CN114853460B - 一种烧结机处置二次铝灰同步制备铝酸钙的方法 - Google Patents
一种烧结机处置二次铝灰同步制备铝酸钙的方法 Download PDFInfo
- Publication number
- CN114853460B CN114853460B CN202210527971.6A CN202210527971A CN114853460B CN 114853460 B CN114853460 B CN 114853460B CN 202210527971 A CN202210527971 A CN 202210527971A CN 114853460 B CN114853460 B CN 114853460B
- Authority
- CN
- China
- Prior art keywords
- sintering
- aluminum ash
- secondary aluminum
- calcium aluminate
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/195—Alkaline earth aluminosilicates, e.g. cordierite or anorthite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/16—Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/164—Calcium aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
- C21C7/0645—Agents used for dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/95—Products characterised by their size, e.g. microceramics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种烧结机处置二次铝灰同步制备铝酸钙的方法,该方法是将二次铝灰与含钙原料、返矿及燃料混匀制粒,所得粒料布料至烧结机上,进行点火和烧结,所得烧结矿经冷却、破碎,即得烧结型铝酸钙产品。该方法充分利用二次铝灰中金属铝氧化放热、燃料燃烧以及料层的自动蓄热作用加热烧结料,通过控制混合料金属铝含量以及碱度调节液相,利用烧结负压控制烧结速度,使二次铝灰中的K、Na、Cl、N等有害元素在高温条件下快速脱除,同时得到性能优异的烧结型铝酸钙产品。该方法不仅实现了二次铝灰的深度解毒,同时获得炼钢精炼脱硫剂,且操作简单,生产成本低,满足大型工业化生产要求。
Description
技术领域
本发明涉及一种二次铝灰的处理方法,尤其涉及一种烧结机处置二次铝灰同步制备铝酸钙的方法,属于二次金属资源回收技术领域。
背景技术
铝灰渣是铝工业生产加工及回收过程产生的一种危险固体废弃物,其产生于所有铝发生熔融的过程。二次铝灰是铝灰渣经炒灰处理回收金属铝后的残渣,随着铝工业的快速发展及再生铝比例的逐年提高,二次铝灰的产量也急剧增长。据不完全统计,我国二次铝灰年产量已达200万吨以上,但其综合利用率不足30%,大部分二次铝灰被堆存,累计堆存量愈千万吨。
由于二次铝灰中含有大量钾、钠、氯、氮等毒害组分,其大量堆存给企业生产和环境带来极大危害,2021年二次铝灰被我国列入《国家危险废物名录》,危险特性为毒性。同时,二次铝灰中含有大量有价元素,其中全铝含量达40%以上,远高于铝土矿中铝含量,具有极大的利用价值。
在炼钢脱硫过程中,精炼渣是必不可少的添加剂,其中铝酸钙系精炼渣由于其优良的性能成为未来主要发展趋势。目前,铝酸钙系精炼渣的主要生产原料为氧化铝粉、高铝矾土与高钙石灰石,但氧化铝粉等原料价格高昂,在一定程度上限制了铝酸钙系精炼渣的发展。二次铝灰虽然是一种危险废弃物,但是其含铝物相含量高达70%以上,完全可以作为制备铝酸钙系精炼渣的潜在优质原料。
目前,已有的专利公布了一些利用二次铝灰制备铝酸钙的方法,中国专利(CN109928414B)公布了一种利用铝灰烧结脱除杂质同步制备铝酸钙系炼钢脱硫剂的方法,具体操作为将铝灰与含钙原料压制成团块后依次置于不同气氛中进行低温、中温、高温三段焙烧从而制备出预熔型铝酸钙系炼钢脱硫剂。中国专利(CN112680564B)公布了一种高镁铝灰渣熔制铝酸钙炼钢脱硫剂的方法,该方法采用湿式、干式两段球磨处理,球磨后物料经高温焙烧制备出铝酸钙系炼钢脱硫剂。以上两种方法均制备出了符合炼钢要求的预熔型铝酸钙产品,相对于烧结型铝酸钙,预熔型铝酸钙产品纯度更高,同时所需要的反应温度也较高,时间也较长。
发明内容
针对现有二次铝灰资源化利用存在的问题,本发明的目的是在于提供一种烧结机处置二次铝灰同步制备铝酸钙的方法,该方法利用钢铁企业现有的烧结机,通过一步烧结实现二次铝灰深度解毒的同时,制备出符合炼钢精炼要求的铝酸钙系脱硫剂,为二次铝灰的无害化、高值化及规模化利用提供了新的途径。
为了实现上述技术目的,本发明提供了一种烧结机处置二次铝灰同步制备铝酸钙的方法,该方法是将二次铝灰与含钙原料、返矿及燃料混匀制粒,所得粒料布料至烧结机上,进行点火和烧结,所得烧结矿经冷却、破碎,即得烧结型铝酸钙产品。
本发明的技术方案关键是在于充分利用钢铁企业现有烧结机,通过烧结过程二次铝灰中金属铝氧化放热、燃料燃烧以及料层的自动蓄热作用加热烧结料,通过控制粒料中金属铝含量以及混合料碱度调节液相,利用烧结负压控制烧结速度,在使二次铝灰中的钾、钠、氯、氮等有害元素在高温条件下快速脱除,同时得到炼钢脱硫性能优异的烧结型铝酸钙产品。
作为一个优选的方案,所述二次铝灰中金属铝质量百分比含量为5%~12%,Al2O3质量百分比含量不低于50%,TiO2质量百分比含量不高于0.8%,AlN质量百分比含量不高于10%,NaCl和KCl总质量百分比不高于5%。本发明的二次铝灰中包含适量的金属Al对整个烧结过程起到重要作用,金属铝与氧化铝不同,金属铝的熔点较低,在低温下可以快速形成液相,同时金属Al的氧化会产生大量的热量,为烧结过程提供必要的温度。对于碱金属盐类物质的存在,会影响体系的熔点,但含量过高会给烧结除尘带来极大负担,因此需控制在适当范围内。
作为一个优选的方案,所述含钙原料为生石灰、消石灰、石灰石中至少一种。作为一个较优选的方案,所述含钙原料中生石灰和消石灰总质量占比不低于50%。所述含钙原料中SiO2含量不高于4%,MgO含量不高于3%。二次铝灰粒度较细,而生石灰和消石灰等具有一定的黏结性,在混合制粒过程中可以改善混合料粒度组成,同时,在烧结过程中,二次铝灰中的含铝物相在高温下与钙源反应生成以12CaO·7Al2O3为主要物相的铝酸钙烧结矿产品。
作为一个优选的方案,二次铝灰与含钙原料、返矿及燃料配料满足:Ca/Al元素质量比为1.25~1.35,返矿质量占比为10%~14%,燃料质量占比为5%~8%,且二次铝灰中金属铝和燃料的总质量占比为9.5%~12.5%。钙铝比能够保证生成产品主要为12CaO·7Al2O3。而返矿是烧结产物中粒度小于5mm的部分,本发明技术方案充分利用其粒度较粗,且含有较多的气孔的特点,不但在制粒过程,可以利用返矿作为细粒级物料的制粒核心,强化制粒,而且利用返矿的多孔结构在烧结过程中可以显著改善烧结料层的透气性。而金属铝的熔点较低,可以在较低温度下形成液相,同时,金属铝在氧化过程会放出大量的热,通过燃料燃烧和金属铝自身氧化放热,使烧结料达到反应需要的温度,但燃料添加量过高会抑制金属Al和AlN的氧化。燃料为常见的煤燃料,如焦粉。
作为一个优选的方案,所述粒料的粒级分布满足:-3mm粒级质量占比为30%~50%,+3~-5mm粒级质量占比为20%~40%,+5mm粒级质量占比为10%~30%。适宜的烧结料粒级分布可以有效改善烧结料层的透气性,从而提高烧结生产效率。
作为一个优选的方案,所述布料的料层高度为500~650mm。随着烧结料层高度的增加,料层的蓄热量也逐渐增加,使烧结高温带时间延长,有助于铝酸钙的形成,同时可以减少表层未充分反应的烧结矿的比例,提高烧结矿成品率。但料层过高会导致料层透气性降低,同时下部料层由于水分冷凝会出现过湿现象,影响烧结质量。
作为一个优选的方案,所述点火的温度为1250~1350℃,点火时间为5~8min,保温时间2~3min,点火及保温负压为2~3kPa。由于表层烧结料初始温度较低,通过适当提高点火温度、延长点火时间可以使料层的表层充分完成反应,同时借助抽风使下层物料充分预热。
作为一个优选的方案,所述烧结采用抽风烧结,烧结温度为1300~1450℃,烧结时间为25~50min,烧结负压为4~6kPa。采用负压抽风烧结可以为烧结反应提供充足的氧气,促进AlN的氧化及盐的脱除。同时,通过调节适宜的烧结负压可以将烧结速度控制在合适的范围,保证铝酸钙生成反应的充分进行。
本发明的制粒过程中加入适量的水来促进混合原料成粒。
本发明制备的烧结型铝酸钙产品粒度直径为2~8cm。
相对于现有技术,本发明的技术方案带来的有益技术效果:
1)本发明提出采用烧结法实现二次铝灰除杂同步制备铝酸钙系炼钢脱硫剂,不仅实现了二次铝灰危险固体废弃物的深度解毒,同时制备出了满足炼钢精炼要求的脱硫剂,为二次铝灰无害化、资源化和大规模处置利用提供了一种新途径,解决了铝酸钙产品原料成本高的问题。
2)本发明所使用的设备为钢铁厂现有的烧结机,无需新的设备,且相对于传统的回转窑烧结法,采用烧结机处置二次铝灰,技术路线操作简单,极大地提高了铝酸钙产品的生产效率,降低了企业生产成本。
3)本发明充分利用二次铝灰中金属铝氧化放热、燃料燃烧以及料层的自动蓄热作用加热烧结料以达到烧结反应温度,通过控制金属Al含量以及混合料碱度调节液相生成量,利用配加返矿改善混合料粒级匹配,利用烧结负压控制烧结速度,使二次铝灰中的钾、钠、氯、氮等有害元素在高温条件下快速脱除,同时得到性能优异的烧结型铝酸钙产品(主要活性成分为12CaO·7Al2O3,为铝酸钙系炼钢脱硫剂中脱硫效果最好的理想产品)。
附图说明
图1为对比实施例1的烧结型铝酸钙产品的XRD图;
图2为实施例1的烧结型铝酸钙产品的XRD图。
具体实施方式
以下实施例旨在进一步说明本发明内容,而不是限制本发明权利要求的保护范围。
以下具体实施例和对比实施例中涉及的产品性能检测方式统一描述如下:烧结矿冷却后进行破碎、筛分处理,保证全部烧结矿粒径小于8cm,其中2~8cm粒级所占质量比为成品率;成品矿中N的含量采用氧氮氢分析仪测定,NaCl/KCl及铝酸钙含量采用化学滴定法测定;成品矿物相组成通过X射线衍射分析。
对比实施例1
混合料Ca/Al元素质量比为1.00,其它实验条件同实施例1。Ca/Al元素质量比过低,不利于铝酸钙的生成。
对烧结产品进行性能检测,成品率为76.59%,N脱除率为85.32%,NaCl/KCl脱除率为83.27%,铝酸钙理论含量48.65%,熔点为1486℃。产品XRD分析如附图1所示,产品中含有大量CaO和MgAl2O4的衍射峰。
对比实施例2
燃料用量为12%,其它实验条件同实施例1。燃料用量过高,料层氧势低,不利于AlN的氧化脱除。
对烧结产品进行性能检测,成品率为87.6%,N脱除率为51.8%,NaCl/KCl脱除率为75.3%,铝酸钙理论含量85.5%,熔点为1458℃。
对比实施例3
配料不添加返矿,其它实验条件同实施例1,不利于制粒以及铝酸钙的生成。
烧结混合料制粒后粒级组成为:-3mm(68.7wt%),+3~-5mm(27.2wt%),+5mm(4.1wt%)),说明没有添加返矿会影响制粒。对烧结产品进行性能检测,成品率为70.6%,N脱除率为78.3%,NaCl/KCl脱除率为80.8%,铝酸钙理论含量68.5%,熔点为1467℃。
对比实施例4
点火温度为1050℃,点火时间2min,保温时间1min,其它实验条件同实施例1。点火温度过低,点火、保温时间短,不利于铝酸钙生成。
对烧结产品进行性能检测,成品率为69.3%,N脱除率为79.9%,NaCl/KCl脱除率为82.1%,铝酸钙理论含量65.3%,熔点为1471℃。
对比实施例5
烧结负压为8kPa,其它实验条件同实施例1。烧结负压过大,烧结速度快,不利于铝酸钙生成。
对烧结产品进行性能检测,成品率为70.5%,N脱除率为66.8%,NaCl/KCl脱除率为74.3%,铝酸钙理论含量59.7%,熔点为1492℃。
实施例1
以某再生铝厂二次铝灰(金属Al含量为8.9%,Al2O3含量为63.5%,TiO2含量为0.39%,AlN含量为7.6%,NaCl、KCl总含量为3.7%)、生石灰、焦粉为原料。首先将二次铝灰与生石灰、返矿、焦粉配料,控制Ca/Al元素质量比为1.25,返矿添加量为10%,燃料添加量为8%,混合料中金属铝和燃料的总量为12.2%;将配料后的物料置于圆筒混料机加水混匀制粒,将制粒后的混合料布于烧结机上进行点火、抽风烧结,控制点火温度1350℃,点火时间5min,保温时间3min,点火、保温负压为2.5kPa,烧结料高550mm,烧结温度1373℃,烧结负压5kPa;烧结矿经冷却、破碎即得到烧结型铝酸钙产品。
烧结混合料制粒后粒级组成为:-3mm(43.1wt%),+3~-5mm(37.5wt%),+5mm(19.4wt%),烧结时间为30.4min,烧结速度为18.1mm/min。对烧结产品进行性能检测,成品率为88.3%,N脱除率为91.3%,NaCl/KCl脱除率为93.4%,铝酸钙理论含量90.1%,熔点为1398℃。产品XRD分析如附图2所示,主要为12CaO·7Al2O3物相的衍射峰。
实施例2
以某铝厂水浸预处理后的二次铝灰(金属Al含量为5.3%,Al2O3含量为71.6%,TiO2含量为0.09%,AlN含量为5.6%,NaCl、KCl总含量为1.8%)、生石灰、石灰石、焦粉为原料。首先将二次铝灰与生石灰、石灰石、返矿、焦粉配料,控制含钙原料中生石灰、石灰石比例为70%:30%,混合料Ca/Al元素质量比为1.30,返矿添加量为12%,燃料添加量为7%,混合料中金属铝和燃料的总量为9.6%;将配料后的物料置于圆筒混料机加水混匀制粒,将制粒后的混合料布于烧结机上进行点火、抽风烧结,控制点火温度1250℃,点火时间8min,保温时间2min,点火、保温负压为2kPa,烧结料高500mm,烧结温度1357℃,烧结负压5.5kPa;烧结矿经冷却、破碎即得到烧结型铝酸钙产品。
烧结混合料制粒后粒级组成为:-3mm(32.4wt%),+3~-5mm(41.3wt%),+5mm(26.3wt%),烧结时间为27.1min,烧结速度为18.5mm/min。对烧结产品进行性能检测,成品率为86.36%,N脱除率为89.2%,NaCl/KCl脱除率为90.7%,铝酸钙理论含量91.25%,熔点为1395℃。
实施例3
以某再生铝厂二次铝灰(金属Al含量为12.0%,Al2O3含量为58.2%,TiO2含量为0.13%,AlN含量为8.5%,NaCl、KCl总含量为4.6%)、消石灰、无烟煤为原料。首先将二次铝灰与消石灰、返矿、焦粉配料,控制Ca/Al元素质量比为1.35,返矿添加量为14%,燃料添加量为5%,混合料中金属铝和燃料的总量为10.4%;将配料后的物料置于圆筒混料机加水混匀制粒,将制粒后的混合料布于烧结机上进行点火、抽风烧结,控制点火温度1300℃,点火时间7min,保温时间2min,点火、保温负压为3kPa,烧结料高650mm,烧结温度1435℃,烧结负压6kPa;烧结矿经冷却、破碎即得到烧结型铝酸钙产品。
烧结混合料制粒后粒级组成为:-3mm(48.9wt%),+3~-5mm(27.8wt%),+5mm(23.3wt%),烧结时间为43.8min,烧结速度为14.8mm/min。对烧结产品进行性能检测,成品率为90.16%,N脱除率为92.2%,NaCl/KCl脱除率为95.1%,铝酸钙理论含量89.78%,熔点为1402℃。
实施例4
以某再生铝厂二次铝灰(金属Al含量为8.9%,Al2O3含量为63.5%,TiO2含量为0.39%,AlN含量为7.6%,NaCl、KCl总含量为3.7%)、生石灰、无烟煤为原料。首先将二次铝灰与生石灰、返矿、无烟煤配料,控制Ca/Al元素质量比为1.28,返矿添加量为12%,燃料添加量为6%,混合料中金属铝和燃料的总量为10.2%;将配料后的物料置于圆筒混料机加水混匀制粒,将制粒后的混合料布于烧结机上进行点火、抽风烧结,控制点火温度1350℃,点火时间6min,保温时间3min,点火、保温负压为2.5kPa,烧结料高600mm,烧结温度1413℃,烧结负压6kPa;烧结矿经冷却、破碎即得到烧结型铝酸钙产品。
烧结混合料制粒后粒级组成为:-3mm(45.7wt%),+3~-5mm(36.9wt%),+5mm(17.4wt%),烧结时间为35.2min,烧结速度为17.0mm/min。对烧结产品进行性能检测,成品率为89.67%,N脱除率为91.4%,NaCl/KCl脱除率为93.1%,铝酸钙理论含量90.69%,熔点为1401℃。
实施例5
以某铝厂水浸预处理后的二次铝灰(金属Al含量为5.3%,Al2O3含量为71.6%,TiO2含量为0.09%,AlN含量为5.6%,NaCl、KCl总含量为1.8%)、消石灰、焦粉为原料。首先将二次铝灰与消石灰、返矿、焦粉配料,控制Ca/Al元素质量比为1.33,返矿添加量为14%,燃料添加量为8%,混合料中金属铝和燃料的总量为10.9%;将配料后的物料置于圆筒混料机加水混匀制粒,将制粒后的混合料布于烧结机上进行点火、抽风烧结,控制点火温度1300℃,点火时间7min,保温时间2min,点火、保温负压为3kPa,烧结料高550mm,烧结温度1328℃,烧结负压4kPa;烧结矿经冷却、破碎即得到烧结型铝酸钙产品。
烧结混合料制粒后粒级组成为:-3mm(39.2wt%),+3~-5mm(32.4wt%),+5mm(28.4wt%),烧结时间为31.6min,烧结速度为17.4mm/min。对烧结产品进行性能检测,成品率为89.23%,N脱除率为88.2%,NaCl/KCl脱除率为90.3%,铝酸钙理论含量88.98%,熔点为1396℃。
Claims (2)
1.一种烧结机处置二次铝灰同步制备铝酸钙的方法,其特征在于:将二次铝灰与含钙原料、返矿及燃料混匀制粒,所得粒料布料至烧结机上,进行点火和烧结,所得烧结矿经冷却、破碎,即得烧结型铝酸钙产品;
所述二次铝灰中金属铝质量百分比含量为5%~12%,A12O3质量百分比含量不低于50%,TiO2质量百分比含量不高于0.8%,AlN质量百分比含量不高于10%,NaCl和KCl总质量百分比不高于5%;
所述含钙原料中生石灰和消石灰总质量占比不低于50%;
所述二次铝灰与含钙原料、返矿及燃料的配料满足:Ca/A1元素质量比为1.25~1.35,返矿质量占比为10%~14%,燃料质量占比为5%~8%,且二次铝灰中金属铝和燃料的总质量占比为9.5%~12.5%;
所述点火的温度为1250~1350℃,点火时间为5~8min,保温时间2~3min,点火及保温负压为2 ~ 3kPa;
所述烧结采用抽风烧结,烧结温度为1300~1450℃,烧结时间为25~50min,烧结负压为4~6kPa;
所述粒料的粒级分布满足:-3mm粒级质量占比为30%~50%,+3~-5mm粒级质量占比为20%~ 40% ,+5mm粒级质量占比为10% ~30%;
所述返矿为烧结产物中粒度小于5mm的部分。
2.根据权利要求1所述的一种烧结机处置二次铝灰同步制备铝酸钙的方法,其特征在于:所述布料的料层高度为500~ 650mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210527971.6A CN114853460B (zh) | 2022-05-16 | 2022-05-16 | 一种烧结机处置二次铝灰同步制备铝酸钙的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210527971.6A CN114853460B (zh) | 2022-05-16 | 2022-05-16 | 一种烧结机处置二次铝灰同步制备铝酸钙的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114853460A CN114853460A (zh) | 2022-08-05 |
CN114853460B true CN114853460B (zh) | 2023-05-26 |
Family
ID=82637326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210527971.6A Active CN114853460B (zh) | 2022-05-16 | 2022-05-16 | 一种烧结机处置二次铝灰同步制备铝酸钙的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114853460B (zh) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1053411A (ja) * | 1996-08-08 | 1998-02-24 | Arutetsuku Amino Kk | カルシウムアルミネートの製造方法 |
CN104278145B (zh) * | 2014-10-15 | 2017-01-11 | 首钢总公司 | 一种用于生产烧结矿的方法 |
CN108950189B (zh) * | 2018-07-13 | 2020-01-31 | 武汉科技大学 | 一种利用废弃镁碳砖生产含MgO烧结矿的方法 |
CN113683108B (zh) * | 2021-09-28 | 2023-07-25 | 兰溪市博远金属有限公司 | 一种利用二次铝灰制备铝酸钙产品的方法 |
-
2022
- 2022-05-16 CN CN202210527971.6A patent/CN114853460B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114853460A (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109928414B (zh) | 一种利用铝灰烧结脱除杂质同步制备铝酸钙系炼钢脱硫剂的方法 | |
CN101348268B (zh) | 两种综合利用硼泥、菱镁矿和滑石矿制备氧化镁、二氧化硅的方法 | |
CN111872412B (zh) | 一种粉末冶金用金属铁粉的制备方法 | |
EP0542404A1 (en) | Detoxification of aluminum spent potliner | |
CN107352819B (zh) | 一种铝电解槽炭质废料用于生产氟铝酸钙熟料的方法 | |
CN112607758B (zh) | 一种高镁铝灰渣与粉煤灰协同处理制备铝酸钙的方法 | |
CN107720723B (zh) | 一种全面处理铝电解槽废槽衬的方法 | |
CN111485063B (zh) | 电解铝厂铝灰的高效利用工艺 | |
CN108675911B (zh) | 一种降低电石渣产生的电石乙炔生产工艺 | |
CN110104969A (zh) | 一种活性石灰的生产工艺 | |
CN112958587A (zh) | 铝灰渣与大修渣协同处理利用方法及装置 | |
CN114774684A (zh) | 利用转底炉协同处置垃圾焚烧飞灰的方法及系统 | |
CN112456797B (zh) | 玻璃体制备方法和垃圾焚烧飞灰与铝电解槽大修渣无害化处置方法 | |
CN107200488B (zh) | 干法旋窑厂用铝电解槽炭质废料生产氟铝酸盐水泥的方法 | |
CN112723400B (zh) | 一种低镁铝灰同步活化惰化除杂熔制铝酸钙的方法 | |
CN113913619A (zh) | 一种二次铝灰高效除氮及制备预熔型铝酸钙精炼剂的方法 | |
CN114853460B (zh) | 一种烧结机处置二次铝灰同步制备铝酸钙的方法 | |
JPS6362572B2 (zh) | ||
CN114524442B (zh) | 一种粉磨站资源化清洁利用铝灰的方法 | |
CN216191117U (zh) | 一种回收铝基危废中氧化铝的反应系统 | |
CN110282885A (zh) | 一种赤泥分步处理综合利用生产系统及工艺 | |
CN113979775B (zh) | 一种利用二次铝灰制备陶粒支撑剂的方法 | |
CN112080642B (zh) | 一种脱硫石膏渣与废弃镁铬耐火砖协同处置综合回收的方法 | |
Zhang et al. | Sulfur migration behavior in sintering and pelletizing processes: A review | |
CN114292969A (zh) | 一种利用高炉炼铁协同处置垃圾焚烧飞灰的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |