2020-08-07 熵熠(上海)能源科技有限公司 一种以非晶氧化硅薄膜为本征钝化层的异质结太阳电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228414A1 (en) * 2009-03-13 2010-09-15 Bayer MaterialScience AG UV-curable, wear resistant and antistatic coating filled with carbon nanotubes
FR2955702B1 (fr) * 2010-01-27 2012-01-27 Commissariat Energie Atomique Cellule photovoltaique comprenant un film mince de passivation en oxyde cristallin de silicium et procede de realisation
CN102110734B (zh) * 2011-01-18 2012-07-18 西安交通大学 一种纳米硅/晶体硅异质结光伏电池
KR102607292B1 (ko) * 2012-09-18 2023-11-29 옥스포드 유니버시티 이노베이션 리미티드 광전자 디바이스
US9306106B2 (en) * 2012-12-18 2016-04-05 International Business Machines Corporation Monolithic integration of heterojunction solar cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009094578A2 (en) * 2008-01-24 2009-07-30 Applied Materials, Inc. Improved hit solar cell structure
CN202549860U (zh) * 2012-02-23 2012-11-21 上海中智光纤通讯有限公司 一种异质结太阳电池
CN104733557A (zh) * 2015-01-13 2015-06-24 福建铂阳精工设备有限公司 Hit太阳能电池及提高hit电池的短路电流密度的方法
CN106098835A (zh) * 2016-08-19 2016-11-09 山东新华联新能源科技有限公司 异质结太阳能电池及其制备方法
CN111244278A (zh) * 2018-11-29 2020-06-05 中国科学院大连化学物理研究所 非掺杂晶硅异质结钙钛矿叠层太阳电池结构及制备方法
CN109449227A (zh) * 2018-12-13 2019-03-08 江苏爱康能源研究院有限公司 叠层本征层的晶硅异质结太阳能电池电极结构及其制备方法
CN111509058A (zh) * 2020-05-02 2020-08-07 熵熠(上海)能源科技有限公司 一种以非晶氧化硅薄膜为本征钝化层的异质结太阳电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Optimization of amorphous silicon oxide Buffer layer for High-Efficiency p-Type Hydrogenated crystalline silicon oxide/n-type crystalline silicon Heterojunction Solar Cell;J.Sritharathiikhun;《Japanese Newsaper of Applied Physics》;第47卷(第11期);第8452-8455页 *

Also Published As

Publication number Publication date
CN112151636B (zh) 2022-07-15
CN112151636A (zh) 2020-12-29
CN114864729A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN114864729B (zh) 硅基异质结太阳电池及其制备方法
AU2021404856B2 (en) High-efficiency silicon heterojunction solar cell and manufacturing method thereof
EP3503210A1 (en) Heterojunction solar cell and fabrication method thereof
CN108336154A (zh) 晶体硅太阳能电池及其制备方法
KR101103330B1 (ko) InP의 강제도핑에 의한 고농도 P 도핑 양자점 태양전지 및 제조방법
CN113035969A (zh) 一种TOPCon电池梯度掺杂非晶硅钝化结构及制备方法
WO2022142343A1 (zh) 太阳能电池及其制备方法
CN110993718A (zh) 一种高转化效率的异质结电池及其制备方法
CN218788382U (zh) 一种高效异质结太阳能电池
CN114883427B (zh) 一种晶硅异质结太阳电池结构及其制备方法
WO2024007874A1 (zh) 太阳电池及其制备方法
CN112002779A (zh) 硅异质结太阳能电池及其制作方法
CN114914328B (zh) 一种双面太阳能电池及其制备方法
EP4220742A1 (en) Heterojunction solar cell and preparation method therefor, and power generation apparatus
CN113921661B (zh) 用于制造异质结太阳能电池的方法及异质结太阳能电池
TW201222851A (en) Manufacturing method of bifacial solar cells
TWI470812B (zh) 異質接面太陽能電池及其電極
CN211238271U (zh) 一种高转化效率的异质结电池
JP2675754B2 (ja) 太陽電池
TW201225309A (en) Method of fabricating rear surface point contact of solar cells
CN110335814B (zh) 在硅片上制备选择性掺杂结构的制备方法及太阳能电池片
CN103975445B (zh) 太阳能电池及其制造方法
CN111477696A (zh) 一种基于钝化接触的太阳能电池片及其制备方法
CN216488084U (zh) 异质结ibc太阳能电池的背面结构及异质结ibc太阳能电池
CN217606831U (zh) 一种高效异质结太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant