CN114836567A - 优良种事件油菜ns-b50027-4 - Google Patents

优良种事件油菜ns-b50027-4 Download PDF

Info

Publication number
CN114836567A
CN114836567A CN202210541485.XA CN202210541485A CN114836567A CN 114836567 A CN114836567 A CN 114836567A CN 202210541485 A CN202210541485 A CN 202210541485A CN 114836567 A CN114836567 A CN 114836567A
Authority
CN
China
Prior art keywords
seq
plant
dna
region
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210541485.XA
Other languages
English (en)
Inventor
高文祥
马尔科姆·迪瓦恩
安东尼奥·雷昂福特
纳尔逊·戈罗罗
格雷格·布扎
唐舜学
詹姆斯·皮特里
苏林德·辛格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Newside Nutrition Australia Pty Ltd
Original Assignee
Newside Nutrition Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Newside Nutrition Australia Pty Ltd filed Critical Newside Nutrition Australia Pty Ltd
Publication of CN114836567A publication Critical patent/CN114836567A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • A01H6/202Brassica napus [canola]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/31Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Botany (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Developmental Biology & Embryology (AREA)
  • Food Science & Technology (AREA)

Abstract

本申请涉及优良种(elite)事件油菜NS‑B50027‑4。本发明实施方案涉及优良种事件NS‑B50027‑4、从NS‑B50027‑4获得的种子和油、来源于NS‑B50027‑4的子代、NS B50027‑4的遗传特征和表型特征、以及用于鉴定优良种事件NS‑B50027‑4的组合物和方法。特别是,NS‑B50027‑4是一种能够在其种子油中产生至少5%DHA的转基因油菜品系。

Description

优良种事件油菜NS-B50027-4
本申请是申请日为2017年6月16日,申请号为201780051945.8,发明名称为“优良种事件油菜NS-B50027-4”的申请的分案申请。
相关申请
本申请要求2016年6月16日提交的美国临时申请第62/351,246号的优先权权益,该临时申请为了所有目的通过引用全文并入本文。
序列表
本申请包含已经以ASCII格式通过EFS-Web提交的序列表,并且该序列表通过引用整体并入本文。
领域
本发明实施方案涉及油菜育种和农产品领域,具体涉及优良种(elite)事件NS-B50027-4。
背景
油菜是在世界上许多地区种植的重要油料作物。菜子油的脂肪酸组成富含单不饱和脂肪酸和多不饱和脂肪酸二者,包括短链ω-3脂肪酸,但缺乏长链ω-3脂肪酸。长链ω-3脂肪酸(LC-ω3)脂肪酸具有已确定的健康益处,但目前LC-ω3脂肪酸主要从藻类直接获得或从食用藻类的海洋鱼类获得。对膳食LC-ω3脂肪酸,特别是二十二碳六烯酸(22:6n-3;DHA)和二十碳五烯酸(20:5n-3;EPA)的认识导致对可食用鱼油的需求急剧增加。因此,存在对于供人类消耗的LC-ω3脂肪酸的可替代的、直接来源的需求。此外,由于养殖鱼类诸如大西洋鲑鱼以与膳食脂肪酸成正比地积累脂肪酸,因此需要维持鱼饲料中LC多不饱和脂肪酸(LC-PUFA)的量,并继而确保养殖鱼类中这些脂肪酸的存在。因此,需要可以在水产养殖中使用的富含LC-PUFA的来源。例如,需要能够产生LC-PUFA,特别是LC-ω3脂肪酸诸如DHA的油菜,用于在水产养殖中使用以及用于直接人体消耗。尽管植物育种和分子遗传操作(manipulation)方面取得了成就,但是还没有具有接近在野生鱼类中产生的LC-PUFA含量的那些LC-PUFA含量的菜子油的商业来源。此外,油菜栽培种(cultivar)(不是F1杂交种)应是同系的(homogenous)、纯合的(homozygous)和可繁殖的,以用于经济作物在可靠的基础上的生产。因此,仍然需要可以作为可持续作物种植、其种子提供具有商业可行的量的LC-ω3脂肪酸诸如DHA的油菜品系。
发明内容
本文描述的实施方案提供了一种近交重组油菜品系,命名为NS-B50027-4,其种子包含有益水平的ω3和LC-ω3脂肪酸,因此提供生产这些有价值的油类的可再生的基于陆地的系统。近交油菜品系NS-B50027-4的种子的代表性样品根据布达佩斯条约于2016年6月9日保藏在美国典型培养物保藏中心
Figure BDA0003648514750000021
(Manassas,VA),并指定登录号PTA-123186(参见附录A)。本文还描述了近交油菜品系NS-B50027-4的细胞、组织、种子和油。通过转基因操作进行选择和育种的组合使得能够在不存在变异的物种中产生变异。例如,本文描述的油菜品系NS-B50027-4的脂肪酸谱在天然欧洲油菜(B.napus)中不存在;并且本文描述的性状,尤其是产生DHA的有益性状已经被人类使用重要的技术干预进行开发。
本发明实施方案的一个方面提供了一种油菜(欧洲油菜(Brassica napus L.))品系NS-B50027-4的种子,NS-B50027-4是被选择和育种成稳定、均一的育种品系的栽培种AVJade的经遗传改良的油菜,并且在其种子中积累了相对总脂肪酸含量而言高比例(百分比)的ω3脂肪酸和LC-ω3脂肪酸。开发近交品系NS-B50027-4以提供以接近一些野生鱼油中发现的水平的那些水平产生包含LC-ω3脂肪酸,特别是DHA的种子的油菜植物。源自NS-B50027-4的食用油具有比其他欧洲油菜植物显著更高的DHA含量。通过遗传转化、然后是对稳定、高产、形态适合的油菜品系的严格的选择和育种来开发新颖的、均一的育种品系NS-B50027-4。
因此,本文描述的至少一个实施方案涉及近交油菜品系NS-B50027-4的种子;从近交油菜品系NS-B50027-4的种子培育的植物及其部分诸如花粉、胚珠或种子;以及通过培育近交油菜品系NS-B50027-4,或通过将近交油菜品系NS-B50027-4与其自身或与另一个油菜品系或芸薹属(Brassica)品系杂交并从培育的子代(progeny)获得种子而从油菜植物生产种子的方法。
至少一个实施方案提供了来自通过本文描述的方法产生的油菜植物群体的种子,平均而言,所述群体的10%至100%的等位基因来源于油菜品系NS-B50027-4。类似地,本发明实施方案提供了油菜品系NS-B50027-4、NS-B50027-4的亚系、NS-B50027-4或亚系的子代、或通过将NS-B50027-4与第二油菜或芸薹属植物杂交而产生的植物,用于育种或培育用于种子、油、粗粉(meal)或蛋白生产的植物。
至少一个实施方案提供了油菜植物(诸如欧洲油菜植物)的种子,所述种子在其基因组中包含近交品系NS-B50027-4的至少一部分基因组。至少一个实施方案提供了一种植物诸如欧洲油菜植物,所述植物在其基因组中包含近交品系NS-B50027-4的至少一部分基因组。至少一个实施方案提供了油菜植物(诸如欧洲油菜植物)的细胞,所述细胞在其基因组中包含近交品系NS-B50027-4的至少一部分基因组。另一个实施方案提供了油菜植物(诸如欧洲油菜植物)的基因组DNA,所述基因组DNA包含品系NS-B50027-4的至少一部分基因组。至少一个实施方案还涉及来自植物的种子、细胞、组织、组织培养物、子代和后代(descendant),所述植物包含NS-B50027-4的至少一部分基因组,NS-B50027-4由保藏在
Figure BDA0003648514750000031
具有登陆号PTA-123186的种子生长而来。另一个实施方案还提供了从包含NS-B50027-4的至少一部分基因组的油菜植物(诸如由保藏在
Figure BDA0003648514750000032
具有登陆号的PTA-123186的种子生长的植物)可获得的植物(诸如通过繁殖或育种)。
至少一个实施方案提供了油菜植物(诸如欧洲油菜植物)的种子,所述种子在其基因组中包含品系NS-B50027-4的优良种事件。至少一个实施方案提供了一种植物,诸如欧洲油菜植物,所述植物在其基因组中包含近交品系NS-B50027-4的优良种事件。另一个实施方案提供了油菜植物(诸如欧洲油菜植物)的基因组DNA,该基因组DNA包含品系NS-B50027-4的优良种事件。至少一个实施方案还涉及来自植物的种子、细胞、组织、组织培养物、子代和后代,所述植物包含由保藏于
Figure BDA0003648514750000041
具有登录号PTA-123186的种子生长的NS-B50027-4的优良种事件。另一个实施方案还提供了从包含优良种事件的油菜植物(诸如保藏在
Figure BDA0003648514750000042
具有登陆号的PTA-123186的种子生长的植物)可获得的植物(诸如通过繁殖或育种)。实施方案还涉及包含优良种事件NS-B50027-4的油菜植物。
本发明实施方案的近交品系NS-B50027-4的参考种子已经以登陆号PTA-123186保藏于
Figure BDA0003648514750000043
至少一个实施方案提供了以登陆号PTA-123186保藏的NS-B50027-4的种子,所述种子生长为油菜植物,所述油菜植物的种子在常规收获时包含以种子的总脂肪酸的重量%计至少5%的DHA、约6%的DHA、约7%的DHA、约8%的DHA、约9%的DHA、约10%的DHA、约11%的DHA、约12%的DHA、约13%的DHA、约14%的DHA、约15%的DHA、约16%的DHA、约17%的DHA(包含端点),或更多的DHA。
在至少一个实施方案中,
Figure BDA0003648514750000044
登录号PTA-123186的种子是由至少约95%的近交转基因种子组成的种子批次,所述转基因种子具有NS-B50027-4的优良种事件的转基因,所述转基因种子生长为油菜植物,该油菜植物的种子包含以种子的总脂肪酸的重量%计至少5%的DHA、约6%的DHA、约7%的DHA、约8%的DHA、约9%的DHA、约10%的DHA、约11%的DHA、约12%的DHA、约13%的DHA、约14%的DHA、约15%的DHA、约16%的DHA、约17%的DHA(包含端点),或更多的DHA。
Figure BDA0003648514750000045
保藏登陆号PTA-123186的种子是由至少约95%的转基因DNA纯合的转基因种子组成的种子批次,所述转基因种子包含NS-B50027-4的优良种事件,所述转基因种子生长为油菜植物,该油菜植物的种子包含作为EPA、DPA和DHA之和的为种子的总脂肪酸的重量%计至少5%的LC-PUFA、约6%的LC-PUFA、约7%的LC-PUFA、约8%的LC-PUF、约9%的LC-PUFA、约10%的LC-PUFA、约11%的LC-PUFA、约12%的LC-PUFA、约13%的LC-PUFA、约14%的LC-PUFA、约15%的LC-PUFA、约16%的LC-PUFA、约17%的LC-PUFA、约18%的LC-PUFA、约19%的LC-PUFA、约20%的LC-PUFA、约21%的LC-PUFA(包含端点),或更多的LC-PUFA。
在另一个实施方案中,可以播种从保藏的种子可获得的或已获得的种子或子代种子(例如,在与具有相同或不同遗传背景的油菜或芸薹属植物杂交后),并且生长的植物可以具有和NS-B50027-4的表型基本上相同的表型。在至少一个实施方案中,在常规收获时,NS-B50027-4子代种子的脂肪酸含量包含以种子的总脂肪酸的重量%计至少5%的DHA、约6%、约7%的DHA、约8%的DHA、约9%的DHA、约10%的DHA、约11%的DHA、约12%的DHA、约13%的DHA、约14%的DHA、约15%的DHA、约17%的DHA、约18%的DHA、约19%的DHA、约20%的DHA、约21%的DHA、约22%的DHA、约23%的DHA、约24%的DHA(包含端点),或更多的DHA。在至少一个实施方案中,在常规收获时,NS-B50027-4子代种子的脂肪酸含量包含作为EPA、DPA和DHA之和的为种子的总脂肪酸的重量%计至少5%的LC-PUFA、约6%的LC-PUFA、约7%的LC-PUFA、约8%的LC-PUFA、约9%的LC-PUFA、约10%的LC-PUFA、约11%的LC-PUFA、约12%的LC-PUFA、约13%的LC-PUFA、约14%的LC-PUFA、约15%的LC-UFA、约16%的LC-PUFA、约17%的LC-PUFA、约18%的LC-PUFA、约19%的LC-PUFA、约20%的LC-PUFA、约21%的LC-PUFA、约22%的LC-PUFA、约23%的LC-PUFA、约24%的LC-PUFA、约25%的LC-PUFA(包含端点),或更多的LC-PUFA。
NS-B50027-4的种子还含有比常规油菜品种实质上更多的ω3ALA。在至少一个实施方案中,在常规收获时,NS-B50027-4子代种子的脂肪酸含量包含以种子的总脂肪酸的重量%计至少15%的ALA、约16%的ALA、约17%的ALA、约18%的ALA、约19%的ALA、约20%的ALA、约21%的ALA、约22%的ALA、约23%的ALA、约24%的ALA(包含端点),或更多的ALA。
本发明实施方案的另一方面提供了含有有益的ω3脂肪酸和LC-ω3脂肪酸水平的油,其中脂肪酸内容物含有比普通菜子油的比率更高的ω3:ω6脂肪酸比率。例如,AV Jade不含有EPA/DPA/DHA(ω3)来与LA(ω6)比较,在一个实施方案中,来自NS-B50027-4的种子油具有约1至约7的EPA/DPA/DHA(ω3):LA(ω6)比率,诸如约1.25。来自NS-B50027-4的ω3:ω6脂肪酸的比率对于棕榈酸而言是特别有益的。来自亲本品系AV Jade的油不具有DHA,因此不存在DHA:棕榈酸酯比率;来自NS-B50027-4的油具有例如约2.12的DHA:棕榈酸酯比率;相比之下,来自养殖鲑鱼的油具有0.59的报道的DHA:棕榈酸酯比率;并且来自野生鲑鱼的油具有1.02的报道的DHA:棕榈酸酯比率。在至少一个实施方案中,NS-B50027-4的种子油中的ω3:ω6脂肪酸的比率为约3至约7,诸如约6的比率。
在本发明实施方案的另一个方面,来自近交品系NS-B50027-4种子的油、脂质、ω3-FA、LC-PUFA或DHA用作人类或动物的食料(食品或食用材料,包括饮料)或者用于在人类或动物的食料(食品或可食用材料,包括饮料)中使用,或用作人类或动物的营养补充剂(食品添加剂)。在至少一个实施方案中,来自事件NS-B50027-4种子的油、脂质、ω3-FA、LC-PUFA或DHA用于补充饲料或用作水产养殖中的饲料添加剂。在至少一个实施方案中,来自事件NS-B50027-4种子的油、脂质、ω3-FA、LC-PUFA或DHA用作药物组合物或用于在药物组合物中使用。在至少一个其他实施方案中,从NS-B50027-4或其子代的种子浓缩获得的种子粗粉或蛋白用作食料(食品或可食用材料)或用于在食料(食品或可食用材料)中使用,或用作人类或动物的营养补充剂(食品添加剂)。在具体的实施方案中,来自NS-B50027-4或其子代的种子的油、脂质、粗粉或蛋白用作水产养殖的饲料。
本发明实施方案的一个方面提供了通过向植物提供(例如,通过遗传转化或育种)多于一个(multiple)拷贝的基因构建体来增加植物中LC-PUFA的方法,所述基因构建体表达LC-PUFA生物合成途径的“前端(front end)”的一些酶。例如,虽然并非所有的酶Δ6-去饱和酶、Δ5-去饱和酶、Δ5-延长酶和ω3/Δ15-去饱和酶都可以被排他地(exclusively)认为是前端酶,但在特定的实施方案中,这些基因在产生LC-PUFA的植物中被组装成增加LC-PUFA诸如DHA生产的人工基因座。在特定的实施方案中,包含一些前端基因的人工基因座包括细小微胞藻(Micromonas pusilla)来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻(Pavlova salina)来源的Δ5-去饱和酶和巴斯德毕赤酵母(Pichia pastoris)来源的Δ15/ω3-去饱和酶。
所描述的实施方案的一个方面提供了一种新的油菜育种品系,命名为NS-B50027-4,和在其核基因组中包含NS B50027的优良种事件的油菜植物,诸如欧洲油菜。包含品系NS-B50027-4的遗传事件的芸薹属植物能够产生种子特异性的脂肪酸,所述脂肪酸包含比常规油菜植物中产生的脂肪酸更不饱和的、更长的链。近交油菜品系NS-B50027-4植物表现出与非转基因的等基因的(isogenic)油菜植物品系基本等同的其他农艺性状;但是这样的性状与其他品系不同,以提供独立的品系或栽培种。近交油菜品系NS-B50027-4种子的代表性样品已保藏在
Figure BDA0003648514750000071
登录号为PTA-123186。
至少一个实施方案涉及转基因油菜种子、其植物或植物部分、组织或细胞,具有稳定地整合到基因组的至少一个转基因插入片段,所述转基因插入片段包含含有16个异源基因的表达盒,所述转基因经密码子优化用于植物表达并且编码盐生巴夫藻来源的Δ4-去饱和酶、盐生巴夫藻来源的Δ5-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ6-延长酶、Lachancea kluyveri来源的Δ12-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶,和至少一个红花烟草(Nicotiana tobacum)来源的基质结合区(MAR)和可选择标记基因;以及至少一个包含四个异源基因的表达盒的转基因插入片段,该转基因经密码子优化用于植物表达并且编码细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶转基因,以及至少一个红花烟草来源的MAR。近交转基因系NS-B50027-4举例说明了该实施方案,并且具有这些异源基因的种子的代表性样品已经保藏在
Figure BDA0003648514750000081
登陆号为PTA-123186。
本发明实施方案的另一个方面提供了从近交油菜品系NS-B50027-4或包含品系NS-B50027-4的优良种事件的油菜植物获得的分离的或纯化的基因组DNA,其种子已经保藏于ATCC,登录号为PTA 123186。这样的基因组DNA可以用作,例如,本文描述的鉴定测定中的参考对照材料。至少一个实施方案提供了欧洲油菜的基因组,所述基因组具有在位于欧洲油菜参考基因组(2n=AACC;Darmor变种)chrUn_random上的118589903-118591677位处的HPP基因的3'UTR中的缺失,和在芸薹(B.rapa)参考基因组(2n=AA,Chiifu变种)的染色体A02处的18569298-18571066位处的缺失,其中该缺失是GTAGCACGACAAGTT(SEQ ID NO:38)。15-bp缺失位于欧洲油菜参考基因组的chrUn_random的118589927-118589941位处和芸薹参考基因组的染色体A02的18569316-18569330位处。至少一个实施方案提供了欧洲油菜植物,该欧洲油菜植物在位于欧洲油菜参考(Darmor变种)基因组的染色体A05上的17267746-17270700位处的编码Pto相互作用蛋白(PTI)的基因的第二外显子中具有缺失,该缺失破坏PTI的表达,其中该缺失是CACGGTGGAGGTCACCATGT(SEQ ID NO:39)。这些缺失是近交油菜品系NS-B50027-4的基因组特征,并且可以用于鉴定品系NS-B50027-4和来源于品系NS-B50027-4的子代。
因此,本发明实施方案还提供了鉴定包括近交油菜品系NS-B50027-4的转基因方面(优良种事件)的转基因植物或其细胞或组织的方法,该方法基于鉴定具有特定的核苷酸序列或编码特定的氨基酸的表征DNA分子的存在。例如,这样的表征DNA分子包含含有该事件的插入片段连接位点的15个碱基对(bp)、至少15bp、20bp、至少20bp、至少24bp、至少30bp或多于30bp的序列(即,包含含有LC-ω3脂肪酸合成基因或(包括用于表达等的调控序列的“基因”)的插入的外源DNA的一部分和与其相接的油菜或芸薹属基因组的一部分(每个插入的5'侧翼区域或3'侧翼区域)二者),允许特异性地识别优良种事件。例如,NS-B50027-4的染色体A02中的四基因插入片段的5'末端的连接序列包含SEQ ID NO:43;染色体A02中四基因插入片段的3'末端的连接序列包含SEQ ID NO:44;NS-B50027-4的染色体A05中的16基因插入片段的5'末端的连接序列包含SEQ ID NO:45;并且染色体A05中的16基因插入片段的3'末端的连接序列包含SEQ ID NO:46。实施方案还涉及包含通过这样的方法鉴定的近交油菜品系NS-B50027-4的优良种事件的植物。
本发明实施方案的另一个方面提供了核酸分子(例如,多核苷酸或DNA),所述核酸分子包含NS-B50027-4优良种事件的插入位点和足够长度的油菜基因组DNA和转基因DNA二者的多核苷酸,以便可用于检测近交品系NS-B50027-4的优良种事件,以及表征包含NS-B50027-4优良种事件的植物或与近交品系NS-B50027-4相关的植物。这样的分子可以包含,例如,在连接位点的每一侧处分别包含油菜基因组DNA的至少9个核苷酸和转基因DNA的类似数量的核苷酸。例如,这样的DNA分子包含油菜基因组DNA的至少9个核苷酸和转基因(外源)DNA的类似数量的核苷酸,所述转基因(外源)DNA的类似数量的核苷酸包含与SEQ IDNO:40中的插入位点相接的基因区域(例如,核苷酸2081至2098和核苷酸14193至14210)、与SEQ ID NO:41中的插入位点相接的基因区域(例如,核苷酸1151至1168和核苷酸47765至47782)。在本发明的一个方面中,提供了包含这样的特定核酸分子的油菜植物。
至少一个实施方案涉及转基因芸薹属或油菜种子,或其植物细胞、植物、植物部分或组织,所述转基因芸薹属或油菜种子,或其植物细胞、植物、植物部分或组织具有稳定地整合到基因组的至少一个转基因插入片段,所述转基因插入片段包含含有16个异源基因的表达盒,所述转基因是植物密码子优化的细小微胞藻来源的Δ6-去饱和酶、Δ6-延长酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶和Lachancea kluyveri来源的Δ12-去饱和酶,至少一个红花烟草来源的基质结合区(MAR)和可选择标记基因;16转基因插入片段,其特征为SEQ ID NO:41的核苷酸1268至47773;和至少一个转基因插入片段,所述转基因插入片段包含四个异源基因的表达盒,所述基因经密码子优化用于植物表达并且编码细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶转基因,以及至少一个红花烟草来源的MAR;四基因插入片段,其特征为SEQ ID NO:40的核苷酸2090至14201。在至少一个实施方案中,两个表达盒位于植物基因组中的两个不同染色体中。
另一实施方案提供了具有SEQ ID NO:40、SEQ ID NO:41的核酸序列或其互补序列的重组核酸分子。另一实施方案提供了具有SEQ ID NO:40的2090至14201位的核酸序列或其互补序列的重组核酸分子。另一实施方案提供了具有SEQ ID NO:41的1160至47773位的核酸序列,或其互补序列的重组核酸分子。本发明实施方案还提供了转基因芸薹属或油菜种子,所述种子包含具有SEQ ID NO:40的核苷酸2090至14201的核酸序列或其互补序列的核酸分子;和芸薹属或油菜种子,所述种子包含具有SEQ ID NO:41的核苷酸1160至47773的核酸序列或其互序列的核酸分子。另一实施方案提供了包含这样的核酸分子的种子或细胞。
另一个实施方案提供了包含人工基因座的DNA分子,所述人工基因座依次包括以下核苷酸序列:(a)SEQ ID NO:40的从核苷酸2747至核苷酸6250的核苷酸序列;(b)SEQ IDNO:40的从核苷酸6257至核苷酸8414的核苷酸序列;(c)SEQ ID NO:40的从核苷酸8415至核苷酸10374的核苷酸序列;(d)SEQ ID NO:40的从核苷酸10375至核苷酸11544的核苷酸序列;(e)SEQ ID NO:40的从核苷酸11545至核苷酸14049的核苷酸序列;(f)与核苷酸序列(a)至(e)具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子;或(g)其互补序列。相关的实施方案提供了包含该人工基因座的植物细胞、植物材料或植物种子。
另一个实施方案提供了包含人工基因座的DNA分子,所述人工基因座依次包括以下核苷酸序列:(a)SEQ ID NO:41的从核苷酸1268至核苷酸5317的核苷酸序列;(b)SEQ IDNO:41的从核苷酸5324至核苷酸7481的核苷酸序列;(c)SEQ ID NO:41的从核苷酸7482至核苷酸9443的核苷酸序列;(d)SEQ ID NO:41的从核苷酸9444至核苷酸10611的核苷酸序列;(e)SEQ ID NO:41的从核苷酸10612至核苷酸13116的核苷酸序列;(f)SEQ ID NO:41的从核苷酸13117至核苷酸17000的核苷酸序列;(g)SEQ ID NO:41的从核苷酸17001至核苷酸19606的核苷酸序列;(h)SEQ ID NO:41的从核苷酸19607至核苷酸29773的核苷酸序列;(i)SEQ ID NO:41的从核苷酸20783至核苷酸22987的核苷酸序列;(j)SEQ ID NO:41的从核苷酸23011至24370的核苷酸序列;(k)SEQ ID NO:41的从核苷酸42561至核苷酸25920的核苷酸序列;(l)SEQ ID NO:41的从核苷酸25943至核苷酸29324的核苷酸序列;(m)SEQ ID NO:41的从核苷酸28157至核苷酸29324的核苷酸序列;(n)SEQ ID NO:41的从核苷酸29324至核苷酸31830的核苷酸序列;(p)SEQ ID NO:41的从核苷酸31831至核苷酸35816的核苷酸序列;(q)SEQ ID NO:41的从核苷酸35817至核苷酸38319的核苷酸序列;(r)SEQ ID NO:41的从核苷酸38320至核苷酸39488的核苷酸序列;(s)SEQ ID NO:41的从核苷酸39489至核苷酸41449的核苷酸序列;(t)SEQ ID NO:41的从核苷酸41450至核苷酸43607的核苷酸序列;(u)SEQ ID NO:41的从核苷酸43614至核苷酸47662的核苷酸序列;(v)与核苷酸序列(a)至(u)、(a)至(j)、(k)至(u)具有至少80%、95%、97%、98%、99%或99.5%的序列同一性的分子,或(w)其互补序列。相关实施方案提供了包含该人工基因座的植物细胞、材料或种子。
另一个实施方案提供了包含人工基因座的DNA分子,所述人工基因座依次包括以下核苷酸序列:(a)SEQ ID NO:40的从核苷酸2747至核苷酸4141的核苷酸序列;(b)SEQ IDNO:40的从核苷酸7259至核苷酸8065的核苷酸序列的互补序列的核苷酸序列;(c)SEQ IDNO:40的从核苷酸8841至核苷酸10121的核苷酸序列;(d)SEQ ID NO:40的从核苷酸12281至核苷酸13531的核苷酸序列;(e)与核苷酸序列(a)至(d)具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子;或(f)其互补序列;其中人工基因座包括调节区(例如启动子、前导序列、终止子)以提供(a)至(d)或(e)或(f)的表达。相关实施方案提供了包含该人工基因座的植物细胞、植物材料或植物种子。
另一个实施方案提供了包含人工基因座的DNA分子,所述人工基因座依次包括以下核苷酸序列:(a)SEQ ID NO:41的从核苷酸1820至核苷酸3208的核苷酸序列;(b)SEQ IDNO:41的从核苷酸6326至核苷酸7126的核苷酸序列;(c)SEQ ID NO:41的从核苷酸7908至核苷酸9192的核苷酸序列;(d)SEQ ID NO:41的从核苷酸11352至核苷酸12596的核苷酸序列;(e)SEQ ID NO:41的从核苷酸15216至核苷酸16556的核苷酸序列;(f)SEQ ID NO:41的从核苷酸17619至核苷酸18866的核苷酸序列;(g)SEQ ID NO:41的从核苷酸21895至核苷酸22647的核苷酸序列;(h)SEQ ID NO:41的从核苷酸25943至核苷酸26283的核苷酸序列;(i)SEQ ID NO:41的从核苷酸30066至核苷酸31313的核苷酸序列;(j)SEQ ID NO:41的从核苷酸31831至核苷酸35816的核苷酸序列;(k)SEQ ID NO:41的从核苷酸36335至核苷酸38319的核苷酸序列;(1)SEQ ID NO:41的从核苷酸39749至核苷酸41023的核苷酸序列;(m)SEQID NO:41的从核苷酸41805至核苷酸42605的核苷酸序列;(n)SEQ ID NO:41的从核苷酸45724至核苷酸47111的核苷酸序列;(o)与核苷酸序列(a)至(u)、(a)至(j)、(k)至(u)具有至少80%、95%、97%、98%、99%或99.5%的序列同一性的分子;或(p)其互补序列;其中人工基因座包括调节区(例如启动子、前导序列、终止子)以提供(a)至(n)或(o)或(p)的表达。相关实施方案提供了包含该人工基因座的植物细胞、植物材料或植物种子。
在一个实施方案中,如本文描述的近交品系NS-B50027-4的转基因具有SEQ IDNO:40的从核苷酸位置2090至14201的核苷酸序列或其互补序列,或包含与SEQ ID NO:40的从核苷酸位置2090至核苷酸位置14201的核苷酸序列具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子或其互补序列。在一个实施方案中,如本文描述的近交品系NS-B50027-4的转基因具有SEQ ID NO:41的从核苷酸位置1268至47662的核苷酸序列或其互补序列,或包含与SEQ ID NO:41的从核苷酸位置1268至核苷酸位置47662的核苷酸序列具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子或其互补序列。
本文还提供了芸薹属或油菜植物、植物细胞、组织或种子,在其基因组中包含核酸分子,所述核酸分子包含SEQ ID NO:40的从核苷酸位置2090至14201的核苷酸序列或其互补序列,或包含与SEQ ID NO:40的从核苷酸位置2090至核苷酸位置14201的核苷酸序列具有至少95%、97%、98%、99%或99.5%序列同一性的分子或其互补序列。另一个实施方案提供了芸薹属或油菜植物、植物细胞、组织或种子,在其基因组中包含核酸分子,所述核酸分子包含SEQ ID NO:41的从核苷酸位置1268至47662的核苷酸序列或其互补序列,或包含与SEQ ID NO:41的从核苷酸位置1268至核苷酸位置47662的核苷酸序列具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子或其互补序列。
本发明实施方案的另一个方面提供了用于确定油菜植物是否是近交品系NS-B50027-4或与近交品系NS-B50027-4有关,或者是否是包含品系NS-B50027-4的遗传优良种事件的至少一部分的油菜植物的试剂盒和方法。本文描述了用于鉴定生物样品中的优良种事件NS-B50027-4的简单且明确的技术的组合物和方法。例如,试剂盒包括至少一组对芸薹属染色体DNA和插入的转基因的连接特异性的有义(正向)引物和反义(反向)引物。例如,包含序列SEQ ID NO:43(TGGAGGTGTTCAAACACT)、SEQ ID NO:44(ATAGTATTAGTATACAGA)、SEQID NO:45(GGCTAAGGTAACACTGAT)和SEQ ID NO:46(CAGTGTTTGAAGGACAGA)的DNA连接是优良种事件NS-B50027-4的新的DNA序列,并且可以用于诊断油菜植物NS-B50027-4及其子代。更具体地,SEQ ID NO:43和SEQ ID NO:44中的连接序列代表在转基因序列片段的插入位点的每一侧且在油菜基因组染色体A02 DNA上的9个多核苷酸;并且SEQ ID NO:45和SEQ ID NO:46中的连接序列代表在转基因序列片段的插入位点的每一侧且在油菜基因组染色体A05DNA上的9个多核苷酸。可以从本文描述的侧翼区选择更长或更短的多核苷酸。
本发明实施方案还提供了用于基于特异性识别外源DNA插入片段的5'侧翼区或3'侧翼区的引物或探针来鉴定生物样品中近交油菜品系NS-B50027-4的优良种事件的方法,所述外源DNA插入片段包含优良种事件NS-B50027-4的遗传事件。更具体地,实例方法包括通过聚合酶链式反应用至少两个引物扩增生物样品中存在的核酸,其中一个引物识别优良种事件NS-B50027-4的插入的外源DNA(异源DNA或转基因DNA)的5'芸薹属侧翼区或3'芸薹属侧翼区,其中另一个引物识别外源DNA内的包括例如外源去饱和酶或延长酶基因的序列,以获得100bp和800bp之间的DNA片段。引物或探针可以通过识别以下序列来鉴定NS-B50027-4:SEQ ID NO:40的从1至2089位的插入片段(或其互补物)侧翼的染色体A02的5'区内的序列、或SEQ ID NO:40的从14202至15006位的插入片段(或其互补物)侧翼的染色体A02的3'区内的序列;SEQ ID NO:41的从1至1159位的插入片段(或其互补物)侧翼的染色体A05的5'区内的序列、或SEQ ID NO:41的从47774至49789位的插入片段(或其互补物)侧翼的染色体A05的3'区内的序列;和包含例如SEQ ID NO:40的从2090至14201位(或其互补序列)或SEQ ID NO:41的从1160至47773位(或其互补序列)的外源DNA中的至少一个序列。
至少一个实施方案还提供了可用于竞争性等位基因特异性PCR(KASP)测定(两个等位基因特异性正向引物识别SNP)、液滴数字PCR(ddPCR)测定、定量PCR(qPCR)测定、旁系同源物特异性测定、或用于偶然存在(AP)测试测定的组合物。可用于进行KASP测定以检测NS-B50027-4遗传性状,特别适用于基因渗入研究和杂交体开发的引物的具体实施方案包括SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ IDNO:13、SEQ ID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ IDNO:19、SEQ ID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ IDNO:25、SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28、SEQ ID NO:29、SEQ ID NO:30、SEQ IDNO:31、SEQ ID NO:32、SEQ ID NO:33、SEQ ID NO:34、SEQ ID NO:35、SEQ ID NO:36、SEQ IDNO:37的引物的至少10个连续核苷酸,或其互补序列。前述引物或其互补序列可以包括在用于鉴定NS-B50027-4、NS-B50027-4的子代,或包含NS-B50027-4的至少一部分基因组的其他植物或植物材料的试剂盒中。相关实施方案提供了通过这样的引物鉴定的植物材料。
例如,至少一个实施方案提供了DNA分子的分离的引物对,其中第一引物包含来自SEQ ID NO:47的5'油菜侧翼基因组区域的核苷酸1至235的至少11个连续核苷酸或其完全互补序列,并且第二引物包含来自SEQ ID NO:47的核苷酸236至470的转基因区域的至少11个连续核苷酸或其完全互补序列,其中DNA分子的引物对当在DNA扩增反应中一起使用时,产生包含SEQ ID NO:43的用于油菜事件NS-B50027-4或其子代的诊断扩增子。
至少一个实施方案提供了包含DNA分子的分离的引物对的组合物,其中第一引物包含SEQ ID NO:48的转基因区域的从核苷酸1至235的至少11个连续核苷酸或其完全互补序列,并且第二引物包含SEQ ID NO:48的从核苷酸236至470的3'油菜侧翼基因组DNA区域的至少11个连续核苷酸或其完全互补序列,其中DNA分子的引物对当在DNA扩增反应中一起使用时,产生包含SEQ ID NO:44的用于油菜事件NS-B50027-4或其子代的诊断扩增子。
至少一个实施方案中提供了DNA分子的分离的引物对,其中第一引物包含SEQ IDNO:49的5'油菜侧翼基因组区域的从核苷酸1至235的至少11个连续核苷酸或其完全互补序列,并且第二引物包含SEQ ID NO:49的从核苷酸236至470的转基因区域的至少11个连续核苷酸或其完全互补序列,其中DNA分子的引物对当在DNA扩增反应中一起使用时,产生包含SEQ ID NO:45的用于油菜事件NS-B50027-4或其子代的诊断扩增子。
至少一个实施方案中提供了DNA分子的分离的引物对,其中第一引物包含SEQ IDNO:50的转基因组区域的从核苷酸1至235的至少11个连续核苷酸或其完全互补序列,并且第二引物包含SEQ ID NO:50的从核苷酸236至470的3'油菜侧翼基因组DNA区域的至少11个连续核苷酸或其完全互补序列,其中,DNA分子的引物对当在DNA扩增反应中一起使用时产生包含SEQ ID NO:46的用于油菜事件NS-B50027-4或其子代的诊断扩增子。
此外,DNA事件引物对也可以用于产生诊断NS-B50027-4事件的扩增子。这些事件引物对包括,例如,AATTGTTGGAGGTGTTCAAACACT(SEQ ID NO:51)和CGGAATCACAATCCCTGAATGATT(SEQ ID NO:52)或其互补序列。由SEQ ID NO:51和SEQ ID NO:52产生的扩增子为约250个多核苷酸。除了这些引物对之外,当在DNA扩增反应中使用时产生诊断NS-B50027-4事件的扩增子的来源于SEQ ID NO:47、SEQ ID NO:48、SEQ ID NO:49或SEQ ID NO:50或其互补序列的任何引物对是本发明实施方案的一个方面。
另一实施方案提供了针对盐生巴夫藻来源的Δ4-去饱和酶、盐生巴夫藻来源的Δ5-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ6-延长酶、Lachancea kluyveri来源的Δ12-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶中的一个的至少一组引物;和对在插入片段和天然芸薹属染色体A02 DNA之间的5'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:40的从核苷酸2033至2132的连接,包含43bp插入片段和57bp的芸薹属染色体A02 DNA的100bp区域,或对在插入片段和天然芸薹属染色体A02 DNA之间的3'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:40的从核苷酸14156至14255的连接,包含46bp的插入片段和54bp的芸薹属染色体A02 DNA的100bp区域;对在插入片段和天然芸薹属染色体A05 DNA之间的5'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:41的从核苷酸1110至1209的连接,包含50bp插入片段和50bp的芸薹属染色体A05 DNA的100bp区域,或对在插入片段和天然芸薹属染色体A05 DNA之间的3'连接特异性的至少一组引物,所述连接诸如SEQ IDNO:41的从核苷酸47724至47823的连接,包含50bp的插入片段和50bp的芸薹属染色体A05DNA的100bp区域。
另一个实施方案提供了识别NS-B50027-4的外源DNA内的序列的引物,所述外源DNA包括例如具有SEQ ID NO:57、SEQ ID NO:58的序列的细小微胞藻来源的Δ6-去饱和酶DNA或其互补序列;具有SEQ ID NO:63、SEQ ID NO:64的序列的Pyramimonas cordata来源的Δ5-延长酶或其互补序列;具有SEQ ID NO:61、SEQ ID NO:62的序列的盐生巴夫藻来源的Δ5-去饱和酶或其互补序列;具有SEQ ID NO:55、SEQ ID NO:56的序列的巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶或其互补序列;具有SEQ ID NO:65、SEQ ID NO:66的序列的盐生巴夫藻来源的Δ4-去饱和酶或其互补序列;具有SEQ ID NO:53、SEQ ID NO:54的核苷酸序列的Lachancea kluyveri来源的Δ12-去饱和酶或其互补序列;或具有SEQ ID NO:59、SEQ ID NO:60的序列的Pyramimonas cordata来源的Δ6-延长酶或其互补序列的至少一种引物。因此,本发明实施方案提供了特异性引物和使用这样的引物扩增的特异性DNA,以及可以来源于本文提供的序列信息的引物。
根据用于鉴定NS-B50027-4及其子代的方法,除了特异性识别优良种事件NS-B50027-4的5'或3'侧翼区的引物之外,试剂盒还可以包含特异性识别外源DNA内的序列的第二引物,用于在PCR鉴定方案中使用,所述外源DNA包含细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶、Pyramimonas cordata来源的Δ6-延长酶或Lachancea kluyveri来源的Δ12-去饱和酶中的至少一种。试剂盒可以包含至少两种特异性引物,一种识别优良种事件NS-B50027-4的5'侧翼区内的序列,且另一种识别外源DNA内的序列,所述外源DNA包含细小微胞藻来源的Δ6-去饱和酶、Pyramimonascordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶或Lachancea kluyveri来源的Δ12-去饱和酶中的至少一种。
本发明还涉及用于鉴定生物样品中优良种事件NS-B50027-4的试剂盒,所述试剂盒包含PCR引物,所述PCR引物包含SEQ ID NO:1至SEQ ID NO:37的核苷酸序列或其互补序列或基本上由SEQ ID NO:1至SEQ ID NO:37的核苷酸序列或其互补序列组成,用于在本文描述的优良种事件NS-B50027-4鉴定方案中使用。
至少一个实施方案涉及转基因油菜种子、其植物或植物部分、组织或细胞,所述转基因油菜种子、其植物或植物部分、组织或细胞具有稳定地整合到基因组的至少一个转基因插入片段,所述转基因插入片段包含含有16个异源基因的表达盒,所述转基因是植物密码子优化的细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶、Pyramimonas cordata来源的Δ6-延长酶和Lachancea kluyveri来源的Δ12-去饱和酶,至少一个红花烟草来源的基质结合区(MAR)和可选择标记基因;以及至少一个包含四个异源基因的表达盒的转基因插入片段,该基因经密码子优化用于植物表达并且编码细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶转基因,和至少一个红花烟草来源的MAR,该四基因表达盒的特征为SEQ ID NO:40的核苷酸2090至14201。在至少一个实施方案中,两个表达盒位于植物基因组的两个不同染色体中。
另一实施方案提供了具有图5的核酸序列(SEQ ID NO:40)或其互补序列的重组核酸分子。另一实施方案提供了具有图6的核酸序列(SEQ ID NO:41)或其互补序列的重组核酸分子。在一个实施方案中,如本文描述的近交品系NS-B50027-4的转基因具有SEQ ID NO:40的从核苷酸位置2090至14201的核苷酸序列或其互补序列,或包含与SEQ ID NO:40的从核苷酸位置2090至核苷酸位置14201的核苷酸序列具有至少95%、97%、98%、99%或99.5%序列同一性的分子或其互补序列。本文还提供了油菜植物、植物细胞、组织或种子,在其基因组中包含核酸分子,所述核酸分子包含SEQ ID NO:40的从核苷酸位置2090至14201的核苷酸序列或其互补序列,或包含与SEQ ID NO:40的从核苷酸位置2090至核苷酸位置14201的核苷酸序列具有至少95%、97%、98%、99%或99.5%的序列同一性的分子或其互补序列。在另一个实施方案中,如本文描述的近交品系NS-B50027-4的转基因具有SEQID NO:41的从核苷酸位置1268至47662的核苷酸序列或其互补序列,或包含与SEQ ID NO:41的从核苷酸位置1268至核苷酸位置47662的核苷酸序列具有至少95%、97%、98%、99%或99.5%序列同一性的分子或其互补序列。本文还提供了一种油菜植物、植物细胞、组织或种子,在其基因组中包含核酸分子,所述核酸分子包含SEQ ID NO:41的从核苷酸位置1268至47662的核苷酸序列或其互补序列,或包含与SEQ ID NO:41的从核苷酸位置1268至核苷酸位置47662的核苷酸序列具有至少95%、97%、98%、99%或99.5%的序列同一性的分子或其互补序列。
本发明实施方案的另一方面提供了用于确定油菜植物是否是近交品系NS-B50027-4或是否与近交品系NS-B50027-4有关,或者是否是包含品系NS-B50027-4的遗传优良种事件的至少一部分的油菜植物。本文描述了用于鉴定生物样品中优良种事件NS-B50027-4的简单且明确的技术的组合物和方法。例如,试剂盒包括至少一组对芸薹属染色体DNA和插入的转基因的连接特异性的有义(正向)引物和反义(反向)引物。例如,包含序列SEQ ID NO:43(TGGAGGTGTTCAAACACT)、SEQ ID NO:44(ATAGTATTAGTATACAGA)、SEQ ID NO:45(GGCTAAGGTAACACTGAT)和SEQ ID NO:46(CAGTGTTTGAAGGACAGA)的DNA连接是NS-B50027-4事件的新的DNA序列,并且可以用于诊断油菜植物NS-B50027-4及其子代。SEQ ID NO:43和SEQ ID NO:44中的连接序列代表在转基因序列片段的插入位点的每一侧且油菜基因组染色体A02 DNA的9个多核苷酸;并且SEQ ID NO:45和SEQ ID NO:46中的连接序列代表在转基因序列片段的插入位点的每一侧且在油菜基因组染色体A05 DNA9个多核苷酸。可以从本文描述的侧翼区选择更长或更短的多核苷酸。
此外,DNA事件引物对也可用于产生诊断NS-B50027-4事件的扩增子。这些事件引物对包括例如AATTGTTGGAGGTGTTCAAACACT(SEQ ID NO:51)和CGGAATCACAATCCCTGAATGATT(SEQ ID NO:52),或其互补序列。由SEQ ID NO:51和SEQ ID NO:52产生的扩增子为约250个多核苷酸。除了这些引物对之外,当在DNA扩增反应中使用时产生诊断NS-B50027-4事件的扩增子的来源于SEQ ID NO:43、SEQ ID NO:44、SEQ ID NO:45或SEQ ID NO:46或其互补序列的任何引物对是本发明实施方案的一个方面。
另一个实施方案提供了针对微藻细小微胞藻来源的Δ6-去饱和酶、微藻Pyramimonas cordata来源的Δ5-延长酶、Pyramimonas cordata来源的Δ6-延长酶、海洋微藻盐生巴夫藻来源的Δ5-去饱和酶、酵母巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶、和酵母Lachancea kluyveri来源的Δ12-去饱和酶中的一个的至少一组引物;和对在插入片段和天然芸薹属染色体A02 DNA之间的5'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:40的从核苷酸2033至2132的连接,包含43bp插入片段和57bp的芸薹属染色体A02 DNA的100bp区域,或对在插入片段和天然芸薹属染色体A02 DNA之间的3'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:40的从核苷酸14156至14255的连接,包含46bp的插入片段和54bp的芸薹属染色体A02 DNA的100bp区域;对在插入片段和天然芸薹属染色体A05 DNA之间的5'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:41的从核苷酸1110至1209的连接,包含50bp插入片段和50bp的芸薹属染色体A05 DNA的100bp区域,或对在插入片段和天然芸薹属染色体A05 DNA之间的3'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:41的从核苷酸47724至47823的连接,包含50bp插入片段和50bp的芸薹属染色体A05 DNA的100bp区域。
本文描述的实施方案的另一方面提供了用于鉴定生物样品中NS-B50027-4优良种事件的试剂盒,所述试剂盒包含特异性识别侧接外源DNA的5'或3'芸薹属区域的至少一个引物或探针,以及特异性识别以下中的至少一个插入DNA的至少一个引物或探针:细小微胞藻来源的Δ6去饱和酶,其可以包含核苷酸序列GAGCACCTTGTAGTTGAGTCC(SEQ ID NO:57)、AGTCTGAGGATGCTCCTATGC(SEQ ID NO:58)或其互补序列;Pyramimonas cordata来源的Δ5-延长酶,其可以包含核苷酸序列TGCTGGAACTCTTGGATACG(SEQ ID NO:63)、CTGGGTGATGTACTTCTTCC(SEQ ID NO:64)或其互补序列;盐生巴夫藻来源的Δ5-去饱和酶,其可以包含核苷酸序列GCTACCGATGCTTACAAGCA(SEQ ID NO:61)、TAGTGAAGTCCGTGCTTCTC(SEQ ID NO:62)或其互补序列;巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶,其可以包含核苷酸序列GACGCTATCCCTAAGCACTGT(SEQ ID NO:55)、GTCCACTCTTGAGCATCGTA(SEQ ID NO:56)或其互补序列;盐生巴夫藻来源的Δ4-去饱和酶,其可以包含核苷酸序列GGCTTTCAGATCTGAGCATC(SEQ ID NO:65)、CTCAGCCTTAACAAGAGGAG(SEQ ID NO:66)或其互补序列;Lachancea kluyveri来源的Δ12-去饱和酶,其可以包含核苷酸序列TGGAGCTATCCCTCATGAGT(SEQ ID NO:53)、GATCCTAGAACAGTAGTGGTG(SEQ ID NO:54)或其互补序列;塔胞藻(Pyramimonas)CS0140来源的Δ6-延长酶,其可以包含核苷酸序列TGTTGCTATGGCTCAAGAGC(SEQ ID NO:59)、CTAGCGTGGTGCTTCATGTA(SEQ ID NO:60)或其互补序列。
该实施方案的试剂盒可以包含:特异性识别优良种事件NS-B50027-4的5'或3'侧翼区中的至少一个的引物,;以及除此之外的特异性识别外源DNA内的序列的引物,用于在PCR鉴定中使用,所述外源DNA包含细小微胞藻来源的Δ6-去饱和酶、Pyramimonas cordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶、Pyramimonas cordata来源的Δ6-延长酶或Lachancea kluyveri来源的Δ12-去饱和酶中的至少一种。试剂盒可以包含至少两种特异性引物,一种引物识别优良种事件NS-B50027-4的5'侧翼区内的序列,并且另一种引物识别外源DNA内的序列,所述外源DNA包含细小微胞藻来源的Δ6-去饱和酶、Pyramimonascordata来源的Δ5-延长酶、盐生巴夫藻来源的Δ5-去饱和酶、巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶、Pyramimonas cordata来源的Δ6-延长酶或Lachancea kluyveri来源的Δ12-去饱和酶中的至少一种。
相关方面提供了从植物获得的或来源于植物的基因组DNA,所述基因组DNA包含品系NS-B50027-4的优良种事件的至少一部分。这样的基因组DNA可用作本文描述的鉴定测定中的参考对照材料。
本申请提供了以下内容:
1.近交油菜品系NS-B50027-4的种子,所述近交油菜品系的代表性种子已经以ATCC登录号PTA-123186保藏。
2.一种油菜植物或其部分,所述油菜植物或其部分通过使如项目1所述的种子生长来产生。
3.如项目2所述的植物的花粉。
4.如项目2所述的植物的胚珠。
5.一种油菜植物或其部分,所述油菜植物或其部分具有项目2所述的植物的所有生理特征和形态特征。
6.如项目2所述的油菜植物产生的可再生细胞的组织培养物。
7.根据项目6所述的组织培养物,所述细胞或原生质体是选自由叶、花粉、胚、根、根尖、荚、花、胚珠和茎组成的组的组织。
8.根据项目2所述的油菜植物的可再生细胞的组织培养物,其中所述组织再生能够表达根据项目2所述的植物的所有形态特征和生理特征的植物。
9.一种产生油菜种子的方法,所述方法包括使如项目2所述的作物生长以产生种子和收获所述种子。
10.如项目9所述的方法,其中所述生长在温室中进行。
11.如项目9所述的方法,其中所述生长在篷中进行。
12.如项目9所述的方法,其中所述生长在户外进行。
13.一种产生菜子油的方法,所述方法包括获得如项目2所述的植物的种子和加工所述种子以获得菜子油。
14.如项目13所述的方法,所述方法还包括收获如项目2所述的植物以获得所述种子的步骤。
15.如项目5所述的油菜植物或其部分,其中所述植物或其部分已经被转化,使得其遗传物质包含除存在于油菜品系NS-B50027-4的转基因外的一个或更多个转基因,所述一个或更多个转基因可操作地连接至一个或更多个调控元件。
16.一种产生油菜植物的方法,所述油菜植物在其遗传物质中含有除近交油菜品系NS-B50027-4的转基因外的一个或更多个转基因,所述方法包括将如项目15所述的油菜植物与另一个油菜品系的第二植物杂交,或与近交油菜品系NS-B50027-4的油菜植物杂交,使得杂交产生的子代的遗传物质表达另外的转基因。
17.如项目16所述的方法,其中所述另外的转基因赋予除草剂抗性、昆虫抗性、细菌疾病抗性、真菌疾病抗性、病毒疾病抗性或不育性。
18.如项目5所述的油菜植物或其部分,其中所述植物或其部分是传统育种技术的产物,并且除了与NS-B50027-4相关的优良种事件之外,未通过重组、诱变或其他遗传修饰进行修饰。
19.一种产生油菜植物的方法,所述油菜植物除了近交油菜品系NS-B50027-4的性状之外,还具有至少一种期望的性状,所述方法包括将如项目18所述的油菜植物与另一个油菜品系的植物杂交,或者与近交油菜品系NS-B50027-4的植物杂交,使得由杂交产生的子代的遗传物质表达期望的另外的性状。
20.如项目19所述的方法,其中所述另外的性状赋予除草剂抗性、昆虫抗性、细菌疾病抗性、真菌疾病抗性、病毒疾病抗性或不育性。
21.一种产生油菜品系NS-B50027-4来源的油菜植物的方法,所述方法包括:
(a)将油菜品系NS-B50027-4与第二油菜植物杂交,以产生子代油菜种子;和
(b)在植物生长条件下使所述子代油菜种子生长,以产生所述油菜品系NS-B50027-4来源的油菜植物。
22.如项目21所述的方法,所述方法还包括:
(a)将所述油菜品系NS-B50027-4来源的油菜植物与其本身或另一油菜植物杂交以产生另外的油菜品系NS-B50027-4来源的子代油菜种子;
(b)在植物生长条件下使步骤(a)的所述子代油菜种子生长,以产生另外的油菜品系NS-B50027-4来源的油菜植物;和
(c)重复(a)和(b)的杂交和生长步骤0至7次,以生成另外的油菜品系NS-B50027-4来源的油菜植物,所述另外的油菜品系NS-B50027-4来源的油菜植物表达至少两种NS-B50027-4性状的组合,所述至少两种NS-B50027-4性状选自DHA产生和至少一种另外的农艺上期望的性状。
23.通过如项目21所述的方法产生的油菜品系NS-B50027-4来源的油菜植物或其部分。
24.通过如项目22所述的方法产生的油菜NS-B50027-4来源的油菜植物或其部分。
25.一种产生油菜种子的方法,所述方法包括使第一亲本油菜植物与第二亲本油菜植物物杂交和收获所得的第一代油菜种子,其中所述第一亲本油菜植物或所述第二亲本油菜植物是如项目2所述的油菜植物。
26.根据项目25所述的方法,其中所述第一亲本油菜植物与所述第二亲本油菜植物不同,并且其中所述所得的第一代油菜种子是第一代(F1)杂交体油菜种子。
27.用于获得油菜近交品系的方法,所述方法包括:
(a)种植包含杂交体种子的种子集合,所述杂交体种子的亲本中的一个是根据项目2所述的油菜植物,或具有根据项目2所述的油菜植物的所有生理特征和形态特征的油菜植物,所述种子集合还包括所述油菜近交品系的种子;
(b)从所述种子集合生长油菜植物;
(c)从所述油菜近交品系鉴定近交植物;
(d)选择所述近交植物;和
(e)以保持所述近交植物的纯合性的方式控制授粉。
28.根据项目27所述的方法,其中一个亲本具有近交油菜品系NS-B50027-4的所有生理特征和形态特征,所述近交油菜品系NS-B50027-4的种子已经以ATCC登录号PTA-123186保藏。
29.油菜品系NS-B50027-4的细胞,其种子的代表性样品以ATCC登录号PTA-123186保藏。
30.一种检测包含植物DNA的样品中事件NS-B50027-4的存在的方法,其中所述方法包括使所述样品与以下接触:
(a)与芸薹属(Brassica)基因组的侧翼连接区结合的第一引物,所述第一引物选自由以下组成的引物组:GAAGGTGACCAAGTTCATGCTTGTTCTTGGGTGGGTCTGTCCTTC(SEQ ID NO:17;A05插入片段连接1);GAAGGTCGGAGTCAACGGATTGTGTTCTTGGGTGGGTCTGTCCTTA(SEQ IDNO:18,A05插入片段连接1);ATCCACTAGCAGATTGTCGTTTCCC(SEQ ID NO:19,A05插入片段连接1);GTTGGCTAAGGTCACGGTGGAG(SEQ ID NO:20,A05插入片段连接1);GAAGGTGACCAAGTTCATGCTCCGCCTTCAGTTTAAACTATCAGTGTT(SEQ ID NO:21,A05插入片段连接1);GAAGGTCGGAGTCAACGGATTGGTCACGGTGGAGGTCACCA(SEQ ID NO:22,A05插入片段连接1),GGTGTGTTCTTGGGTGGGTCTG(SEQ ID NO:23,A05插入片段连接1);GAAGGTGACCAAGTTCATGCTACTTTTTTTTCAACTGTTGGCTAAGGTA(SEQ ID NO:24,A05插入片段连接2);GAAGGTCGGAGTCAACGGATTACTTTTTTTTCAACTGTTGGCTAAGGTC(SEQ ID NO:25,A05插入片段连接2),GTGTGTTCTTGGGTGGGTCTG(SEQ ID NO:26,A05插入片段连接2);GTCGTTTCCCGCCTTCAGTTT(SEQ ID NO:27,A05插入片段连接2);GAAGGTGACCAAGTTCATGCTAAACTATCAGTGTTTGAACACCTCC(SEQ ID NO:28,A02插入片段连接1);GAAGGTCGGAGTCAACGGATTACAACTTGTCGTGCTACACACCT(SEQ ID NO:29,A02插入片段连接1);GGTTGTGTGAAAACGTGTGAGC(SEQ ID NO:30,A02插入片段连接1);GAAGGTGACCAAGTTCATGCTCTTTTAGCTAAATAAGAGGTTCTGTATACT(SEQ ID NO:31,A02插入片段连接2);GAAGGTCGGAGTCAACGGATTCTTTTAGCTAAATAAGAGGTTCTGTATACA(SEQ IDNO:32,A02插入片段连接2);GATTGTGATTCCGGGCAGT(SEQ ID NO:33,A02插入片段连接2);GTGTGAAAACGTGTGAGCAAT(SEQ ID NO:34,A02插入片段连接2);GAAGGTGACCAAGTTCATGCTTTGTGATTCCGGGCAGTAG(SEQ ID NO:35,A02插入片段连接2),GAAGGTCGGAGTCAACGGATTTGTGAGCAATTGTTGGAGGT(SEQ ID NO:36,A02插入片段连接2);TCTTATCAACATTAAGAACATAATCTTTTAG(SEQ ID NO:37,A02插入片段连接2);前述引物的任一个的至少10个连续核苷酸;及其互补序列;以及
(b)与插入片段序列结合的第二引物,所述第二引物选自由以下组成的引物组:GAAGGTGACCAAGTTCATGCTCCAAGCACCGTAGTAAGAGAGCA(SEQ ID NO:1,Micopu-Δ6D);GCTAAGAAGTGGGGACTCAACTACAA(SEQ ID NO:2,Micopu-Δ6D);GAAGGTGACCAAGTTCATGCTGCTCTTGCTGGAACTCTTGG(SEQ ID NO:3,Pyrco-Δ5E);GGGTTAGCCACATTGTAGGTAACGTA(SEQ IDNO:4,Pyrco-Δ5E);GAAGGTGACCAAGTTCATGCTTAAGAGACACCCTGGTGGAAAGA(SEQ ID NO:5,Pavsa-Δ5D);TAGCATCAGTTCCAACTTGGTAAGCAAT(SEQ ID NO:6,Pavsa-Δ5D);GAAGGTGACCAAGTTCATGCTGAACACGTAAGCAGACCAAGCAG(SEQ ID NO:7,Picpa-ω3D);CCCTCTTCTCCCTAACGAATTCCTT(SEQ ID NO:8,Picpa-ω3D);GAAGGTGACCAAGTTCATGCTGAGGAACCTGTTGCTGCTGATGA(SEQ ID NO:9,Pavsa-Δ4D);GCGATCCTAGCACAAAGTTGAAGGTA(SEQ IDNO:10,Pavsa-Δ4D);GAAGGTGACCAAGTTCATGCTGGATGGATCGCTTACCTCTTCGT(SEQ ID NO:11,Lack1-Δ12D);CAGGGTAAGGTTGTCCTGTAACGTT(SEQ ID NO:12,Lackl-Δ12D);GAAGGTGACCAAGTTCATGCTCTATTGGATGGGGACTCAAGC(SEQ ID NO:13,Pyrco-Δ6E);GGGAGATCCTTAGTAGCAGAAGAGAT(SEQ ID NO:14,Pyrco-Δ6E);GAAGGTGACCAAGTTCATGCTCCTGAGAGGCGTCCTGTTGAAAT(SEQ ID NO:15,PAT);AACAGCAGCCATATCAGCAGCAGTA(SEQ ID NO:16,PAT);TGGAGCTATCCCTCATGAGT(SEQ ID NO:53);GATCCTAGAACAGTAGTGGTG(SEQ ID NO:54,Δ12去饱和酶);GACGCTATCCCTAAGCACTGT(SEQ ID NO:55);GTCCACTCTTGAGCATCGTA(SEQID NO:56,Δ15/ω3去饱和酶);GAGCACCTTGTAGTTGAGTCC(SEQ ID NO:57);AGTCTGAGGATGCTCCTATGC(SEQ ID NO:58,Δ6去饱和酶);TGTTGCTATGGCTCAAGAGC(SEQ IDNO:59);CTAGCGTGGTGCTTCATGTA(SEQ ID NO:60,Δ6延长酶);GCTACCGATGCTTACAAGCA(SEQID NO:61);TAGTGAAGTCCGTGCTTCTC(SEQ ID NO:62,Δ5去饱和酶);TGCTGGAACTCTTGGATACG(SEQ ID NO:63);CTGGGTGATGTACTTCTTCC(SEQ ID NO:64,Δ5延长酶);GGCTTTCAGATCTGAGCATC(SEQ ID NO:65);CTCAGCCTTAACAAGAGGAG(SEQ ID NO:66,Δ4去饱和酶);前述引物中任一个的至少10个连续核苷酸;及其互补序列;使所述样品经受聚合酶链式反应;和测定在所述引物之间生成的扩增子。
31.如项目30所述的方法,其中所述测定是KASPTM基因分型测定。
32.通过项目30或项目31所述的方法鉴定的植物、植物材料或植物来源的材料。
33.一种试剂盒,所述试剂盒包含用于实施项目30或项目31所述的方法的组分。
34.一种试剂盒,所述试剂盒包含正向引物AATTGTTGGAGGTGTTCAAACACT(SEQ IDNO:51)和反向引物CGGAATCACAATCCCTGAATGATT(SEQ ID NO:52),或其互补序列,其中所述引物提供诊断优良种事件NS-B50027-4的约250个核苷酸的扩增子。
35.近交油菜品系NS-B50027-4的基因组DNA,所述近交油菜品系的代表性种子已经以ATCC登录号PTA-123186保藏。
36.一种在植物的种子中产生DHA的方法,所述方法包括培养在其基因组中具有Δ6-去饱和酶、Δ5-延长酶、Δ5-去饱和酶和Δ15/ω3-去饱和酶转基因中的至少一种的多于一个拷贝的植物,其中所述转基因能够在所述植物的种子中表达。
37.如项目35所述培养的植物的种子。
38.一种植物细胞,所述植物细胞包含(a)SEQ ID NO:43(TGGAGGTGTTCAAACACT)和SEQ ID NO:44(ATAGTATTAGTATACAGA)、与这些具有至少95%同一性的序列、或其互补序列;(b)SEQ ID NO:45(GGCTAAGGTAACACTGAT)和SEQ ID NO:46(CAGTGTTTGAAGGACAGA),与这些具有至少95%同一性的序列、或其互补序列;或(c)(a)和(b)二者。
39.一种植物细胞,所述植物细胞包含(a)SEQ ID NO:47和SEQ ID NO:48、与这些具有至少95%同一性的序列、或其互补序列;(b)SEQ ID NO:49和SEQ ID NO:50、与这些具有至少95%同一性的序列、或其互补序列;或(c)(a)和(b)二者。
40.一种重组芸薹属基因组,其中染色体A02和染色体A05以以下为特征:(a)染色体A02中的缺失,其中所述缺失是GTAGCACGACAAGTT(SEQ ID NO:38);(b)染色体A05中的缺失,其中所述缺失是CACGGTGGAGGTCACCATGT(SEQ ID NO:39)。
41.一种植物细胞,所述植物细胞包含(a)SEQ ID NO:40;(b)SEQ ID NO:41;或(c)(a)和(b)二者。
42.NS-B50027-4的种子,所述种子包含至少5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、或16%的DHA,包括端点,以种子中总脂肪酸的重量%计。
43.NS-B50027-4的种子,所述种子包含至少5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、或17%的长链多不饱和脂肪酸,以作为种子中总脂肪酸的重量%的EPA、DPA和DHA的总和计。
44.种子的集合,所述种子的集合包含至少95%的NS-B50027-4的种子,其中所述种子包含至少5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、或16%的DHA,包括端点,以种子中总脂肪酸的重量%计。
45.种子集合,所述种子的集合包含至少95%的NS-B50027-4的种子,其中所述种子至少包含约至少5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、或16%长链多不饱和脂肪酸LC-PUFA,包括端点,其中LC-PUFA为EPA、DPA和DHA的总和,作为种子中总脂肪酸的重量%。
46.一种包含项目42-45中任一项所述的种子的组合物,其中所述种子已经被压碎以提供种子油和种子粗粉。
47.如项目46所述的组合物,其中所述种子油是可食用的种子油。
48.从品系NS-B50027-4的种子中提取的种子油,其中所述种子油的脂肪酸含量具有至少3的ω-3/ω6脂肪酸的比率。
49.如项目46所述的种子油,其中ω-3/ω6脂肪酸的比率在3至20的范围内。
50.如项目48或49所述的种子油,其中所述种子油是粗制油。
51.如项目48或49所述的种子油,其中所述种子油是精炼油。
52.如项目48或49所述的种子油,其中所述种子油是浓缩油。
53.如项目50-53中任一项所述的种子油,其中所述种子油是可食用的。
54.一种组合物,所述组合物包含如项目53所述的种子油。
55.如项目54所述的组合物,其中所述组合物是食料。
56.如项目55所述的组合物,其中所述食料用于人类消耗。
57.如项目55所述的组合物,其中所述组合物是食用油或色拉油。
58.如项目54所述的组合物,其中所述组合物是乳液。
59.如项目54所述的组合物,其中所述组合物是干成分。
60.如项目54所述的组合物,其中食料是水产养殖营养的来源。
61.如项目60所述的组合物,其中所述食料是固体鱼饲料。
62.如项目60所述的组合物,其中所述食料是液体鱼饲料。
63.如项目46所述的组合物,其中所述种子粗粉是食料中的成分。
64.如项目54所述的组合物,其中所述组合物是药物组合物。
65.从NS-B50027-4或其子代的种子获得的油,其中所述油的脂质已被处理以富集DHA级分并且所述富集的脂质包含至少40%、至少50%、至少60%、至少70%、至少80%或至少90%的DHA。
66.一种制备含有DHA的菜子油的方法,所述方法包括以下步骤:
(a)将NS-B50027-4的DHA性状基因渗入到雄性不育的优良种芸薹属品系中;
(b)将NS-B50027-4的DHA性状基因渗入到可育的第二优良种芸薹属品系中;
(c)使两个品系(a)及(b)杂交以获得杂交体子代;
(d)培育杂交体子代的种子;
(e)收获由培育的杂交体子代产生的籽粒;以及
(f)从所述杂交体种子的子代中提取油。
附图简述
图1提供了GA7-modB转化盒的示意图(图谱(map))。
图2为二元载体pJP3416的质粒图谱。
图3描绘了在8个栽培地点上针对预测的DHA(以kg/ha计)绘制的产量图。◆为DHAKg/ha;--为线性DHAKg/ha;y=29.296x+2.8315;R2=0.8567。
图4描绘了在8个地点上针对预测的LC-PUFA(EPA、DPA和DHA)(以kg/ha计)绘制的产量图。◆为LC-PFU Kg/ha;--为线性LC-PUF Kg/ha;y=34.043x+3.4049;R2=0.8636。
图5示出了四基因转基因插入片段的DNA序列及其侧翼欧洲油菜序列(粗体)(SEQID NO:40)。
图6示出了16基因插入片段的DNA序列及其侧翼欧洲油菜序列(粗体)(SEQ ID NO:41)。
详细描述
应当理解,本发明不限于本文描述的特定方法、方案和试剂等,并因此可以变化。本文使用的术语仅用于描述特定实施方案的目的,而不旨在限制本发明的范围,本发明的范围仅由权利要求界定。
指出的所有专利和其他出版物为了描述和公开例如可以与本发明关联使用的在这样的出版物中描述的方法,但不提供与本文呈现的那些术语不一致的术语的定义的目的通过引用并入本文。这些出版物仅以其先于本申请的申请日期的公开内容被单独地提供。就这一点而言,任何内容不应该被解释为发明人没有资格借助在先发明或出于任何其他原因先于这样的公开内容的承认。所有关于日期的叙述或关于这些文献内容的陈述是基于申请人可获得的信息,而并不构成对这些文献的日期或内容的正确性的承认。
如在本文和在权利要求中所使用的,单数形式的“一(a)”、“一(an)”及“该(the)”包括复数的指示物,除非上下文另外清楚地指明。除非另有说明,否则在整个说明书中“包含(comprise)”,“包含(comprises)”和“包含(comprising)”包含性地而非排除性地使用,使得所述整数或整数组可包括一个或多个其他未说明的整数或整数组。除非例如被“任一(either)”修饰,否则术语“或”是包含性的。因此,除非上下文另外指明,否则单词“或”表示特定列表的任何一个成员,并且还包括该列表的成员的任何组合。
所有的值都是近似值,因为脂肪酸组成由于环境条件存在一些波动。值通常表示为总脂肪酸的重量的百分比,或总种子的重量的百分比。因此,除了在操作实例中之外,或在另外指示的情况下,表示本文中使用的量或反应条件的所有数字应当被理解为在所有情况中被术语“约”修饰。
重组DNA技术可以根据本领域已知的标准方案进行。参见:Sambrook等人,MOLECULAR CLONING:LAB.MANUAL(第2版,Cold Spring Harbor Lab.Press,NY(1989);Ausubel等人,CURRENT PROTOCOLS MOLEC.BIOL.(1994及更新);DNA CLONING:PRACTICALAPPROACH,第1-4卷(Glover&Hames编辑,IRL Press 1995,1996),Croy,PLANTMOLEC.BIOL.LABFAX(BIOS Sci.Pub.Ltd.&Blackwell Sci.Pub.,UK,1993);WO2015089587。
标题仅为方便起见而提供并且不应解释为以任何方式限制本发明。除非另外定义,本文使用的所有技术术语和科学术语具有本领域的普通技术人员通常所理解的含义相同的那些含义。本文使用的术语仅用于描述特定实施方案的目的,并且不旨在限制本发明的范围,本发明的范围仅由权利要求书界定。为使本公开内容可更容易地理解,首先定义某些术语。另外的定义贯穿详细说明而阐述。
“品系”是在共享该名称的个体之间显示非常小的整体变异的一组植物。“品系”还指携带基本上相同的遗传物质的植物的同质组合,所述基本上相同的遗传物质的至少一种性状在个体之间显示很小的遗传变异或没有遗传变异。“变种(variety)”或“栽培种”可以与“品系”互换使用,但通常前两个术语是指适用于商业生产的品系。例如在短语“遗传衍生自亲本系”中使用的“遗传衍生”是指所讨论的特征完全或部分地由所讨论的植物的遗传组成的一个方面决定。
如本文所用的,“芸薹属”植物是指十字花科(Brassicaceae)的植物。芸薹属植物可以属于物种欧洲油菜、芸薹(或芸苔(B.campestris))或芥菜(B.juncea)中的一种。或者,该植物可以属于源自使这些芸薹属物种相互杂交的物种,诸如B.napocampestris,或者源自使这些芸薹属物种中的一种与十字花科(Cruciferacea)的另一个物种人工杂交的物种。倍性是指栽培种表现出的染色体数目是二倍体还是四倍体。因为欧洲油菜是由芸薹(以前的芸苔)和甘蓝(B.oleracea)的两种基因组的交叉和保留产生的异源四倍体(双二倍体),包含转基因事件NS-B50027-4的欧洲油菜可以用于引入NS-B50027-4事件,并因此将本文描述的产生LC-ω3脂肪酸的“性状”引入到芸薹属的其他成员中的育种方法。因此,可用于实施本发明实施方案的芸薹属的成员的实例包括但不限于芥菜、B.napobrassica、甘蓝、埃塞俄比亚芥(B.carinata)、欧洲油菜、芸薹和芸苔以及允许在芸薹属物种之间育种的属于芸薹属的任何其他植物。通常,“油料种子植物”是指物种欧洲油菜、芸薹(或芸苔)或芥菜中的任一种。
欧洲油菜通常被称为油菜籽(rapeseed)或油菜(oilseed rape),并且特定的栽培种可以被称为油菜(canola)。如本文中使用的,术语“油菜”或“油菜植物”是指能够用于生产菜子油的芸薹属植物(即满足含有少于2%芥酸的特定质量指标的油)并且包括以下品种:欧洲油菜、B.napobrassica、芸薹、芥菜和芸苔。油菜是一种双二倍体(也称为异源四倍体),是一种种间杂交种,具有来自每个亲本形式的完整二倍体染色体组,具有基因组AACC。
“油菜”和“油菜植物”通常指欧洲油菜,但包括可以与油菜杂交(bred)的所有植物品种。“油菜”和“油菜植物”还包括植物部分。“菜子油”必须含有少于2%芥酸;并且1克风干的、无油固体油菜种子必须含有少于30微摩尔的3-丁烯基葡萄糖异硫氰酸酯、4-戊烯基葡萄糖异硫氰酸酯、2-羟基-3丁烯基葡萄糖异硫氰酸酯、2-羟基-4-戊烯基葡萄糖异硫氰酸酯或其混合物。参见例如CODEX ALIMENTARIUS:FATS,OILS&RELATED PRODUCTS,第8卷(第2版,Food&Agriculture Org.United Nations,Rome,Italy,2001)。
“植物部分”包括植物细胞、植物器官、植物原生质体、植物可以从其再生的植物细胞组织培养物、植物愈伤组织、植物团块和在植物或植物部分中完整的植物细胞,诸如胚胎、花粉、胚珠、种子、荚、叶、花、枝、果实、茎、根、根尖、花药、子叶、下胚轴、胚根、单细胞、配子、细胞培养物、组织培养物等。子叶是一种类型的种子叶片;植物胚胎上包含的一个小叶片。子叶含有种子的食物储存组织。胚胎是包含在成熟种子中的小植物。“植物细胞”还包括不可再生的植物细胞。再生植物的子代、衍生物、变体和突变体也包括在本发明实施方案的范围内,条件是这些部分包含事件NS-B50027-4核酸分子。本发明实施方案还涉及优良种事件NS-B50027-4转基因在植物细胞培养和组织培养中的用途。实施方案包括来自优良种事件NS-B50027-4品系的植物和植物部分,以及通过本文描述的方法产生的其他植物。
“等位基因”是与一种性状或特征相关的基因的一种或更多种替代形式中的任何一种。在二倍体细胞或生物体中,给定基因的两个等位基因占据一对同源染色体上对应的基因座。
“基因座”赋予一种或更多种性状,例如修饰的脂肪酸新陈代谢、修饰的植酸新陈代谢、修饰的碳水化合物新陈代谢、雄性不育、除草剂耐受性、昆虫抗性、抗病性或修饰的蛋白新陈代谢。性状可以由例如,通过回交引入到品系的基因组中的天然存在的基因、天然或诱导的突变、或通过遗传转化技术引入的转基因赋予。基因座可包含整合在单个染色体位置的一个或更多个等位基因。数量性状基因座(QTL)是指至少在某种程度上控制通常连续分布的可用数字表示的性状的遗传基因座。
“事件”是作为遗传操作的结果,携带包含至少一个拷贝的感兴趣的基因的外源DNA人工基因座。事件的典型等位基因状态是存在或不存在外源DNA。事件可以通过一种或更多种转基因的表达来通过表型表征。在遗传水平上,事件是植物遗传组成的一部分。在分子水平上,事件的特征在于限制性图谱(例如通过DNA印迹确定)或转基因的上游或下游侧翼序列,或转基因的分子构型。通常用转化DNA转化植物细胞或植物部分导致多个事件,每个事件是独特的。
术语“基因”是指通常包含几个可操作地连接的DNA区域的DNA分子,诸如启动子和5'非翻译区(5'UTR或5'非编码序列),它们一起形成启动子区;编码区(可以编码或可以不编码蛋白);和包含多腺苷酸化位点的非翻译3'区(3'UTR或3'非编码序列)。通常在植物细胞中,5'UTR、编码区和3'UTR区被转录成RNA分子,在编码蛋白的基因的情况中,该RNA分子被翻译成蛋白。因此,“编码序列”是指DNA分子中提供翻译特定氨基酸序列的密码子的核苷酸序列。基因可以包括另外的DNA区,诸如例如内含子。“基因型”是指细胞或生物体的遗传构成。“基因座”通常是给定基因在植物基因组中的位置。
术语“转基因”是指整合到植物的基因组中的感兴趣的基因。因此,“转基因植物”在其所有细胞的基因组中包含至少一个转基因。本发明实施方案的转基因包含至少一个拷贝的感兴趣的基因,更具体地,至少一个拷贝的来源于盐生巴夫藻的Δ4-去饱和酶、来源于海洋微藻盐生巴夫藻的Δ5-去饱和酶、来源于微藻Pyramimonas cordata的Δ5-延长酶、来源于微藻细小微胞藻的Δ6-去饱和酶、来源于Pyramimonas cordata的Δ6-延长酶、来源于酵母Lachancea kluyveri的Δ12-去饱和酶和来源于酵母巴斯德毕赤酵母的Δ15/ω3-去饱和酶;以及至少一个另外的拷贝的来源于微藻细小微胞藻的Δ6-去饱和酶、来源于Pyramimonas cordata的Δ5-延长酶、来源于海洋微藻盐生巴夫藻的Δ5-去饱和酶、和来源于酵母巴斯德毕赤酵母的Δ15/ω3-去饱和酶。转基因在包括适当的调节区的表达盒中以二元方式布置。上文描述的转基因是人工的,因为它们是使用密码子优化策略设计的,并且因此该转基因原本在自然界中不存在。转基因表达盒可包括来自红花烟草的至少一个基质结合区(MAR)。转基因盒还可包括可选择标记基因。参见美国专利第8,816,111号。
当关于植物物种提及基因或DNA分子时,“外源的”或“异源的”表示基因或DNA分子或其部分(例如特定区域)不能天然地在该植物物种中找到,或者不能天然地在该植物物种的基因座中找到。术语“外源DNA”还指由于转化而将被整合或已经整合到植物的基因组中的DNA分子。在本公开内容的上下文中,转基因、转基因盒或转基因表达盒包含至少一种外源DNA或异源DNA。
当提及基因或DNA分子时,术语“嵌合的”用于表示该基因或DNA分子包含至少两个功能上相关的DNA区域(诸如启动子、5'UTR、编码区、3'UTR、内含子),它们天然地彼此不缔合,并且源自不同的来源,使得至少一个DNA区域对于嵌合分子中的另一个DNA区域是外源的。
术语“质粒”、“载体”是指通常携带不是细胞的中心代谢(central metabolism)的一部分的基因的染色体外元件,并且通常是环状双链DNA片段的形式。这样的元件可以是源自任何来源的线型的或环状的单链或双链DNA或RNA的自主复制序列、基因组整合序列、噬菌体序列或核苷酸序列,其中许多核苷酸序列已经连接或重组成独特的构建体,该构建体能够将选择的基因产物的启动子片段和DNA序列以及合适的3'非翻译序列引入到细胞中。关于转基因植物,这样的质粒或载体可以含有T-DNA区域,以便于将转基因插入植物基因组中。
“表达盒”是指含有转基因并且具有除了外源基因以外的允许该基因在外源宿主中表达的元件的遗传构建体;并且可以指在插入植物的基因组之前和之后的盒。换句话说,转基因插入片段构成表达盒。
“转化DNA”是指用于转化的重组DNA分子,例如表达载体。转化DNA通常包含能够赋予转化植物一种或更多种特定特征的至少一个“感兴趣的基因”(例如,嵌合基因)。
“转化”是指核酸分子到宿主生物体的转移,导致遗传上稳定的遗传。例如,核酸分子可以是自主复制的质粒,或者核酸分子可以整合到宿主生物体的基因组中。含有转化的核酸片段的宿主生物体被称为“转基因的”或“重组的”或“转化的”生物体。
术语“重组DNA分子”用于举例说明,并因此可以包括分离的核酸分子,所述分离的核酸分子可以是DNA并且可以通过重组或其他过程诸如合成DNA合成或PCR获得。PCR(聚合酶链式反应)是其中使用由“上游”引物和“下游”引物组成的引物和聚合催化剂(诸如DNA聚合酶),并且通常为热稳定的聚合酶,制备靶多核苷酸的复制拷贝的反应。用于PCR的方法是本领域已知的。参见,例如PCR(McPherson&Moller编辑,BIOS Sci.Publ.Ltd.,Oxford,2000)。PCR可以在基因组DNA或cDNA上进行。
“插入DNA”是指通过转化方法引入植物材料的异源DNA,并且包括与用于本文说明的这样的转化的原始DNA不同的DNA。插入DNA通常是转基因表达盒。“优良种事件NS-B50027-4间插核酸”和“事件NS-B50027-4插入DNA”是指特征为由SEQ ID NO:1的核苷酸2090至14201的序列或其互补序列组成的核酸分子;和特征为包含SEQ ID NO:2的核苷酸位置987至1894、或SEQ ID NO:3的1至910的序列或其互补序列的核酸分子。
“合适的调控序列”是指位于编码序列的上游(例如5'UTR)、内部或下游(3'UTR)的核苷酸序列;所述核苷酸序列影响转录、RNA加工或稳定性、或相关编码序列的翻译。调控序列可包括启动子、增强子元件、翻译前导序列、内含子、多腺苷酸化识别序列、RNA加工位点、效应物结合位点和茎环结构。
“启动子”是指能够控制编码序列或功能性RNA的表达的DNA序列。通常,编码序列位于启动子序列的3'。启动子可以整体源自天然基因,或包括源自自然界中发现的不同启动子的不同元件,或甚至包括合成的DNA区段。本领域技术人员理解,不同的启动子可以指导基因在不同的组织或细胞类型中表达,或在发育的不同阶段、或响应不同的环境条件或生理条件表达。引起基因在大多数细胞类型中在大多数时间表达的启动子通常被称为“组成型启动子”。还认识到,由于在大多数情况中调控序列的确切边界尚未完全确定,不同长度的DNA片段可以具有相同的启动子活性。
术语“3'非编码序列”和“转录终止子”是指位于编码序列下游的DNA序列。这包括聚腺苷酸化识别序列和编码能够影响mRNA加工或基因表达的调控信号的其他序列。聚腺苷酸化信号通常通过影响聚腺苷酸串(polyadenylic acid tracts)添加至mRNA前体的3'末端表征。3'区可以影响转录、RNA加工或稳定性、或相关编码序列的翻译。
术语“可操作地连接”指核酸序列在单个核酸片段上的缔合,使得一个核酸序列的功能被另一个核酸序列影响。例如,当启动子能够调节编码序列的表达时,该启动子与该编码序列可操作地连接(即,该编码序列在启动子的转录控制下)。编码序列可以以有义方向或反义方向可操作地连接至调控序列。
如本文中使用的,术语“表达”是指源自本发明核酸的有义(mRNA)的转录和稳定积累。表达还可以指mRNA翻译成多肽。
除非另外陈述或从上下文中清楚的,否则提及细胞包括植物细胞,无论是分离的、在组织培养物中、还是整合到植物或植物部分中。
“子代”是指所有后代,包括植物的后裔(offspring)或衍生物或植物,并且包括第一代、第二代、第三代和后续各代;并且可以通过自花授粉或与具有相同或不同基因型的植物杂交产生,并且可以通过一系列合适的基因工程技术修饰。栽培种(cultigen)通常涉及已经被人类有意改变和选择的植物。“T0”是指第一代转化植物材料,“T1”是指在T0植物上产生的种子,T1种子产生产生T2种子的植物,以及后续的Tx代。
“育种”包括使植物发育或繁殖的所有方法,并且包括种内杂交和种间杂交、和品系内杂交和品系间杂交以及所有合适的常规育种和人工育种技术。所需的性状(例如NS-B50027-4 DHA性状)可以转移到其他油菜或欧洲油菜品系、栽培种(cultivar)或栽培种(cultigen);或者通过常规的育种方法并且也可以通过种间杂交转移到其他芸薹属物种诸如芥菜和芸薹。常规育种方法和种间杂交方法以及在植物之间转移遗传物质的其他方法在本领域中是周知的。
“回交”是其中育种者反复将杂交子代杂交回亲本品系的方法,例如,将第一代杂交体F1与F1杂交体的一个亲本基因型杂交。
“脂肪酸组成”或“脂肪酸含量”通常是指存在于成熟、完整、部分干燥的种子的内源形成的油中的各种脂肪酸的重量百分比。常见的行业惯例是将脂肪酸组成报告为面积百分比(面积归一化),而不是绝对量。面积百分比易于计算,并且容易与行业中以同样方式报告的许多其他人的结果进行比较。面积百分比与绝对重量百分比不同,但近似。绝对结果可以使用已知浓度的单独的参考标准品和内标来基于mg/kg计算。但也可以使用校正因子来计算脂肪酸的质量而不使用单独的脂肪酸标准品,然而仍可能需要内标。通常,脂肪酸含量通过压碎种子并提取脂肪作为脂肪酸甲酯(FAME)来确定,脂肪酸甲酯(FAME)可以通过生成面积百分比或可以从中得到面积百分比的数据的各种技术来分析脂肪酸含量。分析方法的实例包括气相色谱法(GC)、GC-质谱法(GC-MS)、液相色谱-质谱法(LC-MS)、核磁共振法(NMR)或近红外反射光谱法。总脂质可以通过本领域已知的技术分离以纯化级分,例如诸如TAG级分。用于表征脂肪酸组成的其他方法是本领域技术人员已知的。参见例如,Tinoco等人,3Anal.Biochem.514(1962);CANOLA:CHEMISTRY,PRODUCTION,PROCESSING&UTILIZATION(Daun等人编辑,AOCS Press,Urbana,IL,2011)(Daun等人,2011);US 2015/0166928;US20160002566。
类似地,“油含量”是存在于成熟、完整、部分干燥的种子(通常含有约6%或7%的水分)中的油的典型重量百分比。油的百分比被计算为油的重量除以0%水分的种子重量。油含量可以是不同品种的特征。它可以使用各种分析技术确定,诸如NMR(MQC,OxfordInstruments)、NIR和Soxhlet提取。例如,油菜油含量可以通过核磁共振技术(Rossell&Pritchar,ANALYSIS OF OILSEEDS,FATS&FATTY FOODS 48-53(Elsevier Sci.Pub.Ltd,London,1991)、通过脉冲波NMS 100Minispec(Balker Pty Ltd Scientific Instruments,Germany)测量,同时测量水分含量。种子油含量也可以通过近红外反射(NIR)光谱法测量。Li等人67Phytochem.904(2006)。
短语“提取的植物脂质”、“分离的植物脂质”、“提取的脂质”等是指包含从例如压碎的植物或植物部分(诸如种子)提取的脂质的组合物。提取的脂质可以是通过例如压碎植物材料(诸如种子)而获得的相对粗制的组合物;或更纯化的组合物,其中来源于植物材料的大部分(如果不是全部的话)水、核酸、蛋白或碳水化合物已从油中去除。纯化的方法的实例是本领域已知的。在一些实施方案中,提取的或分离的植物脂质包含按组合物重量计至少约60%、至少约70%、至少约80%、至少约90%、或至少约95%(w/w)的脂质。提取的脂质在室温可以是固体或液体,后者被认为是“油”。在一些实施方案中,提取的脂质未与另一种来源产生的另一种脂质诸如DHA(例如,来自鱼油的DHA)混合。在一些实施方案中,与完整种子或细胞中的比率相比,在提取后,油酸与DHA、棕榈酸与DHA、亚油酸与DHA或总ω6脂肪酸与总ω3脂肪酸的比率没有显著改变(例如,不大于10%或5%改变)。换句话说,提取的脂质没有富集特定的脂肪酸,例如DHA。在其他实施方案中,提取的植物脂质尚未暴露于诸如氢化或分馏程序,当与完整种子或细胞中的比率相比,氢化或分馏改变油酸与DHA、棕榈酸与DHA、亚油酸与DHA或总ω6脂肪酸与总ω3脂肪酸的比率。也就是说,提取的脂质没有富集特定的脂肪酸,例如DHA。当本发明的实施方案的提取的植物脂质是油时,油还包含非脂肪酸分子诸如甾醇。
如上所述,短语“提取的植物油”和“分离的植物油”是指包含在室温是液体的提取的植物脂质或分离的植物脂质的组合物。油从植物或其部分诸如种子获得。提取或分离的油可以是通过例如压碎植物种子获得的相对粗制的组合物;或更纯化的组合物,其中来源于植物材料的大部分(如果不是全部的话)水、核酸、蛋白或碳水化合物已从油中去除。组合物可以包含可以为脂质或非脂质的其他组分,例如非脂肪酸分子诸如甾醇。在实施方案中,油组合物包含至少约60%、至少约70%、至少约80%、至少约90%、或至少约95%(w/w)的提取的植物脂质。在实施方案中,本发明提取的油未与另一种来源产生的的另一种油或脂肪酸诸如DHA(例如来自鱼油的DHA)混合。在一个实施方案中,与完整种子或细胞中的比率相比,在提取后,脂肪酸的比率没有显著改变(例如不大于10%或5%改变);提取的植物油也尚未暴露于诸如氢化或分馏程序,与完整种子或细胞中的比率相比,氢化或分馏显著改变提取物中脂肪酸的比率。也就是说,提取的油没有富集特定的脂肪酸,例如DHA。
如本文中使用的,“油”是主要包含脂质并且在室温为液体的组合物。例如,本发明的油优选包含以重量计至少75%、至少80%、至少85%或至少90%脂质。通常,纯化的植物油包含以油中的脂质的重量计至少90%三酰甘油酯(TAG)。油的微量组分诸如二酰甘油酯(DAG)、游离脂肪酸(FFA)、磷脂或甾醇可以存在于油中。
如本文中使用的,术语“脂肪酸”是指通常具有饱和或不饱和的长脂族尾部的羧酸。通常,脂肪酸具有长度为至少8个碳原子、例如长度为至少12个碳、16个碳、18个碳、20个碳或22个碳的碳-碳键合链。大多数天然存在的脂肪酸具有偶数个碳原子,因为它们的生物合成涉及具有两个碳原子的乙酸酯。脂肪酸可以处于游离状态(非酯化);处于酯化形式诸如甘油三酯(TAG)、二酰甘油酯(DAG)、单酰甘油酯的一部分;或者是酰基-CoA(硫代酯)结合或另一种结合形式。脂肪酸可以酯化为磷脂,诸如磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰甘油、磷脂酰肌醇或二磷脂酰甘油。
“饱和脂肪酸”沿链不含有碳-碳双键(烯烃)或其他官能团。“饱和的”是指在所有可能的碳处(除了羧酸[-COOH]基团)存在氢。换句话说,在饱和脂肪酸中,脂肪酸的omega(ω末)端(也称为n末端)含有三个氢(-CH3),并且链内的每个碳含有两个氢(-CH2-)。
“不饱和脂肪酸”与饱和脂肪酸共享相似的骨架,除了它们在碳链中包含至少一个烯烃基团(-CH=CH-)。两个侧接碳原子(与烯烃基团的任一侧结合)可以以顺式或反式构型存在。“单不饱和脂肪酸”是指在碳链中具有至少12个碳原子但仅具有一个烯烃基团的脂肪酸。“多不饱和脂肪酸”或“PUFA”是指在碳链中具有至少12个碳原子和至少两个烯烃基团的脂肪酸。“长链多不饱和脂肪酸”和“LC-PUFA”是指在碳链中具有至少20个碳原子并且具有至少两个烯烃基团的脂肪酸。“超长链多不饱和脂肪酸”和“VLC-PUFA”是指在碳链中具有至少二十二个碳原子和至少三个烯烃基团的脂肪酸。提及LC-PUFA包括VLC-PUFA。通常,脂肪酸的碳链中的碳原子数是指未支化的碳链。如果碳链是支链的,则碳原子数不包括侧基中的那些碳原子数。
在一个实施方案中,LC-PUFA是ω3脂肪酸:它在脂肪酸的从甲基末端计的第三个碳-碳键处具有去饱和(烯烃基团)。在另一个实施方案中,LC-PUFA是ω6脂肪酸:它在脂肪酸从甲基末端计的第六个碳-碳键中具有去饱和(烯烃基团)。烯烃(双键)在脂肪酸链中的位置也使用Δ(或δ)注释,其中烯烃的位置参照脂肪酸的羧基末端编号。例如,亚油酸也可以称为“顺式-Δ9,顺式-Δ12十八碳二烯酸”或Δ9,12十八碳二烯酸。“脂肪酸也可以参考“C:D”脂质数来鉴定,其中C是碳的数目且D是碳主链中双键的数目。例如,花生四烯酸可以标注为20:4Δ5,8,11,14,意指具有位于脂肪酸的羧基末端的碳5、8、11和14上的四个烯烃基团的二十碳链。该名称还表明花生四烯酸是ω6脂肪酸,因为如果存在二十个碳并且在从羧基末端的C14处存在一个烯烃,则来自甲基末端的第一个烯烃必须在C6处。
在另一实施方案中,LC-PUFA选自由以下组成的组:花生四烯酸(ARA,20:4Δ5,8,11,14;ω6)、二十碳四烯酸(ETA,20:4Δ8,11,14,17;ω3)、二十碳五烯酸(EPA,20:5Δ5,8,11,14,17;ω3)、二十二碳五烯酸(DPA,22:5Δ7,10,13,16,19;ω3)、或二十二碳六烯酸(DHA,22:6Δ4,7,10,13,16,19,ω3)。LC-PUFA也可以是双高-γ高亚油酸(DGLA)或二十碳三烯酸(ETrA,20:3Δ11,14,17;ω3)。根据本发明实施方案制备的LC-PUFA可以是上述任何或全部的混合物,并且可以包括其他LC-PUFA或这些LC-PUFA中的任一种的衍生物。然而,在优良种事件油菜中产生的LC-PUFA通常比来源于鱼油的LC-PUFA更纯。在至少一个实施方案中,ω3脂肪酸是DHA;DPA和DHA;或EPA、DPA、和DHA中的至少一种。
此外,如上所述,LC-PUFA和VLC-PUFA可以是游离脂肪酸(非酯化的)、酯化的或另一种结合形式。因此,本发明实施方案的LC-PUFA可以在细胞的脂质、提取的脂质或纯化油中以混合物的形式存在。在至少一个实施方案中,所述油包含至少75%或至少85%三酰甘油酯,其余部分以其他形式的脂质存在,诸如所提及的那些,其中三酰甘油酯包含至少一种LC-PUFA。随后油可以被进一步纯化或处理,例如通过用强碱水解以释放游离脂肪酸,或通过蒸馏或类似方式。
因此,“总ω3脂肪酸”、“总ω3脂肪酸含量”等是指提取的脂质、油、重组细胞、植物部分或种子(根据上下文确定)中酯化的和非酯化的所有ω3脂肪酸的总和,通常表示为总脂肪酸含量的百分比。这些ω3脂肪酸包括ALA、SDA、ETrA、ETA、EPA、DPA或DHA,并且不包括任何ω6脂肪酸或单不饱和脂肪酸。“新ω3脂肪酸”、“新ω3脂肪酸含量”等是指提取的脂质、油、重组细胞、植物部分或种子(根据上下文确定)中除了ALA的酯化和非酯化的所有ω3脂肪酸的总和,表示为总脂肪酸含量的百分比。这些新ω3脂肪酸是通过优良种事件转基因构建体的表达在本发明实施方案的细胞、植物、植物部分和种子中产生的脂肪酸,并且如果存在则包括SDA、ETrA、ETA、EPA、DPA或DHA,但不包括ALA、任何ω6脂肪酸或单不饱和脂肪酸。示例性的总ω3脂肪酸含量和新ω3脂肪酸含量可以通过将样品中的脂肪酸转化为FAME并使用本领域已知的方法通过GC分析来确定。参见例如,American Oilseed Chemists’Society(AOCS)方法Celd-91。
类似地,“总ω6脂肪酸”、“总ω6脂肪酸含量”等是指提取的脂质、油、重组细胞、植物部分或种子(根据上下文确定)中酯化和非酯化的所有ω6脂肪酸的总和,表示为总脂肪酸含量的百分比。“总ω6脂肪酸”,如果存在的话,可以包括LA、GLA、DGLA、ARA、EDA或ω6-DPA,并且不包括任何ω3脂肪酸或单不饱和脂肪酸。“新ω6脂肪酸”、“新ω6脂肪酸含量”等是指在提取的脂质、油、重组细胞、植物部分或种子(根据上下文确定)中的除了LA以外的所有酯化和非酯化的ω6脂肪酸的总和,表示为总脂肪酸含量的百分比。这些新ω6脂肪酸是通过优良种事件转基因的表达在如本文描述的细胞、植物、植物部分或种子中产生的脂肪酸,并且可以包括GLA、DGLA、ARA、EDA或ω6-DPA,但不包括LA、ω3脂肪酸或单不饱和脂肪酸。
“半种子分析”是对两片子叶中的一片(半粒种子)进行的脂肪酸分析的过程,并且携带第二子叶的剩余幼苗形成植物。
“蛋白含量”是通过本领域已知的方法确定的成熟的、完全干燥的种子的无油粗粉中蛋白的典型重量百分比。参见例如,Daun等人,2011;AOCS Official Meth.Ba 4e-93Combustion Meth.Determination Crude Protein。
商业种植者为生长或繁殖物种以外的目的而生产的成熟种子有时被称为“籽粒”。
遗传事件
转基因在油菜中的表型表达由转基因盒本身的结构及其在植物基因组中的插入位置二者决定:转基因在植物基因组中特定位置的存在可能影响转基因的表达和植物的整体表型。通过遗传操作将商业上感兴趣的性状农业上或工业上成功地引入植物中可能是依赖不同因素的漫长过程。遗传转化植物的实际转化和再生只是包括广泛的遗传表征、育种和田间试验评估,最终导致选择优良种事件的一系列选择步骤中的第一步。
本发明实施方案的方面涉及植物基因组中惊人的拷贝数的可表达转基因。“可表达”是指DNA分子的一级结构,即转基因的编码序列,表明该基因编码活性蛋白。然而,可表达的编码序列可能无法表达,因为“基因沉默”在体内通过同源转基因失活的各种机制发生。同源转基因失活已经在植物中被描述,其中转基因以有义方向插入,意外的结果是基因和转基因二者都被下调。Napoli等人,2Plant Cell 279(1990)。同源基因序列的失活的可能机制包括通过甲基化的转录失活,其中复制的DNA区发出用于基因沉默以及转录后沉默的内源机制的信号,其中来自内源基因和转基因二者的mRNA的组合水平触发阈值诱导的两种信号的降解。van Bokland等人,6Plant J.861(1994)。然而,令人惊讶的是,尽管在NS-B50027-4中存在至少三个拷贝的几种转基因,其中一些以相同的方向放置,但NS-B50027-4显示出协同DHA表达。
优良种事件可以通过重组DNA分子在植物基因组中掺入的位点的位置和构型来表征。植物基因组中被插入重组DNA盒的位点也称为“插入位点”或“靶位点”。“侧翼区”或“侧翼序列”是位于紧邻转基因盒的上游并与转基因盒连续的或紧邻转基因盒的下游并与转基因盒连续的植物基因组的DNA区域,例如,至少20个碱基对、至少50个碱基对、或至多5,000个碱基对。导致外源DNA随机整合的转化产生具有不同侧翼区的转化子,该不同侧翼区对于每个转化子是特征性的和独特的(优良种事件)。
通常,当转基因通过传统杂交引入植物时,它在植物基因组中的插入位点及其侧翼区不改变。“插入区”是指对应于至少40个碱基对,诸如至少100个碱基对,或多达超过10,000个碱基对的区域,其被(未转化的)植物基因组的转基因的上游和下游侧翼区包围,并包括插入位点(和可能的靶位点缺失)。考虑到由于物种内的突变引起的微小差异,插入区域可以与该物种的给定植物中的外源DNA的上游和下游侧翼区保持至少85%、诸如90%、95%或100%的序列同一性。然而,将转基因盒插入植物基因组中有时可伴随植物DNA的缺失(称为“靶位点缺失”)。
感兴趣的基因的表达是指这样的事实:转基因赋予植物一种或更多种表型性状(例如,产生LC-ω3脂肪酸),所述表型性状意图由转化DNA的导入赋予(基于一些或全部感兴趣的基因的结构和功能)。在本发明实施方案中,若干转基因提供了在转化的植物中产生LC-ω3脂肪酸的生物合成途径。
如本文中使用的,“优良种事件”是选自一组事件的事件,通过用相同的转化DNA转化获得或通过与这样的转化获得的植物回交,基于转基因构建体的表达和稳定性、转基因构建体与包含它的植物的最佳农艺特征的相容性、以及所期望的表型性状的实现来获得。因此,优良种事件选择的标准是以下中的至少之一个,并且最好是全部:
(a)转基因的存在不会过度损害植物的其他期望特性,诸如与农艺性能或商业价值有关的那些特性;
(b)事件以明确定义的分子构型为特征,该分子构型是稳定遗传的并且可以针对其开发身份控制的适当诊断工具;
(c)转基因盒中的感兴趣的基因示出了在事件的杂合条件(或半合子条件)和纯合条件下、在其中携带该事件的植物可能暴露于于正常的农艺使用的一系列环境条件中的商业上可接受的水平上正确的、适当的和稳定的空间和时间表型表达。外源DNA还可以与允许基因渗入到进一步期望的商业遗传背景的植物基因组中的位置相关。
作为优良种事件的事件的状态可以通过优良种事件在不同的相关遗传背景中基因渗入来确认,并且以至少一个标准,例如上述(a)、(b)和(c)观察依从性(compliance)。另外,优良种事件的选择也可以根据相容性来确定,更具体地说,由携带优良种事件NS-B50027-4的植物与携带至少一个其他事件的植物之间的杂交产生的子代,使得子代携带2个事件。因此,“优良种事件”是指包含符合上述标准的转基因盒的基因座。植物、种子、植物材料或子代可在其基因组中包含一个或更多个优良种事件。
优良种事件NS-B50027-4在油菜的开发中被选为优良种事件,其产生LC-PUFA、特别是LC-ω3脂肪酸、更特别是DHA。在植物基因组中掺入重组DNA分子通常是由细胞或组织的转化(或另一种遗传操作)引起的。掺入的特定位点可以是随机的(a matter of chance)或预定的(如果使用靶向整合方法)。如本文描述的,油菜品系NS-B50027-4是稳定且均一的育种品系。它是在注意植物类型的均一性的情况下培育的。该品系随着对均一性的持续观察而增加。在对品系NS-B50027-4提交专利时,油菜品系NS-B50027-4不是任何其他商业化油菜栽培种的亲本。
新的分子生物学技术的出现已经允许分离和表征具有特定功能诸如编码特定的蛋白质产物的遗传元件。植物生物学领域的科学家对工程化植物基因组以包含和表达外源遗传元件、或另外的版本的或修饰版本的天然或内源遗传元件,从而以特定方式改变植物的性状产生了浓厚的兴趣。使用转化插入物种基因组中的任何DNA分子,无论是来自不同物种还是来自相同物种,在本文中统称为“转基因”。“转化”的过程是将DNA插入基因组中。已经开发了用于生产转基因植物的几种方法,并且在特定实施方案中,本发明还涉及所要求保护的油菜品系NS-B50027-4的转化版本。
已开发了用于植物转化的许多方法,包括生物和物理的植物转化方案。此外,用于植物细胞或组织转化和植物再生的表达载体和体外培养方法是可获得的。参见例如Miki等人,Procedures for introducing foreign DNA into plants,METH.PLANT MOLEC.BIOL.&BIOTECHNOL.中,63页(Glick&Thompson编辑,CRC Press,Boca Raton,1993);Gruber等人,Vectors for plant transformation,同上,R 89页;Genetic transformation for theimprovement of Canola,PROC.WORLD CONF.BIOTECHNOL.FATS&OILS INDUS.43-46页(Am.Oil.Chem.Soc.,Champaign,IL,1988)。
最普遍的植物转化的类型涉及表达载体的构建。这样的载体包含含有在调控区(例如启动子)的控制下的编码区或者与调控区(例如启动子)可操作地连接的编码区的DNA分子。载体可含有一种或更多种基因和一种或更多种调控元件。至少一个编码区和它们各自的调控元件可以在载体内以相反的方向布置,提供二元载体。理论上,将对基因沉默敏感的基因以二元方式布置可以使基因沉默最小化。
例如,初始转化盒,pJP3416_GA7-modB包括能够促进油菜种子中ω-3脂肪酸积累的7个基因,以及一个可选择标记基因,以便于在体外选择推定的转基因植物。参见WO2013/185184;美国专利公布第2015/0374654号;美国专利第8,816,111号和第8,946,460号;Petrie等人,6Plant Meth.8(2010)。
表达的基因都是合成的——经密码子优化并合成的——因此在任何自然生物体中都未发现转基因DNA分子。描述了用作密码子优化的模板的原始序列。参见Petrie等人,12Metab.Eng’g 233(2010a);Petrie等人,11Plant Methods 6(2010b);Petrie等人,21Transgenic Res.139(2012)。
如本领域周知的,功能基因启动子是对基因转录重要的DNA区域,但不编码功能性产物诸如肽。例如,用于组成型表达的共同启动子来源于花椰菜花叶病毒(CauliflowerMosaic Virus)。Kay等人,236Science 1299(1987);Coutu等人,16Transgenic Res.771(2007)。包括多腺苷酸化信号的终止子区对于产生完整且稳定的mRNA分子是必需的。例如,根癌农杆菌(A.tumefaciens)胭脂碱合酶(NOS)终止子提供了有用的终止子。Bevan,12Nucl.Acid Res.8711(1984);Rogers等人,在BIOTECHNOL.PLANT SCI.中219页(Acad.Press,Inc.,New York,NY,1985);Sanders等人,15Nucl.Acids Res.1543(1987)。组合使用一系列调控序列以驱动和终止各种表达盒的转录。先前已经描述了GA7-modB中使用的种子特异性启动子:拟南芥(A.thaliana)FAE1(Rossack等人,46Plant Molec.Biol.717(2001));亚麻(L.usitatissimum)Cnl1和Cnl2(Chaudhary等人,WO 2001/016340);和截短的欧洲油菜油菜籽蛋白启动子(Stalberg等人,23Plant Molec.Biol.671(1993))。还参见美国专利第8,816,111号。
用于将LC-PUFA途径引入油菜中的包含开放阅读框5'和3'调控区和转基因表达盒的其他非编码区的转基因的更详细的描述在表1中示出。
Figure BDA0003648514750000471
Figure BDA0003648514750000481
因此,为了确定生物样品是否包含如存在于NS-B50027-4中的LC-PUFA途径的至少一部分,可以使用引物和探针来检测转基因。对于检测转基因有用的特定引物在表2中示出,其中每种引物具有62的退火温度,并且大小(bp)是指PCR产物中碱基对的数目。
Figure BDA0003648514750000482
从欧洲油菜(变种AV Jade)种系培养的初始转化体在脂肪酸产生水平,特别是在EPA和DHA水平上表现出很大变化。对于第二代和第三代,选择主要基于转基因种子的DHA和EPA含量。在一些情况中,特别是T2代或T3代,分离模式(通过将来自一株植物的二十至四十个单独的种子生长成二十至四十个后代,并然后测量那些后代的单独的种子的DHA和EPA含量来确定)也显示出分散的结果,表示发生了复合的或多拷贝的插入。因此丢弃了许多初始T2或T3代植物。最初,得出转基因插入片段的多个拷贝将产生不稳定的转化体,并且还表现出在纯合基因型中所看到的经典基因沉默的结论。因此,如果转化植物的PCR分析表明拷贝数>1,则经常丢弃那些转化体。
出人意料的是,发现优良种事件NS-B50027-4含有多拷贝事件:16个基因插入,包括以二元(倒置)左边界到左边界方式布置(类似于大型回文结构)的两个八基因-T-DNA边界的盒;和单独的、较小的四基因盒;并且转基因插入片段的这种组合在近交品系NS-B50027-4的DHA产生中协同地作用。更具体地,杂交、回交和自交的组合将16个基因的插入片段分离到染色体A05(也称为N05),且将四基因插入片段分离到染色体A02(也称为N02)。通过培育每个分离子(segregant)以获得每个事件的纯的纯合品系来确定每个转基因染色体的贡献。例如,在一个实验中,包含16个基因插入片段的分离子产生约4%DHA;并且包含四基因插入片段的分离子不产生DHA;但是当分离子被培育以组合转基因染色体A02基因座和转基因染色体A05基因座时,两种转基因插入片段的组合提供在其种子中产生至少约7%DHA至至少约14%DHA(包括端点)的植物。这个结果出人意料。如所述的,尽管优良种事件NS-B50027-4具有不寻常的基因组成,但品系已证明在脂肪酸生产方面稳定且一致。
关于位于A02上的较小的四基因插入片段,该插入片段取代了未知功能的基因(HPP基因)的3'UTR区的约15bp。部分插入片段及其侧翼欧洲油菜序列在本文中被充分表征。四基因插入片段包括Δ6-去饱和酶、Δ5-延长酶、Δ5-去饱和酶和Δ15/ω3-去饱和酶转基因;但不包括Δ4-去饱和酶、Δ12-去饱和酶、Δ6-延长酶基因,也不包括遗传选择标记PAT。因为在植物种子细胞中产生DHA需要Δ4-去饱和酶,所以出乎意料并且令人惊讶的是,四基因插入片段协同地贡献于转基因品系NS-B50027-4中DHA的产生。A02上的四基因插入片段及其侧翼欧洲油菜区域在图5中示出(SEQ ID NO:40)。特别地,SEQ ID NO:40的核苷酸1至2089是小插入片段的插入位点的5'(上游)侧翼区;SEQ ID NO:40的核苷酸2090至14201提供了来自转基因盒的异源核酸;SEQ ID NO:40的核苷酸14202至15006是插入位点的808bp 3'(下游)区。SEQ ID NO:40的核苷酸1至2089和14202至15006对于欧洲油菜染色体A02是天然的。比较天然欧洲油菜序列和插入位点的遗传分析显示出以下插入缺失:转基因插入片段取代了原本位于欧洲油菜栽培种Darmor参考(2n=AACC)的chrUn_random的118589927-118589941位以及芸薹栽培种Chiifu(2n=AA)的参考基因组的染色体A02的18569316-18569330位的15-bp片段(GTAGCACGACAAGTT;SEQ ID NO:38)。参见Chalhoub等人,345Sci.950(2014);NCBI Ref.Seq.NC_024796.1;Wang等人,43Nat.Genet.1035(2011);NCBI Ref.Seq.XM_009130638。
已证实16个基因的插入片段位于编码Pto-相互作用蛋白(PTI)的芸薹属基因中,Pto-相互作用蛋白(PTI)是原本参与超敏应答介导的信号传导的丝氨酸-苏氨酸激酶。PTI基因位于参考基因组欧洲油菜(栽培种Darmor)的染色体A05的17267746-17270700位。这个较大的插入片段伴有插入缺失,其取代了PTI蛋白的第二个外显子中的DNA的20-bp链段(stretch)(CACGGTGGAGGTCACCATGT;SEQ ID NO:39);并且从而破坏了PTI的表达。该20-bp缺失位于参考基因组的染色体A05的17269790-17269809。A05上的16个基因插入片段及其侧翼欧洲油菜区的DNA序列在图6中示出(SEQ ID NO:41)。特别地,SEQ ID NO:41的核苷酸1至1159是大插入片段的插入位点的5'(上游)侧翼区;SEQ ID NO:41的核苷酸47774至49789是插入位点的3'(下游)侧翼区。SEQ ID NO:41的核苷酸1至1159和SEQ ID NO:41的47774至49789对于欧洲油菜染色体A05是天然的。
因此,另一个实施方案提供了包含人工二元基因座的DNA分子,所述基因座按顺序包含以下核苷酸序列(箭头指示关于参考的5'至3'DNA序列的转录方向):
(a)SEQ ID NO:40的从核苷酸2747至核苷酸6250的核苷酸序列(Micpu-d6D←包括PRO、前导序列、TER);
(b)SEQ ID NO:40的从核苷酸6257至核苷酸8414的核苷酸序列(→Pyrco-d5E,包括PRO、前导序列、TER);
(c)SEQ ID NO:40的从核苷酸8415至核苷酸10374的核苷酸序列(→Pavsa-d5D,包括PRO、前导序列、TER);
(d)SEQ ID NO:40的从核苷酸10375至核苷酸11544的核苷酸序列(→MAR);和
(e)SEQ ID NO:40的从核苷酸11545至核苷酸14049的核苷酸序列(Picpa-w3/d15D←,包括PRO、前导序列、TER);
(f)与核苷酸序列(a)至(e)具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子;或
(g)其互补序列。
相关实施方案提供了包含该人工二元基因座的植物细胞、植物材料或植物种子。
另一个实施方案提供了包含人工二元基因座的DNA分子,所述基因座分子依次包括以下核苷酸序列:
(a)SEQ ID NO:41的从核苷酸1268至核苷酸5317的核苷酸序列(Cn12 PRO通过前导序列通过Micpu-d6D的编码区←通过TER);
(b)SEQ ID NO:41的从核苷酸5324至核苷酸7481的核苷酸序列(PRO通过→Pyrco-d5E通过TER);
(c)SEQ ID NO:41的从核苷酸7482至核苷酸9443的核苷酸序列(PRO通过前导序列和→Pavsa-d5D通过TER);
(d)SEQ ID NO:41的从核苷酸9444至核苷酸10611的核苷酸序列(→MAR);
(e)SEQ ID NO:41的从核苷酸10612至核苷酸13116的核苷酸序列(PRO通过前导序列和Picpa-w3/d15D←通过TER);
(f)SEQ ID NO:41的从核苷酸13117至核苷酸17000的核苷酸序列(PRO通过→Pavsa d4D通过TER);
(g)SEQ ID NO:41的从核苷酸17001至核苷酸19606的核苷酸序列(PRO通过→Lack-d12D通过TER);
(h)SEQ ID NO:41的从核苷酸19607至核苷酸29773的核苷酸序列(→MAR);
(i)SEQ ID NO:41的从核苷酸20783至核苷酸22987的核苷酸序列,(PRO通过→Pyrco-d6E通过TER);
(j)SEQ ID NO:41的从核苷酸23011至24370的核苷酸序列(PRO通过→PAT通过TER);
(k)SEQ ID NO:41的从核苷酸42561至核苷酸25920的核苷酸序列(PRO通过PAT←通过TER);
(1)SEQ ID NO:41的从核苷酸25943至核苷酸29324的核苷酸序列(PRO通过Pyrco-d6E←通过TER);
(m)SEQ ID NO:41的从核苷酸28157至核苷酸29324的核苷酸序列(MAR←);
(n)SEQ ID NO:41的从核苷酸29324至核苷酸31830的核苷酸序列(PRO通过Lack-d12D←通过TER);
(p)SEQ ID NO:41的从核苷酸31831至核苷酸35816的核苷酸序列(PRO通过Pavsad4D←通过TER);
(q)SEQ ID NO:41的从核苷酸35817至核苷酸38319的核苷酸序列(PRO通过前导序列和→Picpa-w3/d15D通过TER);
(r)SEQ ID NO:41的从核苷酸38320至核苷酸39488的核苷酸序列(MAR←);
(s)SEQ ID NO:41的从核苷酸39489至核苷酸41449的核苷酸序列(PRO通过Pavsa-d5D←通过TER);
(t)SEQ ID NO:41的从核苷酸41450至核苷酸43607的核苷酸序列(PRO通过Pyrco-d5E←通过TER);
(u)SEQ ID NO:41的从核苷酸43614至核苷酸47662的核苷酸序列(PRO→Micpu-d6D通过TER);
(v)与核苷酸序列(a)至(u)、(a)至(j)、(k)到(u)具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子;或
(w)其互补序列。
相关实施方案提供了包含该人工二元基因座的植物细胞、材料或种子。
另一个实施方案提供了包含人工二元基因座的DNA分子,所述基因座依次包括以下核苷酸序列:
(a)SEQ ID NO:40的从核苷酸2747至核苷酸4141的核苷酸序列(Micpu-d6D←);
(b)SEQ ID NO:40的从核苷酸7259至核苷酸8065的核苷酸序列的互补序列的核苷酸序列(→Pyrco-d5E);
(c)SEQ ID NO:40的从核苷酸8841至核苷酸10121的核苷酸序列(→Pavsa-d5D);
(d)SEQ ID NO:40的从核苷酸12281至核苷酸13531的核苷酸序列(Picpa-w3/d15D←);
(e)与核苷酸序列(a)至(d)具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子;或
(f)其互补序列;
其中人工基因座包括调控区(例如启动子、前导序列、终止子),以提供(a)至(d)或(e)或(f)的表达。相关实施方案提供了包含该人工二元基因座的植物细胞、植物材料或植物种子。
另一个实施方案提供了包含人工二元基因座的DNA分子,所述基因座依次包括以下核苷酸序列:
(a)SEQ ID NO:41的从核苷酸1820至核苷酸3208的核苷酸序列(Micpu-d6D←);
(b)SEQ ID NO:41的从核苷酸6326至核苷酸7126的核苷酸序列(→Pyrco-d5E);
(c)SEQ ID NO:41的从核苷酸7908至核苷酸9192的核苷酸序列(→Pavsa-d5D);
(d)SEQ ID NO:41的从核苷酸11352至核苷酸12596的核苷酸序列(Picpa-w3/d15D←);
(e)SEQ ID NO:41的从核苷酸15216至核苷酸16556的核苷酸序列(→Pavsa d4D);
(f)SEQ ID NO:41的从核苷酸17619至核苷酸18866的核苷酸序列(→Lack-d12D);
(g)SEQ ID NO:41的从核苷酸21895至核苷酸22647的核苷酸序列(→Pyrco-d6E);
(h)SEQ ID NO:41的从核苷酸25943至核苷酸26283的核苷酸序列(Pyrco-d6E←);
(i)SEQ ID NO:41的从核苷酸30066至核苷酸31313的核苷酸序列(Lack-d12D←);
(j)SEQ ID NO:41的从核苷酸31831至核苷酸35816的核苷酸序列(Pavsa-d4D←);
(k)SEQ ID NO:41的从核苷酸36335至核苷酸38319的核苷酸序列(→Picpa-w3/d15D);
(l)SEQ ID NO:41的从核苷酸39749至核苷酸41023的核苷酸序列(Pavsa-d5D←);
(m)SEQ ID NO:41的从核苷酸41805至核苷酸42605的核苷酸序列(Pyrco-d5E←);
(n)SEQ ID NO:41的从核苷酸45724至核苷酸47111的核苷酸序列(→Micpu-d6D);
(o)与核苷酸序列(a)至(u)、(a)至(j)、(k)至(u)具有至少80%、95%、97%、98%、99%或99.5%序列同一性的分子,或
(p)其互补序列;
其中人工基因座包括调控区(例如启动子、前导序列、终止子),以提供(a)至(n)或(o)或(p)的表达。相关实施方案提供了包含该人工二元基因座的植物细胞、植物材料或植物种子。
使用诸如本文描述的转化技术被工程化到特定的油菜植物中的遗传性状可以使用植物育种领域中周知的传统育种技术移入另一种油菜或芸薹属品系中。例如,具有优良种事件NS-B50027-4的植物可以例如从保藏在ATCC的种子获得。这样的植物可以进一步繁殖和/或按照常规育种方案使用,以将优良种事件NS-B50027-4引入到相同植物物种的其他栽培种中。保藏的种子属于物种欧洲油菜。然而,将位于A基因组或C基因组上的等位基因或转基因从欧洲油菜引入到芥菜的方法是本领域周知的并且包括重复的回交。回交方法可用于将转基因从转化的油菜植物转移到优良种近交品系,并且得到的子代包括转基因。此外,如果将近交品系用于转化,那么转基因植物可以与不同的品系杂交以产生转基因杂交体油菜植物。如本文使用的,“杂交”可以指简单的X与Y杂交,或指回交的过程,根据上下文而定。使用转化可以进一步将各种遗传元件引入植物基因组中。这些元件包括但不限于基因;编码序列;可诱导的启动子、组成型的启动子和组织特异性启动子;增强序列;以及信号序列和靶向序列。
近交油菜品系NS-B50027-4
如本文描述的,油菜品系NS-B50027-4是一种稳定且均一的育种品系。它是在非常注重植物类型的均一性的情况下培育出来的,并且品系已经随着对一致性的观察而增加。NS-B50027-4特别通过其种子生产LC-PUFA,特别是LC-ω3脂肪酸,更特别是DHA来区分。在对品系NS-B50027-4提交专利时,油菜品系NS-B50027-4不是任何其他商业化油菜栽培种的亲本。
近交转基因油菜品系NS-B50027-4具有以下形态和生理特征(主要基于2015年在澳大利亚八个不同地点收集的数据和平均值):
Figure BDA0003648514750000551
Figure BDA0003648514750000561
另一个方面提供了生产NS-B50027-4来源的欧洲油菜植物或其部分诸如种子的方法,包括和上述欧洲油菜植物或其部分杂交,包括获得上述芸薹属植物和在芸薹属植物生长条件下使该植物生长。另一个方面提供了使欧洲油菜品系NS-B50027-4(所述品系的代表性种子已经以ATCC登陆号PTA-123186保藏)、NS-B50027-4的亚系、NS-B50027-4或亚系的子代、或通过将NS-B50027-4与第二种油菜或芸薹属植物杂交而产生的植物生长的方法,所述方法包括:获得上述芸薹属种子并使该植物在芸薹属植物生长条件下生长。另一个方面提供了生产NS-B50027-4来源的欧洲油菜植物或其部分诸如种子的方法,包括使欧洲油菜植物或其部分杂交。
LC-ω3脂肪酸
使用根据本发明实施方案的油菜品系NS-B50027-4植物,LC-ω3脂肪酸可以从NS-B50027-4油菜种子中以商业化的量生产。因此,转化植物的选择和繁殖技术产生了具有NS-B50027-4的有利性状的多种(a plurality of)植物,这些植物以常规方式收获并且脂肪酸从感兴趣的组织诸如种子中提取。
如上所述,“脂肪酸含量”或“脂肪酸组成”通常是指成熟、完整、部分干燥的种子(通常含有约6%或7%的水分)的内源形成的油脂中存在的各种脂肪酸的重量百分比,所述重量百分比以面积归一化的特定脂肪酸的百分比;或相对于已知标准品;或作为每克种子的脂肪酸重量比(例如,mg DHA/g种子)计算。
通常工业实践以面积百分比(面积归一化),而不是绝对量报告脂肪酸组成。例如,色谱法通常以峰生成数据,每个峰下的面积被积分,并以色谱图中所有脂肪酸峰下总面积的百分比表示。面积百分比易于计算以及与业内也报告面积百分比的其他人报告的结果进行比较。面积百分比不是绝对的,但提供了可接受的近似值。例如,通过包括已知浓度的参考标准品和内标,可以计算绝对mg/kg结果。校正因子也可用于计算脂肪酸的质量
例如,在确定脂肪酸含量时,可以将种子压碎、提取油三酰基甘油酯(TAG),然后用甲醇和甲醇钠皂化和甲基化,或者通过与1.25%在甲醇中的3-(三氟甲基)苯基-三甲基氢氧化铵(Meth Prep IITM,Fischer Scientific Cat#AT18007)反应,形成脂肪酸甲酯。得到的脂肪酸甲酯(FAME)可以使用基于不饱和度和脂肪酸链长度分离FAME的毛细管柱通过气液色谱法(GLC)分析。FAME还可以通过例如GC、LC-MS、GC-MS、NMR或近红外反射光谱法分析。脂肪酸组成也可以从整个种子中确定,例如通过破碎种皮并使破碎的种子经受直接甲基化。总脂质可以通过本领域已知的技术分离以纯化级分,诸如TAG级分。例如,薄层色谱法(TLC)可以在分析规模上进行,以将TAG与其它脂质级分诸如DAG、酰基-CoA或磷脂分离,以确定脂肪酸组成,特别是TAG。如本领域技术人员已知的,可以使用许多其他分析技术。参见例如Tinoco等人,3Anal.Biochem.514(1962);CANOLA:CHEMISTRY,PRODUCTION,PROCESSING&UTILIZATION(Daun等人编辑,AOCS Press,Urbana,IL,2011)(Daun等人,2011);US2015/0166928;US 20160002566。
在又一实施方案中,提取的植物脂质可以被处理以增加作为总脂肪酸含量的百分比的DHA的水平。例如,处理包括水解酯化的脂肪酸以产生游离脂肪酸,或酯交换。例如,可以处理菜子油以将油中的脂肪酸转化为烷基酯诸如甲基酯或乙基酯,然后将烷基酯纯化或分馏以针对DHA富集脂质或油。在实施方案中,这样的处理后的脂质的脂肪酸组成包含至少40%、至少50%、至少60%、至少70%、至少80%或至少90%DHA。
本发明实施方案还包括来自品系NS-B5002-4的这些新型欧洲油菜品系的子代和后代。子代或后代可以通过本领域技术人员已知的育种或组织培养方法开发。例如,子代或后代可以包含在这些品系中开发的油菜脂肪酸谱。因此,后代或子代可以具有来自所开发的品系的任何数量的基因。后代或子代仅包括提供本文提供的油菜脂肪酸表型的那些基因,或另外的基因。这可以通过本领域技术人员已知的分子分析方法来确定。
一个方面提供了用于开发具有与NS-B50027-4的表型相同的表型的欧洲油菜种子的方法。例如,NS-B50027-4种子的DHA脂肪酸含量包含至少约7%、至少约8%、至少约8%、至少约10%DHA、至少约11%DHA、至少约12%、至少约13%、至少约14%、至少约15%或更多DHA(%脂肪酸)。例如,NS-B50027-4种子的LC-PUFA脂肪酸含量包含至少约10%LC-PUFA、至少约11%、至少约12%、至少约13%、至少约14%、至少约15%、至少约16%、至少约17%、至少约18%或更多的LC-PUFA(作为%脂肪酸的EPA、DPA、DHA的总和)。
另一个方面提供了由本文描述的植物产生的压碎的欧洲油菜种子的均一的集合物(assemblage),其中压碎的欧洲油菜种子具有以重量计总脂肪酸的至少约30%、至少约35%、诸如约36%至约40%(包括端点)(%种子重量)。在特定的实施方案中,例如,在压碎的欧洲油菜种子的均一的集合物中脂肪酸含量包含至少约7%的DHA、至少约8%的DHA、至少约9%的DHA、至少约10%的DHA、至少约11%的DHA、至少约12%的DHA、至少约13%的DHA、至少约14%的DHA、至少约15%的DHA、或更多的DHA(%脂肪酸)。在特定的实施方案中,例如,压碎的欧洲油菜种子的均一的集合物的脂肪酸含量包含至少约8%的LC-PUFA、至少约9%的LC-PUFA、至少约10%的LC-PUFA、至少约11%的LC-PUFA、至少约12%的LC-PUFA、至少约13%、至少约14%的LC-PUFA、至少约15%的LC-PUFA、至少约16%、至少约17%、至少约18%或更多的LC-PUFA(作为%脂肪酸的EPA、DPA、DHA的总和)。还提供了来自这种压碎的种子的油和粗粉。
还提供了压碎的品系NS-B50027-4种子的均一的集合物,或来自NS-B50027-4的子代或后代的压碎的欧洲油菜种子的均一的集合物,其中压碎的种子具有至少约7%的DHA、至少约8%的DHA、至少约9%的DHA、至少约10%的DHA、至少约11%的DHA、至少约12%的DHA、至少约13%的DHA、至少约14%的DHA、至少约15%或更多的DHA(%脂肪酸)的DHA含量。例如,压碎的欧洲油菜NS-B50027-4种子的均一的集合物,或来自NS-B50027-4的子代或后代的压碎的欧洲油菜种子的均一的集合物,其中压碎的种子的均一的集合物包含至少约8%的LC-PUFA、至少约9%的LC-PUFA、至少约10%的LC-PUFA、至少约11%的LC-PUFA、至少约12%的LC-PUFA、至少约13%、至少约14%的LC-PUFA、至少约15%的LC-PUFA、至少约16%、至少约17%、至少约18%或更多的LC-PUFA(作为%脂肪酸的EPA、DPA、DHA的总和)。还提供了来自这种压碎的种子的油和粗粉。
本文描述的另一方面提供了一种从欧洲油菜品系NS-B50027-4(所述品系的代表性种子已经以ATCC登录号PTA-123186保藏)、NS-B50027-4的亚系、NS-B50027-4或亚系的子代、或通过将NS-B50027-4与第二种油菜或芸薹属植物杂交产生的植物产生油或粗粉的方法,所述方法包括:使上述作物在芸薹属植物生长条件下生长;收获种子;和提取油或粗粉。
本文描述的另一个方面提供了一种从欧洲油菜品系NS-B50027-4(所述品系的代表性种子已经以ATCC登录号PTA-123186保藏)、NS-B50027-4的亚系、NS-B50027-4或亚系的子代、或通过将NS-B50027-4与第二种芸薹属植物杂交产生的植物产生油的方法,所述方法包括:压碎品系NS-B50027-4(所述品系的代表性种子已经以ATCC登录号PTA-123186保藏)、NS-B50027-4的亚系、NS-B50027-4或亚系的子代、或通过将NS-B50027-4与第二种油菜或芸薹属植物杂交产生的植物的种子;和从所述种子提取油。
另一个方面提供了来自NS-B50027-4种子或NS-B50027-4来源的子代种子的粗粉和蛋白以及油。从植物生物质提取蛋白可以通过已知方法完成。参见例如Heney&Orr,114Anal.Biochem.92(1981)。来自NS-B50027-4的粗粉可以证明是特别有益的,因为它含有至少一些DHA和其他ω3脂肪酸。类似地,来自NS-B50027-4的蛋白级分包含至少一些有益DHA和其他ω3脂肪酸。
尽管比声称通过高油酸含量给予DHA和其他LC-PUFA稳定性的油更低的油酸含量,但来自NS-B50027-4的种子的LC-PUFAω3脂肪酸油表现出令人惊讶的稳定性。更具体地,LC-PUFAω3脂肪酸众所周知的不稳定并且特别易于氧化。在本领域中理解,为了延长LC-PUFA和含有LC-PUFA的食品的货架期,需要封装、与其他油特别是高油酸油混合或添加抗氧化剂。然而,尽管缺乏这样的处理,一些证据表明从压碎的NS-B50027-4种子提取的粗制油在室温会保持新鲜数月。
本发明实施方案的另一个方面提供了用于在人类和非人类动物的营养补充剂和食物中使用的DHA和LC-PUFA的来源。特别是,来自NS-B50027-4种子的油提供了用于在水产养殖中使用的DHA和LC-PUFA的可持续来源。由于对鱼类的高全球需求以及由此造成的海洋过度捕捞,海水和淡水养殖的重要性日益增加。Betancor等人,4Sci.Rep.8104(2014)。例如,在过去的20年中,鲑科鱼类(salmonid)的养殖和消耗急剧增加。然而,野生鱼类的饮食与水产养殖中的同类物种的饮食非常不同。事实上,水产养殖仍然高度依赖海洋捕捞渔业来提供关键的膳食营养,诸如鱼粉和鱼油。实际上,鱼粉和鱼油是水产养殖中ω3-LC PUFA的主要来源。由于海洋鱼油是鱼类养殖工业强劲增长(每年5%至10%)的限制因素,水产养殖饮食包含很多替代性的基于植物的成分诸如豆类种子、油籽饼、叶粉和增加比例的植物油。用传统上低LC-PUFA的植物油代替鱼油意味着鱼类饮食中可获得的LC-PUFA较少,即使一些油类诸如亚麻籽油包含一定量的可以在鱼中(虽然仅以有限程度)转化为的LC代谢物的ALA。一般来说,目前鱼饲料中的植物油可能对鱼中的FA分布具有有害影响,并且它们可以改变ω3/ω6比率。
例如,典型的植物油包含高含量的ω6PUFA,主要是亚油酸(C18:2ω6;LA)。来自亲本品系AV Jade的油不具有DHA,因此没有DHA:LA比率;来自NS-B50027-4的油具有1.048的DHA:LA比率;相比之下,具有0.908的DHA:LA比率的来自养殖鲑鱼的油。Strobel等人,11Lipids Health Dis.144(2012)。有趣的是,来自NS-B50027-4的ω3FA的比率在棕榈酸(一种与心血管疾病和血脂异常相关的饱和脂肪酸)方面更有益。Diet,Nutrition&Prevention of Chronic Dis.,WHO Tech.Rep.Series 916,Report of a Joint WHO/FAOExpert Consultation,88(World Health Organization,Geneva,2003)。来自亲本品系AVJade的油不具有DHA,并且因此没有DHA:棕榈酸比率;来自NS-B50027-4的油具有2.122的DHA:棕榈酸比率;相比之下,来自养殖鲑鱼的油具有0.591的DHA:棕榈酸比率为;并且来自野生鲑鱼的油具有1.018的DHA:棕榈酸比率。Strobel等人,2012。包括LC-PUFA的水产养殖饲料的制备原本在本领域中是已知的。参见Betancor等人,2014;Petrie等人,9PLOS ONE1,2014;Tocher,Aquaculture(2015)。因此,本发明实施方案的范围包括使用来自NS-B50027-4的油作为水产养殖饲料和包含从NS-B50027-4及其子代获得的油的水产养殖饲料的ω3脂肪酸的来源。
NS-B50027-4及其子代的鉴定
优良种遗传事件可以通过重组DNA分子在植物基因组中掺入的位置和位点的构型来表征。植物基因组中被插入重组DNA盒的位点也被称为“插入位点”或“靶位点”。“侧翼区”或“侧翼序列”是位于紧邻转基因盒的上游并与转基因盒连续的或紧邻转基因盒的下游并与转基因盒连续的植物基因组的DNA区,例如,至少20个碱基对、至少50个碱基对、或至多5,000个碱基对。导致外源DNA随机整合的转化产生具有不同侧翼区的转化子,该不同侧翼区对于每个转化子是特征性的和独特的(优良种事件)。
另一方面提供了产生NS-B50027-4来源的欧洲油菜植物或其部分的方法,所述方法包括将上述欧洲油菜植物或其部分与第二种植物杂交以产生第一代子代种子;使所述第一代子代种子生长以生产F1代植物;任选地,重复杂交和生长的步骤以获得所述种子的连续杂交代,以获得育种品系NS-B50027-4来源的欧洲油菜种子、植物或其部分。还提供了通过此方法产生的植物或植物部分(包括任何杂交体)。在实施方案中,已被工程化到特定油菜植物的基因组的遗传性状可以使用植物育种领域周知的传统育种技术转移到另一个栽培种的基因组中。例如,回交方法可以用于将转基因从转化的油菜栽培种转移到已经开发的油菜栽培种中,并且然后所得的回交转化植物将包含转基因。
因此,本发明实施方案的另一方面提供了用于检测NS-B50027-4的组合物、方法和试剂盒。能够检测特定事件的存在以确定有性杂交的子代是否包含感兴趣的转基因将是有利的。另外,用于检测特定事件的方法将更有助于遵守例如需要对来源于重组作物植物的食品进行上市前审批和标记的法规。可以通过任何周知的核酸检测方法检测转基因的存在,诸如聚合酶链式反应(PCR)或使用核酸探针的DNA杂交。这些检测方法通常关注常用的遗传元件诸如例如启动子、终止子、标记基因等。因此,这样的方法可能无法用于区分不同的事件,特别是那些使用相同DNA构建体产生的那些,除非与插入的DNA相邻的染色体DNA的序列(“侧翼DNA”)是已知的。已经描述了事件特异性PCR测定。参见例如Windels等人,(Med.Fac.Landbouww,Univ.Gent 64/5b:459-462,1999)(通过使用跨插入片段和侧翼DNA之间的连接的引物组的PCR来鉴定大豆耐草甘膦事件,具体地,所述引物组包括来自插入片段的序列的一个引物和包括来自侧翼DNA的序列的第二个引物)。此外,NS-B50027-4的16基因插入片段破坏了编码Pto-相互作用蛋白(PTI)的芸薹属基因的表达,Pto-相互作用蛋白(PTI)是参与位于染色体A05上的超敏应答介导的信号传导的丝氨酸-苏氨酸激酶。虽然没有观察到表型变化,但这为鉴定NS-B50027-4或NS-B50027-4来源的子代提供了另一种标记。
本文中的方法和试剂盒可用于鉴定生物样品中具体地包含NS-B50027-4中的转基因的植物材料、以及转基因油菜植物、植物材料和含有这样的事件的种子的存在。本文描述的优良种事件NS-B50027-4可以通过基因型来鉴定,基因型可以通过可以鉴定相同栽培种或相关栽培种的植物或者用于确定或验证谱系(pedigree)的遗传标记谱来表征。遗传标记谱可以通过技术诸如限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)、任意引物聚合酶链式反应(AP-PCR)、DNA扩增指纹(DAF)、序列特征扩增区域(SCAR)、扩增片段长度多态性(AFLP)、简单序列重复(SSR)(也称为微卫星)、和单核苷酸多态性(SNP)获得。
例如,本文描述的优良种事件NS-B50027-4可以通过从植物材料的样品生成遗传图谱(genetic map)来鉴定。遗传图谱可以通过常规RFLP、聚合酶链式反应(PCR)分析或鉴定编码外源蛋白的整合的DNA分子的大致染色体位置的SSR生成。参见Glick&Thompson,METHODS IN PLANT MOLEC.BIOL.&BIOTECHNOL.269(CRC Press,Boca Raton,FL,1993)。关于染色体位置的图谱信息对于受试转基因植物的专有保护是有用的。例如,可以将整合区域的图谱与可疑植物的类似图谱进行比较,以确定后者是否与受试植物具有共有的亲缘关系(parentage)。图谱比较可以涉及杂交、RFLP、PCR、SSR和测序,所有这些都是常规技术。
本发明实施方案的另一方面提供了用于确定油菜植物是否是近交品系NS-B50027-4或是否与近交品系NS-B50027-4有关、或者是否是包含品系NS-B50027-4的遗传优良种事件的至少一部分的油菜植物的试剂盒和方法。本文描述了用于鉴定生物样品中优良种事件NS-B50027-4的简单且明确的技术的组合物和方法。
例如,试剂盒可包括用于鉴定NS-B50027-4的一种或更多种遗传标记至少一组引物,诸如一组有义(正向)引物和反义(反向)引物。参见表2。引物的具体实施方案包括可用于进行KASP测定以检测NS-B50027-4遗传性状、特别适用于基因渗入研究和杂交体发育的试剂盒中的以下引物。参见实施例2。这些引物可以由包含如下序列的至少10个连续核酸的核酸分子组成:GAAGGTGACCAAGTTCATGCTCCAAGCACCGTAGTAAGAGAGCA(SEQ ID NO:1,Micopu-Δ6D);GCTAAGAAGTGGGGACTCAACTACAA(SEQ ID NO:2,Micopu-Δ6D);GAAGGTGACCAAGTTCATGCTGCTCTTGCTGGAACTCTTGG(SEQ ID NO:3,Pyrco-Δ5E);GGGTTAGCCACATTGTAGGTAACGTA(SEQ ID NO:4,Pyrco-Δ5E);GAAGGTGACCAAGTTCATGCTTAAGAGACACCCTGGTGGAAAGA(SEQ IDNO:5,Pavsa-Δ5D);TAGCATCAGTTCCAACTTGGTAAGCAAT(SEQ ID NO:6,Pavsa-Δ5D);GAAGGTGACCAAGTTCATGCTGAACACGTAAGCAGACCAAGCAG(SEQ ID NO:7,Picpa-ω3D);CCCTCTTCTCCCTAACGAATTCCTT(SEQ ID NO:8,Picpa-ω3D);GAAGGTGACCAAGTTCATGCTGAGGAACCTGTTGCTGCTGATGA(SEQ ID NO:9,Pavsa-Δ4D);GCGATCCTAGCACAAAGTTGAAGGTA(SEQ IDNO:10,Pavsa-Δ4D);GAAGGTGACCAAGTTCATGCTGGATGGATCGCTTACCTCTTCGT(SEQ ID NO:11,Lackl-Δ12D);CAGGGTAAGGTTGTCCTGTAACGTT(SEQ ID NO:12,Lackl-Δ12D);GAAGGTGACCAAGTTCATGCTCTATTGGATGGGGACTCAAGC(SEQ ID NO:13,Pyrco-Δ6E);GGGAGATCCTTAGTAGCAGAAGAGAT(SEQ ID NO:14,Pyrco-Δ6E);GAAGGTGACCAAGTTCATGCTCCTGAGAGGCGTCCTGTTGAAAT(SEQ ID NO:15,PAT);AACAGCAGCCATATCAGCAGCAGTA(SEQ ID NO:16,PAT);GAAGGTGACCAAGTTCATGCTTGTTCTTGGGTGGGTCTGTCCTTC(SEQ ID NO:17;A05插入片段连接1);GAAGGTCGGAGTCAACGGATTGTGTTCTTGGGTGGGTCTGTCCTTA(SEQ ID NO:18,A05插入片段连接1);ATCCACTAGCAGATTGTCGTTTCCC(SEQ ID NO:19,A05插入片段连接1);GTTGGCTAAGGTCACGGTGGAG(SEQ ID NO:20,A05插入片段连接1);GAAGGTGACCAAGTTCATGCTCCGCCTTCAGTTTAAACTATCAGTGTT(SEQ ID NO:21,A05插入片段连接1);GAAGGTCGGAGTCAACGGATTGGTCACGGTGGAGGTCACCA(SEQ ID NO:22,A05插入片段连接1),GGTGTGTTCTTGGGTGGGTCTG(SEQ ID NO:23,A05插入片段连接1);GAAGGTGACCAAGTTCATGCTACTTTTTTTTCAACTGTTGGCTAAGGTA(SEQ ID NO:24,A05插入片段连接2);GAAGGTCGGAGTCAACGGATTACTTTTTTTTCAACTGTTGGCTAAGGTC(SEQ ID NO:25,A05插入片段连接2),GTGTGTTCTTGGGTGGGTCTG(SEQ ID NO:26,A05插入片段连接2);GTCGTTTCCCGCCTTCAGTTT(SEQ ID NO:27,A05插入片段连接2);GAAGGTGACCAAGTTCATGCTAAACTATCAGTGTTTGAACACCTCC(SEQ ID NO:28,A02插入片段连接1);GAAGGTCGGAGTCAACGGATTACAACTTGTCGTGCTACACACCT(SEQ ID NO:29,A02插入片段连接1);GGTTGTGTGAAAACGTGTGAGC(SEQ ID NO:30,A02插入片段连接1);GAAGGTGACCAAGTTCATGCTCTTTTAGCTAAATAAGAGGTTCTGTATACT(SEQ ID NO:31,A02插入片段连接2);GAAGGTCGGAGTCAACGGATTCTTTTAGCTAAATAAGAGGTTCTGTATACA(SEQ ID NO:32,A02插入片段连接2);GATTGTGATTCCGGGCAGT(SEQ ID NO:33,A02插入片段连接2);GTGTGAAAACGTGTGAGCAAT(SEQID NO:34,A02插入片段连接2);GAAGGTGACCAAGTTCATGCTTTGTGATTCCGGGCAGTAG(SEQ IDNO:35,A02插入片段连接2),GAAGGTCGGAGTCAACGGATTTGTGAGCAATTGTTGGAGGT(SEQ ID NO::36,A02插入片段连接2);TCTTATCAACATTAAGAACATAATCTTTTAG(SEQ ID NO:37,A02插入片段连接2);或其互补序列。
本发明还提供了用于鉴定优良种事件NS-B50027-4油菜植物的方法,所述方法包括:(a)形成包含含有油菜植物DNA的生物样品和能够扩增事件NS-B50027-4的特异性核酸分子的第一核酸引物和第二核酸引物的混合物;(b)使混合物在允许第一核酸引物和第二核酸引物扩增事件NS-B50027-4的特异性核酸分子的条件下反应;和(c)检测扩增的片段核酸分子的存在,其中油菜优良种事件NS-B50027-4特异性核酸分子的存在表明油菜植物是NS-B50027-4油菜植物。
另一个实施方案提供了用于检测生物样品中优良种事件NS-B50027-4核酸分子的方法,所述方法包括:(a)形成包含含有DNA的生物样品和能够与事件NS-B50027-4的特异性核酸分子杂交的核酸探针的混合物;(b)使混合物在允许探针与事件NS-B50027-4的特异性核酸分子杂交的条件下反应;和(c)检测杂交的核酸分子的存在,其中事件NS-B50027-4的特异性核酸分子的存在表明该样品包含事件NS-B50027-4核酸分子。
又另一个实施方案提供了用于检测生物样品中事件NS-B50027-4核酸分子的存在的方法,所述方法包括:(a)形成包含含有DNA的生物样品和能够退火至事件NS-B50027-4插入片段核酸分子的区域的第一引物以及能够退火到宿主细胞基因组中的侧翼核酸分子的第二引物的混合物;(b)使混合物在允许第一核酸引物和第二核酸引物产生包含事件NS-B50027-4插入片段核酸分子的片段的扩增的核酸分子的条件下反应;和(c)检测扩增的核酸分子的存在,其中事件NS-B50027-4插入片段核酸分子的片段的存在表明该样品含有事件NS-B50027-4插入DNA。
合适的测试应当检测任何主要的缺陷并建立优势水平或相对于当前栽培种的改进。除了表现出优异的性能外,必须要求与工业标准相容或创造新的市场的新的栽培种。新栽培种的引入将给种子生产者、种植者、加工者和消费者带来用于特殊广告和营销、改变的种子和商业化生产实践以及新产品利用的额外的成本。新的栽培种在发布之前的测试应考虑研究和开发成本,以及最终的栽培种的技术优势。对于种子繁殖的栽培种,容易且经济地产生种子必须是可行的。
例如,试剂盒可以包括对以下特异性的至少一组有义(正向)引物和反义(反向)引物:微藻细小微胞藻来源的的Δ6-去饱和酶、微藻Pyramimonas cordata来源的Δ5-延长酶、海洋微藻盐生巴夫藻来源的Δ5-去饱和酶、酵母巴斯德毕赤酵母来源的Δ15/ω3-去饱和酶、盐生巴夫藻来源的Δ4-去饱和酶、或酵母Lachancea kluyveri来源的Δ12-去饱和酶(参见例如表2);以及对插入片段和天然芸薹属染色体A02 DNA之间的5'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:40的从核苷酸2033至2132的连接,包含43bp的插入片段和57bp的芸薹属染色体A02 DNA的100bp区域,或对插入片段和天然芸薹属染色体A02DNA之间的3'连接特异性的至少一组引物,所述连接诸如SEQ ID NO:40的从核苷酸14156至14255的连接,包含46bp的插入片段和54bp的芸薹属染色体A02 DNA的100bp区域;对插入片段和天然芸薹属染色体A05 DNA之间的5'连接特异性的至少一组引物,所述连接诸如SEQID NO:41的从核苷酸1110至1209,的连接,包含50bp的插入片段和50bp的芸薹属染色体A05DNA的100bp区域,或对插入片段和天然芸薹属染色体A05 DNA之间的3’连接特异性的至少一组引物,所述连接诸如SEQ ID NO:41的从核苷酸47724至47823的连接,包含50bp的插入片段和50bp的芸薹属染色体A05 DNA的100bp区域。
对于使用DNA引物来产生诊断NS-B50027-4事件的扩增子的方法的扩增条件在本领域的普通技术范围内。另外,包括用于扩增内源性油菜基因的对照引物对作为反应条件的内标并且其产生约100-5000个核苷酸的扩增子。NS-B50027-4事件植物组织样品的分析应包括来自NS-B50027-4事件的阳性组织对照、来自不为NS-B50027-4事件的油菜植物的阴性对照、和不包含模板油菜DNA的阴性对照。另外的引物可以由DNA扩增方法领域的技术人员从SEQ ID NO:47、SEQ ID NO:48、SEQ ID NO:49和SEQ ID NO:50中示出的连接中选择,并且优化可能得到诊断NS-B50027-4的任何扩增子的扩增子产生条件。使用具有修饰的这些DNA引物序列在本文描述的实施方案的范围内。通过使用当在PCR方法中使用时产生诊断NS-B50027-4事件的扩增子的衍生自SEQ ID NO:47的至少一个引物序列、或衍生自SEQ IDNO:48的至少一个引物序列、或衍生自SEQ ID NO:49的至少一个引物序列、或衍生自SEQ IDNO:50的至少一个引物序列产生的扩增子可以在所描述的方法中使用,并且是本发明实施方案的一个方面。NS-B50027-4事件扩增子的产生可以通过使用热循环仪或通过本领域技术人员已知的方法和装置进行。
本发明还提供了用于鉴定优良种事件NS-B50027-4油菜植物的方法,所述方法包括:(a)形成包含含有油菜植物DNA的生物样品和能够扩增事件NS-B50027-4特异性核酸分子的第一核酸引物和第二核酸引物的混合物;(b)使混合物在允许第一核酸引物和第二核酸引物扩增事件NS-B50027-4特异性核酸分子的条件下反应;和(c)检测扩增的片段核酸分子的存在,其中油菜优良种事件NS-B50027-4特异性核酸分子的存在表明油菜植物是NS-B50027-4油菜植物。
另一个实施方案提供了用于检测生物样品中优良种事件NS-B50027-4核酸分子的方法,所述方法包括:(a)形成包含含有DNA的生物样品和能够与事件NS-B50027-4特异性核酸分子杂交的核酸探针的混合物;(b)使混合物在允许探针与事件NS-B50027-4特异性核酸分子杂交的条件下反应;和(c)检测杂交的核酸分子的存在,其中事件NS-B50027-4特异性核酸分子的存在表明该样品含有事件NS-B50027-4核酸分子。
又另一个实施方案提供了用于检测生物样品中事件NS-B50027-4核酸分子的存在的方法,所述方法包括:(a)形成包含含有DNA的生物样品和能够退火至事件NS-B50027-4插入片段核酸分子的第一引物以及能够退火到宿主细胞基因组侧翼核酸分子的第二引物;(b)使混合物在允许第一核酸引物和第二核酸引物产生包含事件NS-B50027-4插入片段核酸分子的片段的扩增的核酸分子的条件下反应;和(c)检测扩增的核酸分子的存在,其中事件NS-B50027-4插入片段核酸分子的片段的存在表明样品含有事件NS-B50027-4插入DNA。
子代
本文描述的品系NS-B50027-4也可用于育种其他品系。例如,源材料可以自花授粉(self-pollinated)、异型杂交、回交、用于产生双单倍体、用作遗传转化的源材料、经受遗传转化、进一步诱变、并用于对于本领域技术人员已知的其他形式的育种。使用源材料来育种其他品系的方法和结果也在这些实施方案的范围内。
随着允许分离和表征编码特定蛋白产物的基因的分子生物学技术的出现,植物生物学领域的科学家们对工程化植物基因组以包含和表达外源基因,或另外的版本的或修饰版本的天然基因或内源性基因(可能由不同启动子驱动),以便以特定方式改变植物的性状产生了浓厚的兴趣。使用转化或各种育种方法引入基因组的任何DNA序列,无论是来自不同物种还是来自相同物种,在本文中统称为“转基因”。在过去的十五到二十年中,已经开发了用于产生转基因植物的几种方法,并且本发明在具体实施方案中也涉及所要求保护的品系的转化版本。
核酸、寡核苷酸或多核苷酸是指线性或分支的、单链或双链的RNA或DNA分子,或其杂交体——包括RNA/DNA杂交体。这些术语还包括3'UTR和5'UTR,通常为基因编码区的5'端上游至少约1000个核苷酸的序列和基因编码区的3'端下游至少约200个核苷酸的序列。不太常见的碱基,诸如肌苷、5-甲基胞嘧啶、6-甲基腺嘌呤、次黄嘌呤及其他也可用于反义、dsRNA和核酶配对。例如,包含尿嘧啶和胞嘧啶的C-5丙炔类似物的多核苷酸已被示出以高亲和力结合RNA并且是基因表达的有效反义抑制剂。还可以进行其他修饰,诸如对磷酸二酯主链的修饰,或对RNA的核糖基团的2'-羟基的修饰。反义多核苷酸和核酶可完全由核糖核苷酸组成,或可以包含混合的核糖核苷酸和脱氧核糖核苷酸。本发明的多核苷酸可以通过任何手段产生,包括基因组制备、cDNA制备、体外合成、RT-PCR以及体外转录或体内转录。
植物转化包括构建将在植物细胞中起作用的表达载体。这样的载体包含含有在调控元件(例如启动子)的控制下的基因或可操作地连接于调控元件(例如启动子)的基因。表达载体可以包含一种或更多种这样的可操作连接的基因/调控元件组合。载体可以是质粒的形式,并且可以单独使用或与其它质粒组合使用,以提供使用本领域已知的将转基因掺入油菜植物(包括NS-B50027-4油菜植物)的遗传物质中的转化方法转化的油菜植物。
已经使用转化技术被工程化到特定油菜植物中的遗传性状可以使用植物育种领域周知的传统育种技术转移到另一个品系中。例如,携带优良种事件NS-B50027-4的植物可以从保藏在ATCC的种子获得。这样的植物可以进一步繁殖或在常规育种方案中使用,以将优良种事件NS-B50027-4引入到相同植物物种的其他栽培种中。保藏的种子属于物种欧洲油菜。然而,将位于A基因组或C基因组上的等位基因或转基因从欧洲油菜引入芥菜的方法是本领域周知的,并且包括重复回交。回交方法可用于将转基因从转化的油菜植物转移到优良种近交品系,并且所得的子代包含转基因。并且,如果将近交品系用于转化,那么转基因植物可以与不同的品系杂交以产生转基因杂合油菜植物。如本文中使用的,根据上下文,“杂交”可以指简单的X与Y杂交,或回交的过程。
各种遗传原件可以使用转化进一步引入植物基因组中。这些元件包括但不限于基因;编码序列;诱导型启动子、组成型启动子和组织特异性启动子;增强序列;以及信号序列和靶向序列。新的分子生物学技术的出现已经允许分离和表征具有特定功能诸如编码特定蛋白产物的遗传元件。植物生物学领域的科学家对工程化植物基因组以包含和表达外源基因元件,或另外版本的或修饰版本的天然基因或内源性基因,以便以特定方式改变植物的性状产生了浓厚的兴趣。使用转化插入到基因组中的任何DNA分子,无论是来自不同物种还是来自相同物种,在本文中统称为“转基因”。“转化”的过程是DNA插入到基因组中。已经开发了用于产生转基因植物的几种方法,并且本发明在具体实施方案中也涉及所要求保护的油菜品系NS-B50027-4的转化版本。
已经开发了用于植物转化的许多方法,包括生物和物理的植物转化方案。此外,表达载体和用于植物细胞或组织转化和植物再生的体外培养方法是可用的。参见,例如Miki等人,Procedures for introducing foreign DNA into plants,METH.PLANTMOLEC.BIOL.&BIOTECHNOL.中63页(Glick&Thompson编辑,CRC Press,Boca Raton,1993);Gruber等人,Vectors for plant transformation,同上.R 89页;Genetictransformation for the improvement of Canola,PROC.WORLD CONF.BIOTECHNOL.FATS&OILS INDUS.43-46页(Am.Oil.Chem.Soc.,Champaign,IL,1988)。
最普遍类型的植物转化涉及表达载体的构建。这样的载体包含含有在调控区(例如启动子)的控制下的编码区或者与调控区(例如启动子)可操作地连接的编码区的DNA分子。表达载体可含有一种或更多种基因和一种或更多种调控元件。至少一个编码区和它们各自的调控元件可以在载体内以相反的方向布置,提供二元载体。理论上,将对基因沉默敏感的基因以二元方式布置可以使基因沉默最小化。载体可以是质粒的形式,并且可以单独使用或与其它质粒组合使用,以使用本领域已知的转化方法将转基因掺入NS-B50027-4植物或NS-B50027-4来源的植物的遗传物质中,以提供转化的油菜植物。
例如,初始转化盒pJP3416_GA7-modB包括能够促进油菜种子中ω-3脂肪酸积累的7个基因以及促进体外指定转基因植物的选择的1个可选择标记基因。参见WO 2013185184;美国专利公布第2015/0374654号;Petrie等人,6Plant Meth.8(2010)。表达的基因都是合成的——密码子优化和合成的——因此在任何天然生物中都没有发现转基因DNA分子。已经描述了用作密码子优化的模板的原始序列。参见Petrie等人,12Metab.Eng’g233(2010a);Petrie等人,11Plant Methods 6(2010b);Petri等人,21Transgenic Res.139(2012)。
如本领域周知的,功能基因启动子是对于基因转录重要但不编码功能产物诸如肽的DNA区域。例如,用于组成型表达的常见启动子来源于花椰菜花叶病毒。Kay等人,236Sci.1299(1987);Coutu等人,16Transgenic Res.771(2007)。在发育控制下的启动子包括优先在某些组织例如种子、叶、根、纤维、木质部导管、管胞或厚壁组织中启动转录的启动子。特别相关的启动子是主要或仅在种子中起始转录的“种子优选的”启动子。“种子优选的”启动子包括“种子特异性”启动子(在种子发育期间是活跃的那些启动子,诸如种子贮藏蛋白的启动子),以及“种子萌发”启动子二者(在种子发芽期间活跃的那些启动子)。参见Thompson等人,10BioEssays 108(1989)。这样的种子优选的启动子包括但不限于Cim1(细胞分裂素诱导的信息);cZ19B1(玉米19kDa玉米醇溶蛋白);milps(肌醇-1-磷酸合酶)(参见WO 2000/11177和美国专利第6,225,529号)。对于双子叶作物,种子特异性启动子包括但不限于大豆β-菜豆蛋白、油菜籽蛋白、β-伴大豆球蛋白、大豆凝集素、cruciferin、conlinin等。先前已经描述了GA7-modB中使用的种子特异性启动子:拟南芥FAE1(Rossack等人,46Plant Molec.Biol.717(2001));亚麻Cnl1和Cnl2(Chaudhary等人,WO 2001016340);被截短的欧洲油菜油菜籽蛋白启动子(Stalberg等人,23Plant Molec.Biol.671(1993)。也参见WO 2013185184。
“诱导型”启动子是在环境控制下的启动子。可能影响诱导型启动子的环境条件的实例包括化学控制(在某些化学品存在下诱导)、厌氧条件或光的存在。组织特异性启动子、组织优选的(例如种子特异性的)启动子和诱导型启动子构成“非组成型”启动子类。参见Ward等人,22Plant Mol.Biol.361(1993);Meft等人,90PNAS 4567(1993)(铜-可诱导的);Gatz等人,243Mol.Gen.Genet.32(1994)(由除草剂安全剂诱导);Gatz等人,227Mol.Gen.Genet.229(1991)(四环素-可诱导的);Schena等人,88PNAS10421(1991)(糖皮质类固醇可诱导的)。也参见WO 2001016340以及其中讨论的启动子。
“组成型”启动子是在大多数环境条件下都活跃的启动子。示例性组成型启动子包括来自植物病毒的启动子,诸如来自花椰菜花叶病毒(CMV)的35S启动子(Odell等人,313Nature 810(1985))和来自以下基因的启动子:水稻肌动蛋白(McElroy等人,2PlantCell 163(1990));泛素(Christensen等人,12Plant Mol.Biol.619(1989);Christensen等人,18Plant Mol.Biol.6759(1992));pEMU(Last等人,81Theor.Appl.Genet.581(1991));MAS(Velten等人,3EMBO J.2723(1984))和玉米H3组蛋白(Lepetit等人,231Mol.Gen.Genet.276(1992);Atanassova等人,2Plant J.291(1992))。ALS启动子,欧洲油菜ALS3结构基因5'的XbaI/NcoI片段(或与所述XbaI/NcoI片段相似的核苷酸序列)提供了另一种组成型启动子。还参见WO1996/30530和其中讨论的启动子。CMV启动子也与有用的增强子区相关。参见WO 1996/30530和WO 2013185184以及其中讨论的启动子。
包括多腺苷酸化信号的终止子区是产生完整且稳定的mRNA分子所需的。例如,根癌农杆菌胭脂碱合酶终止子(NOS)终止子提供了有用的终止子。Bevan,12Nucl.AcidRes.8711(1984);Rogers等人,BIOTECHNOL.PLANT SCI.中219页(Acad.Press,Inc.,NewYork,NY,1985);Sanders等人,15Nucl.Acids Res.1543(1987)。一系列调控序列被组合使用以驱动和终止各种表达盒的转录。
转基因产生的蛋白向亚细胞区室诸如叶绿体、液泡、过氧化物酶体、乙醛酸酶体、细胞壁或线粒体的转运,或分泌到质外体中,通过将编码信号序列的核苷酸序列可操作地连接到编码感兴趣的蛋白的基因的5'或3'区的手段来完成。在蛋白合成和加工期间,结构基因的5'或3'末端的靶向序列可以确定所编码的蛋白最终被区室化的位置。
信号序列的存在指导多肽至细胞内细胞器或亚细胞区室或分泌至质外体。许多信号序列是本领域中已知的。参见例如Becker等人,20Plant Mol.Biol.49(1992);Knox等人,9Plant Mol.Biol.3(1987);Lerner等人,91Plant Physiol.124(1989);Fontes等人,3Plant Cell 483(1991);Matsuoka等人,88PNAS 834(1991);Creissen等人,2Plant J.129(1991);Kalderon等人,39Cell 499(1984);Steifel等人,2Plant Cell 785(1990)。
表达载体通常包括可操作地连接到调控元件(例如启动子)的至少一个遗传标记,所述遗传标记允许包含标记的转化细胞通过阴性选择(即抑制不包含可选择标记基因的细胞的生长),或通过阳性选择(即筛选由遗传标记编码的产物)被回收。许多常用的用于植物转化的可选择标记基因是转化领域周知的,并且包括例如编码代谢地解毒选择性化学剂(可以是抗生素或除草剂)的酶的基因,或编码对抑制剂不敏感的改变的靶的基因。阳性选择方法是本领域已知的。
用于植物转化的一种常用的可选择标记基因是从转座子Tn5分离的新霉素磷酸转移酶II(nptII)基因,该基因在置于植物调控信号的控制下时赋予卡那霉素抗性。Fraley等人,80PNAS 4803(1983)。另一种常用的可选择标记基因是赋予对抗生素潮霉素的抗性的潮霉素磷酸转移酶基因。Vanden Elzen等人,5Plant Mol.Biol.299(1985)。赋予对抗生素的抗性的细菌来源的另外的可选择标记基因包括庆大霉素乙酰基转移酶、链霉素磷酸转移酶、氨基糖苷-3'-腺苷转移酶、博来霉素抗性决定子。Hayford等人,86Plant Physiol.1216(1988);Jones等人,210Mol.Gen.Genet.,86(1987);Svab等人,14Plant Mol.Biol.197(1990);Hille等人,7Plant Mol.Biol.171(1986)。其他可选择标记基因赋予对除草剂诸如草甘膦、草铵膦或溴苯腈的抗性。Comai等人,317Nature 741(1985);Gordon-Kamm等人,2Plant Cell 603(1990);Stalker等人,242Sci.419(1988)。用于植物转化的非细菌来源的可选择标记基因包括例如小鼠二氢叶酸还原酶、植物5-烯醇式丙酮酸莽草酸-3-磷酸合酶和植物乙酰乳酸合酶。Eichholtz等人,13Somatic Cell Mol.Genet.67(1987);Shah等人,233Sci.478(1986);Charest等人,8Plant Cell Rep.643(1990)。
用于植物转化的另一类标记基因需要筛选推定转化的植物细胞,而不是直接遗传选择对有毒物质诸如抗生素抗性的转化的细胞。这些基因对于量化或可视化特定组织中基因表达的空间模式特别有用,并且经常被称为报告基因,因为它们可以与基因或基因调控序列融合,用于研究基因表达。用于筛选推定转化的细胞的常用基因包括α-葡糖苷酸酶(GUS)、α-半乳糖苷酶、荧光素酶和氯霉素、乙酰基转移酶。Jefferson,R.A.,PlantMol.Biol.,5:387(1987);Teeri等人,EMBO J.,8:343(1989);Koncz等人,PNAS,84:131(1987);和DeBlock等人,EMBO J.,3:1681(1984)。用于可视化GUS活性的一些体内方法不需要破坏植物组织。Molecular Probes,Publication 2908,IMAGENE GREEN,1-4(1993);Naleway等人,115J.Cell Biol.151a(1991)。然而,用于可视化GUS活性的体内方法存在问题,表现出低灵敏度、高荧光背景和与使用荧光素酶基因作为可选择标记相关的限制。绿色荧光蛋白(GFP)可用作原核细胞和真核细胞中基因表达的标记。Chalfie等人,263Sci.802(1994)。GFP和GFP的突变体可用作可筛选标记。
NS-B50027-4和NS-B50027-4子代可以进一步被转化以赋予疾病或害虫抗性。例如,植物品系可以用克隆的抗性基因转化,以工程化对特定病原体菌株具有抗性的植物。参见例如Jones等人,266Sci.789(1994)(克隆抗黄枝孢霉(Cladosporium fulvum)的番茄Cf-9基因);Martin等人,262Sci.1432(1993)(抗丁香假单胞菌(Pseudomonas syringae)pv番茄的番茄Pto基因,一种蛋白激酶);Mindrinos等人,78Cell 1089(1994)(抗丁香假单胞菌的拟南芥(Arabidopsis)RSP2基因);Geiser等人.48Gene 109(1986)(苏云金芽孢杆菌(Bacillus thuringiensis)δ-内毒素基因);Van Damme等人,24Plant Mol.Biol.25(1994),(大花君子兰(Clivia miniata)甘露糖结合凝集素);Sumitani等人,57Biosci.Biotech.Biochem.1243(1993)(淀粉酶抑制剂);Abe等人,262J.Biol.Chem.16793(1987)(半胱氨酸蛋白酶抑制剂);Huub等人,21PlantMol.Biol.985(1993)(烟草蛋白酶抑制剂I);Regan,269J.Biol.Chem.9(1994)(昆虫利尿激素受体);Pratt等人,163Biochem.Biophys.Res.Comm.1243(1989)(allostatin);Tomalski等人,美国专利第5,266,317号(昆虫特异性麻痹性神经毒素);Scott等人,WO1993/02197(胼胝酶(callase)基因);Kramer等人,23Insect Biochem.Mol.Biol.691(1993)(烟草天蛾几丁质酶);Kawalleck等人,21Plant Mol.Biol.673(1993)(欧芹ubi4-2聚泛素基因);WO1995/16776(鲎素的衍生物抑制真菌);WO 1995/18855(合成的抗微生物肽);Jaynes等人,89Plant Sci.43(1993)(天蚕抗菌肽-β,裂解肽使转基因烟草植物对青枯假单胞菌(Pseudomonas solanacearum)具有抗性);Botella等人,24Plant Mol.Biol.,24:757(1994)(绿豆钙调蛋白);Griess等人,104Plant Physiol.1467(1994)(玉米钙调蛋白);Taylor等人,摘要#497,7th Int'l Symp.Molec.Plant-Microbe Interactions(Edinburgh,Scotland(1994)(通过转基因单链抗体在烟草中酶促失活);Tavladoraki等人,366Nature 469(1993)(通过转基因抗体的病毒抗性);Lamb等人,10Bio technol.1436(1992)(真菌内切-α-1,4-D-多聚半乳糖醛酸酶片段促进真菌定植和通过溶解植物细胞壁同型-α-1,4-D-半乳糖醛酸酶释放的植物营养;Toubart等人,2Plant J.367(1992)(大豆多聚半乳糖醛酸内切酶抑制蛋白);Logemann等人,10Bio/technology 305(1992)(表达大麦核糖体失活基因的转基因植物具有增加的对真菌疾病的抗性)。
如上所述,除草剂抗性是可以通过遗传修饰引入的另一种有用的性状。例如,对抑制生长点或分生组织的除草剂(诸如咪唑啉酮或磺酰脲类)的抗性可以通过突变体ALS和AHAS酶赋予。参见例如Lee等人,7EMBO J.1241(1988);Miki等人,80Theor.Appl.Genet.449(1990);草甘膦抗性由aroA和突变体5-烯醇式丙酮酸莽草酸-3-磷酸合酶(EPSPS)基因赋予;草铵膦抗性由草丁膦-乙酰基转移酶基因赋予;并且对吡啶氧基丙酸或苯氧基丙酸和环己酮的抗性由ACC酶抑制剂编码基因赋予。参见例如美国专利第4,940,835号(EPSPS赋予草甘膦抗性);突变体aroA基因,ATCC登录号39256,参见Comai,美国专利第4,769,061号;还参见Umaballava-Mobapathie,8Transgenic Research 33(1999)(莴苣(Lactuca sativa)对草铵膦的抗性);Kumada等人,EP 0 333 033;Goodman等人,美国专利第4,975,374号(EPSPS赋予对除草剂诸如L-草丁膦的抗性);Leemans等人,EP 0 242 246(草丁膦-乙酰基转移酶);DeGreef等人,7Bio/technol.61(1989)(编码草丁膦乙酰剂转移酶的嵌合bar基因);Marshall等人,83Theor.Appl.Genet.435(1992)(Acc1-S1、Acc1-S2和Acc1-S3基因赋予对苯氧基丙酸和环己酮诸如例如稀禾定和氟吡禾灵的抗性);Przibilla等人,3Plant Cell169(1991)(PsbA和gs+基因赋予三嗪抗性);Stalker,美国专利第4,810,648号(腈水解酶基因赋予苯基腈抗性);Hayes等人,285Biochem.J.173(1992)(谷胱甘肽S-转移酶);Hattori等人,246Mol.Gen.Genet.419(1995)(乙酰羟酸合酶赋予对多种除草剂的抗性);Shiota等人,106Plant Physiol.17(1994)(酵母NADPH-细胞色素P450氧化还原酶);Aono等人,36Plant Cell Physiol.1687(1995)(谷胱甘肽还原酶和超氧化物歧化酶);Datta,等人,20Plant Mol.Biol.619(1992)(各种磷酸转移酶);WO 2001/12825;美国专利第6,288,306号;第6,282,837号;第5,767,373号;(具有改变的原卟啉原氧化酶活性的植物对靶向原卟啉原氧化酶的除草剂具有抗性)。
NS-B50027-4和NS-B50027-4来源的子代可以被进一步修饰以赋予任何数量的本领域已知的增值性状。参见例如Goto等人,521Acta Horticulturae 101(2000)(大豆铁蛋白基因);Curtis等人,18Plant Cell Rep.889(1999)(硝酸还原酶);Knultzon等人,89PNAS2625(1992)(硬脂酰-ACP去饱和酶);Shiroza等人,170J.Bacteriol.810(1988)(变异链球菌(Streptococcus mutans)果糖基转移酶基因的核苷酸序列);Steinmetz等人,20Mol.Gen.Genet.220(1985)(枯草芽孢杆菌(Bacillus subtilis)左旋蔗糖酶基因);Pen等人,10Bio/technol.292(1992)(转基因植物表达地衣芽孢杆菌(Bacilluslicheniformis)α-淀粉酶);Elliot等人,21Plant Mol.Biol.515(1993)(番茄转化酶基因);
Figure BDA0003648514750000761
等人,268J.Biol.Chem.22480(1993)(大麦α-淀粉酶基因的定点诱变);Fisher等人,102Plant Physiol.1045(1993)(玉米胚乳淀粉分支酶II)。
油菜品系NS-B50027-4也可以通过本领域已知的多种方法中的任何一种操作为雄性不育,包括通过使用机械方法、化学方法、自交不亲和性(SI)、细胞质雄性不育(CMS、ogura或另一种系统)或细胞核雄性不育(NMS)。术语“被操作为雄性不育”是指使用任何可用的技术来产生油菜品系NS-B50027-4的雄性不育版本。雄性不育可以是部分雄性不育或完全雄性不育。参见例如WO 2001/29237(引入在绒毡层特异性启动子的控制下的脱乙酰酶基因并应用化学物质N-Ac-PPT);WO 1992/13956、WO1992/13957(雄蕊特异性启动子);Paul等人,19Plant Mol.Biol.611(1992)(引入芽孢杆菌RNA酶(barnase)和芽孢杆菌RNA酶抑制剂(barstar)基因);还参见美国专利第5,859,341号;第6,297,426号;第5,478,369号;第5,824,524号;第5,850,014号;第6,265,640号;Hanson等人,16Plant Cell S154(2004)。
已经开发了用于植物转化的许多方法,包括生物和物理植物转化方案。参见例如WO 2013185184;Miki等人,METHS.PLANT MOLEC.BIOL.BIOTECHNOL.中67-88页(Glick&Thompson编辑,CRC Press,Inc.,Boca Raton,FL,1993)。此外,表达载体和植物细胞或组织转化和植物再生的体外培养方法是可用的。参见例如WO 2013185184;Gruber等人,METHS.PLANT MOLEC.BIOL.BIOTECHNOL.89-119页(Glick&Thompson编辑,CRC Press,Inc.,Boca Raton,FL,1993)。将表达载体引入植物的一种方法是使用农杆菌属的天然转化系统,参见Horsch等人,227Sci.1229(1985);Curtis等人,45J.Exper.Botany 1441(1994);Torres等人,34Plant Cell Tissue Organ Culture 279(1993);Dinant等人,3Molec.Breeding 75(1997);Kado,10Crit.Rev.Plant Sci.1(1991)(根癌农杆菌和发根农杆菌(A.rhizogene)的Ti质粒和Ri质粒分别携带负责植物的遗传转化的基因);Gruber等人;Miki等人;Moloney等人,8Plant Cell Rep.238(1989)(农杆菌属载体系统,用于农杆菌属介导的基因转移的方法);美国专利第5,591,616号。
已经开发了统称为直接基因转移的几种植物转化方法,作为农杆菌属介导的转化的替代。通常可应用的植物转化方法是微粒介导的转化,其中DNA被携带在1μm至4μm的微粒的表面上。表达载体通过基因枪(biolistic)装置引入植物组织中,该基因枪装置将微粒加速至足以穿透植物细胞壁和膜的300m/s至600m/s的速度。Russell等人,12Plant CellRep.165(1993);Aragao等人,20Plant Mol.Biol.357(1992);Aragao等人,12Plant CellRep.483(1993);Aragao,93Theor.Appl.Genet.142(1996);Kim&Minamikawa 117PlantSci.131(1996);Sanford等人,5Part.Sci.Technol.27(1987);Sanford 6TrendsBiotech.299(1988);Klein等人,6Bio/technol.559(1988);Sanford,7Physiol.Plant 206(1990);Klein等人,10Bio/technol.268(1992)。
将DNA物理递送至植物的方法也是本领域已知的。参见例如Zhang等人,9Bio/technol.996(1991)(超声);Deshayes等人,4EMBO J.,2731(1985)(脂质体);Christou等人,84PNAS 3962(1987)(原生质体NHW11915);Hain等人,199Mol.Gen.Genet.161(1985)(CaC12沉淀);Draper等人,23Plant Cell Physiol.451(1982)(聚乙烯醇或聚L-鸟氨酸);Saker等人,40Biologia Plantarum,507(1997/98)(原生质体电穿孔)。另外的方法包括但不限于使用直接基因转移法将表达载体引入植物组织中,诸如用鸟枪法装置的微粒介导的递送、DNA注射、电穿孔等。转化后,使用本领域周知的再生和选择方法,上文描述的可选择标记基因的表达可以允许优先选择转化细胞、组织和/或植物。参见例如WO 2013185184。
上述转化方法将通常用于产生转基因品系。然后可以将转基因品系与另一个(未转化的或转化的)品系杂交,以产生新的转基因油菜品系。可选择的,使用周知的转化技术被工程化到特定油菜或芸薹属中的遗传性状可以使用也在植物育种领域周知的传统回交技术引入到另一个品系中。例如,回交方法可用于将工程化性状从公共的非优良种近交品系转移到优良种近交品系中,或从在其基因组中含有外源基因的近交品系转移到不含有那个基因的近交品系或品系中。如本文中使用的,取决于上下文,“杂交”可以指简单的X与Y杂交或回交的过程。
当在本发明实施方案的上下文中使用术语“NS-B50027-4植物”时,还包括该品系的任何基因转换。术语“基因转换植物”是指通过回交、基因工程或突变开发的那些NS-B50027-4植物,其中除了通过回交技术、基因工程或突变转移到NS-B50027-4来源的品系中的一个或更多个基因以外,基本上所有期望的形态和生理特征都被获得。回交方法可以与发明本实施方案一起使用,以改善品种或向品种引入特征。如本文中使用的,术语“回交”是指将杂交子代重复杂交回到轮回亲本(recurrent parent),即,与轮回亲本回交1、2、3、4、5、6、7、8、9或更多次。为期望的特征贡献基因的亲本芸薹属植物被称为“非轮回亲本”或“供体亲本”。这个术语指的是非轮回亲本在回交方案中使用一次,因此不再轮回(recur)的事实。来自非轮回亲本的一个或更多个基因被转移到其中的亲本芸薹属植物被称为轮回亲本,因为它在回交方案中使用几个轮次。Poehlman&Sleper,1994;Fehr,1993。在典型的回交方案中,原始的感兴趣的品种(轮回亲本)与携带待转移的感兴趣的基因的第二个品种(非轮回亲本)杂交。然后将来自该杂交的所得的子代再次杂交至轮回亲本并重复该过程直至获得油菜植物,其中除了来自非轮回亲本的转移的基因以外,轮回亲本的基本上所有期望的形态学和生理特征都在转换植物中获得。
选择合适的轮回亲本是成功的回交程序的重要步骤。回交方案的目标是改变或替代原始品系中的性状或特征。为了实现这一点,轮回栽培种的基因被修饰或用来自非轮回亲本的期望的基因取代,同时保留基本上所有其余期望的基因型,并因此保持原始品系的期望的生理和形态特征。特定非轮回亲本的选择将取决于回交的目的。主要目的之一是为植物添加一些商业上期望的、农学上重要的性状。确切的回交方案将取决于被改变的特征或性状以确定适当的测试方案。尽管当被转移的特征是显性等位基因时,回交方法被简化,但是也可以转移隐性等位基因。在这种情况中,可能需要引入子代的测试以确定是否已经成功转移所期望的特征。
可以鉴定在新品系的开发中不经常选择但可以通过回交技术改进的基因性状。基因性状可以是转基因的或可以不是转基因的。这些性状的实例包括但不限于雄性不育、改变的碳水化合物代谢、除草剂抗性、对细菌、真菌或病毒疾病的抗性、昆虫抗性、增强的营养质量、工业用途、产量稳定性和产量提高。这些基因通常通过细胞核遗传。参见例如美国专利第5,969,212号;第7,164,059号。
近交品系NS-B50027-4的进一步繁殖可以通过组织培养和再生发生。术语“组织培养物”表示包含相同或不同类型的分离的细胞的组合物或组成植物部分的这样的细胞的集合。示例性组织培养物的类型是原生质体、愈伤组织、分生组织细胞和可以生成在植物或植物部分诸如叶、花粉、胚、根、根尖、花药、雌蕊、花、种子、叶柄、吸盘等中完整的组织培养物的植物细胞。用于制备和保持植物组织培养物的手段是本领域周知的。油菜的各种组织的组织培养物和从其再生植物是周知的。参见例如Teng等人,27HortSci.1030(1992);Teng等人,28HortSci.669(1993);Zhang等人,46J.Genet.Breeding 287(1992);Webb等人,38Plant Cell Tissue Organ Cult.77(1994);Curtis等人,45J.Exp.Bot.1441(1994);Nagata等人,125J.Am.Soc’y Hort.Sci.669(2000);Ibrahim等人,28Plant Cell TissueOrgan Cult.139(1992);美国专利第5,959,185号;第5,973,234号;第5,977,445号。用于油菜植物再生的组织培养以及小孢子培养可以成功完成。参见Chuong等人,4Plant CellRep.4(1985);Barsby等人,5Plant Cell Rep.101(1986);Kartha等人,31Physiol.Plant217(1974);Narasimhulu等人,7Plant Cell Rep.104(1988);Swanson,6Meth.Molec.Biol.159(1990);Cell Culture Tech.&Canola Improvement,66J.Am.OilChem.Soc.455(1989)。从文献中清楚的是,现有技术状态使得获得植物的这些方法按常规使用,具有高成功率。因此,本发明实施方案的另一个方面提供了细胞,其在生长和分化时产生具有近交转基因品系NS-B50027-4的生理和形态特征的油菜植物。
通常,当转基因通过传统杂交引入植物时,它在植物基因组中的插入位点及其侧翼区不会改变。“插入区”是指对应于至少40个碱基对,诸如至少100个碱基对或多达超过10,000个碱基对的区域,其被(未转化的)植物基因组中的转基因的上游和下游侧翼区包围并且包括插入位点(以及可能的靶位点缺失)。考虑到由于物种内的突变引起的微小差异,插入区可以与该物种的给定植物中的外源DNA的上游和下游侧翼区保持至少85%、诸如90%、95%或100%序列同一性。然而,转基因盒插入植物基因组有时可伴随被称为“靶位点缺失”的植物DNA的缺失。然而,另外的转基因或其他遗传操作可以在NS-B50027-4中进行,不需要过多实验;并且NS-B50027-4来源的植物可以如本文描述地被鉴定。
如果源材料NS-B50027-4与细胞质雄性不育来源或用于使近交品系的雌性不育的一些其它来源回交,源材料NS-B50027-4可以用于产生用于杂交种子生产的品系。可选择地,品系可以直接使用。例如,欧洲油菜品系NS-B50027-4可以与另一种油菜植物杂交,形成第一代F1植物的群体。通过这种方法产生的第一代F1植物的群体也是一个实施方案。该第一代F1植物的群体包含油菜品系NS-B50027-4的基本完整的等位基因组。通常,F1杂交体被认为具有每个亲本的所有等位基因。本领域普通技术人员可以利用育种手册或分子方法来鉴定使用油菜品系NS-B50027-4产生的特定F1植物,并且任何这样的单独植物也包括在本发明中。这些实施方案还涵盖了这些方法用于品系NS-B50027-4的转基因或单基因转换的用途。
本发明的另一个实施方案是在育种中使用油菜品系NS-B50027-4的方法,包括与油菜品系NS-B50027-4反复回交任意次数。使用本文描述的转基因方法、回交方法或本领域普通技术人员已知的其他育种方法,可以开发保留油菜品系NS-B50027-4的遗传谱的至少25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%的单个植物和植物群体。保留在子代中的遗传物质百分比可以通过谱系分析或通过使用遗传技术(例如分子标记或电泳)来测量。在谱系分析中,平均50%的初始种质在与另一个品系杂交一次后将被传递到子代品系,25%在另一次杂交后传递到不同的品系,依此类推。分子标记也可用于确认和/或确定子代品系的谱系。
用于制备源自油菜品系NS-B50027-4的品系的具体方法如下。本领域普通技术人员将油菜品系NS-B50027-4与另一种油菜植物(例如优良种事件)杂交。使来自该杂交的F1种子生长以形成同系群体。F1种子含有来自油菜品系NS-B50027-4的50%的等位基因和另一种植物的50%的等位基因。使F1种子生长并使其自交,从而形成F2种子。平均而言,F2种子已从品系NS-B50027-4中获得50%的等位基因,并且从另一种油菜植物获得50%,但来自群体的各种个体植物的等位基因具有更大百分比的来源于事件NS-B50027-4的其等位基因。Wang等人,40Crop Sci.659(2000);Bernardo等人,102Theor.Appl.Genet.986(2001)。如本文中使用的,术语群体指的是具有统计学代表性样本。使F2种子生长,并且基于目视观察或性状测量来选择植物。用于选择的性状可以是油菜种子中高DHA产量的油菜品系NS-B50027-4性状。选择表现出期望的NS-B50027-4来源的性状的事件NS-B50027-4来源的子代,并分别收获每株植物。来自每株植物的F3种子在单独的行间生长并允许其自交。选择的行或来自行的植物被单独收获和脱粒。选择同样基于对植物表型的目视观察,或对植物的期望的性状诸如期望的NS-B50027-4来源的性状的检测。生长和选择的过程重复任何次数,直到获得近交NS-B50027-4来源的油菜植物。
NS-B50027-4来源的油菜植物包含来源于油菜品系NS-B50027-4的期望的性状,其中一些可能不由油菜品系NS-B50027-4与其杂交的另一油菜植物表达并且其中一些可能由两个油菜品系表达但目前处于等于或大于在NS-B50027-4中表达水平的水平。
NS-B50027-4来源的F1油菜或芸薹属植物平均具有50%的基因来自NS-B50027-4,但来自该群体的各种单株植物具有更高百分比的来自NS-B50027-4的等位基因。重复杂交、自花授粉和选择的育种过程以产生NS-B50027-4来源的油菜植物的另一个群体,该群体平均具有25%的来源于油菜品系NS-B50027-4的其基因,但是来自该群体的各种单株植物具有更大百分比的来源于NS-B50027-4其等位基因。本发明的另一个实施方案是近交NS-B50027-4来源的油菜植物,所述油菜植物已经获得了高DHA的期望的NS-B50027-4来源的性状。
先前的实施例可以以多种方式修改,例如选择可以在或可以不在在每一自花授粉的代发生或不发生,可以在实际的自花授粉过程发生之前或之后发生,或者单独的选择可以通过所描述的育种过程期间的任何时间点收获单个荚、植物、行或点来进行。此外,双单倍体育种方法可以在该过程的任何步骤中使用。在每一代和任何一代自花授粉中产生的植物群体也是本发明实施方案的实施方案,并且每个这样的群体将由以下植物组成:含有其约50%的基因来自油菜品系NS-B50027-4的植物,在第二轮杂交和选择中其25%的基因来自油菜品系NS-B50027-4的植物,在第三轮杂交和选择中其12.5%的基因来自油菜品系NS-B50027-4的植物,依此类推。
另一个实施方案是获得纯合的NS-B50027-4来源的油菜植物的方法,该方法通过将油菜品系NS-B50027-4与另一种油菜植物杂交并将双单倍体方法应用于F1种子或F1植物或通过将该杂交进行自交获得的油菜品系NS-B50027-4的任何代进行。谱系育种通常用于改进自花授粉作物或交叉授粉作物的近交品系。具有有利、互补性状的两个亲本被杂交以产生F1。F2群体通过一个或几个F1自交或通过两个F1相互杂交(同胞交配)产生。最佳个体的选择通常在F2群体中开始。然后,从F3开始,选择最好的家系中的最好的个体。家系的重复测试或涉及这些家系的个体的杂交体组合通常在F4代中进行,以提高对具有低遗传性的性状的选择的有效性。在近交繁殖的进展阶段(即F6和F7),检测最好的品系或表型相似的品系的混合物作为新栽培种的潜在释放。
更进一步地,本发明实施方案涉及产生NS-B50027-4来源的油菜植物的方法,该方法通过以下进行:通过将油菜品系NS-B50027-4与油菜植物杂交并使子代种子生长,并用NS-B50027-4-来源的油菜植物重复杂交和生长步骤1至2次、1至3次、1至4次、或1至5次,并在第一次、第二次、第三次、第四次或第五次杂交后自交任何次数。质量和轮回选择可以用于改进自花授粉或交叉授粉作物的群体。杂合个体的遗传变异群体通过使几个不同的亲本相互杂交来鉴定或产生。最佳的植物基于个体优势、突出的子代或优异的组合能力来选择。选择的植物被相互杂交以产生新的群体,在新的群体中继续进一步的选择循环。
回交育种已被用于将简单遗传的、高度遗传的性状的基因转移到为轮回亲本的期望的纯合栽培种或品系中。待转移的性状来源被称为供体亲本。预期所得的植物具有轮回亲本(例如,栽培种)的属性和从供体亲本转移的期望的性状。在初始杂交后,选择具有供体亲本表型的个体并重复杂交(回交)至轮回亲本。预期所得的植物具有轮回亲本(例如,栽培种)的属性和从供体亲本转移的期望的性状。
严格意义上的单粒传法(single-seed descent procedure)是指种植分离群体,收获每株植物一粒种子的样品,并使用单粒种子样品种植下一代。当群体从F2推进到期望的育种水平时,从中衍生品系的植物将各自追踪到不同的F2个体。由于一些种子未能萌发或一些植物未产生至少一粒种子,群体中的植物的数量随着每一代下降。结果,当继代完成时,并非所有在群体中最初采样的F2植物都在子代中显示。
另一个实施方案提供了NS-B50027-4的单基因转换。当通过传统(非转化)育种技术(诸如回交)引入DNA序列时发生基因转换。DNA序列,无论是天然存在的还是转基因的,可以使用这些传统的育种技术引入。通过该方法转移的期望的性状包括但不限于生育力改变、脂肪酸谱修饰、其他营养增强、工业增强、抗病性、昆虫抗性、除草剂抗性和产量提高。感兴趣的性状从供体亲本转移到轮回亲本,在这种情况中,本文公开的油菜植物。单基因性状可能由显性等位基因或隐性等位基因的转移所致。包含感兴趣的性状的子代的选择通过直接选择与显性等位基因相关的性状来进行。通过隐性等位基因转移的性状的子代的选择需要使第一次回交物生长和自交,以确定哪些植物携带隐性等位基因。隐性性状可能需要在连续的回交世代中进行另外的子代测试,以确定感兴趣的基因的存在。随着对感兴趣的性状的选择,选择子代的轮回亲本的表型。应当理解,另外的多核苷酸序列或基因偶尔与感兴趣的单基因转化性状一起转移。包含来自轮回亲本(本文公开的油菜植物)的至少90%、95%、96%、97%、98%、99%或99.5%的基因,加上包含基因转化性状的子代被认为是基因转换的NS-B50027-4。当性状由两个基因控制时(例如一些抗病性),选择可以同时对两个基因进行,等等。
突变育种是将新性状引入油菜品种的另一种方法。对于植物育种者而言,自发发生的或人工诱导的突变对于植物育种者可能是变异的有用来源。人工诱变的目标是增加期望的特征的突变率。通过许多不同手段可以提高突变率,包括温度、长期种子储存、组织培养条件、辐射(诸如X射线、γ射线、中子、β辐射或紫外线辐射)、化学诱变剂(诸如碱基类似物如5-溴-尿嘧啶)、抗生素、烷化剂(诸如硫芥、氮芥、环氧化物、亚乙基胺、硫酸盐、磺酸盐、砜或内酯)、叠氮化物、羟基胺、亚硝酸或吖啶。通过诱变观察到期望的性状后,性状可以通过传统的育种技术掺入现有的种质中。参见例如Fehr,PRINCIPLES CULTIVAR DEVEL.(Macmillan Pub’l Co.,1993)。
应当理解,本发明实施方案的油菜品系可以通过细胞质基因、核基因、或其他因子的常规操作以雄性不育形式产生,如前面讨论的参考文献中描述的。这样的实施方案也在本权利要求书的范围内。本发明实施方案因此提供了通过使用油菜品系NS-B50027-4产生的F1杂交种子和植株。
许多实验室技术可用于植物基因型的分析、比较和表征;其中有同工酶电泳、限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)、任意引物聚合酶链式反应(AP-PCR)、DNA扩增指纹图谱(DAF)、序列特征扩增区域(SCAR)、扩增片段长度多态性(AFLP)、简单序列重复(SSR,也称为微卫星)和单核苷酸多态性(SNP)。
同工酶电泳和RFLP已被广泛用于确定基因组成。Shoemaker&Olsen(MolecularLinkage Map of Soybean(Glycine max),S.J.O'Brien(编辑)Genetic Maps:Locus Mapsof Complex Genomes,6.131-6.138页,Cold Spring Harbor Laboratory Press,ColdSpring Harbor,N.Y.(1993)开发了由25个连锁群组成的分子遗传连锁图谱,具有约365个RFLP、11个RAPD、3个经典标记和4个同工酶基因座。还参见Shoemaker,R.C.,RFLP Map ofSoybean,299-309页,Phillips,R.L.和Vasil,I.K.(编辑),DNA-Based Markers inPlants,Kluwer Academic Press,Dordrecht,the Netherlands(1994)。
SSR技术是目前有效且实用的标记技术;更多的标记基因座可以常规使用,并且与RFLP相比,使用SSR可以找到每个标记基因座更多的等位基因。参见例如Diwan&Cregan,95Theor.Appl.Genet.22(1997)。SNP也可用于鉴定本发明的独特基因组成和保留该独特基因组成的子代品种。各种分子标记技术可以组合使用以增强整体分辨率。可以在植物育种中使用分子标记,包括通过使用技术诸如同工酶电泳、RFLP、RAPD、AP-PCR、DAF、SCAR、AFLP、SSR和SNP鉴定的标记。分子标记的一个用途是数量性状基因座(QTL)图谱。QTL图谱是使用已知与对数量性状具有可测量的影响的等位基因紧密连锁的标记。育种过程中的选择基于与来自植物基因组的阳性效应等位基因连锁的标记的积累或与来自植物基因组的阴性效应等位基因连锁的标记的消除。
分子标记也可以在育种过程期间使用用于选择定性性状。例如,与等位基因紧密连锁的标记或含有感兴趣的实际等位基因内的序列的标记可以用于在回交育种程序期间选择含有感兴趣的等位基因的植物。这些标记还可用于朝向轮回亲本的基因组选择并弃去供体亲本的标记。该过程试图使保留在所选植物中的来自供体亲本的基因组的量最小化。它还可以用于减少回交程序中所需的回交到轮回亲本的数量。在选择过程中使用分子标记通常称为遗传标记增强选择或标记辅助选择。通过提供追踪通过杂交的遗传谱的手段,分子标记也可用于鉴定和排除某些种质的来源作为亲本品种或植物的祖先。
因此,清楚的是获得植物的这些方法的技术状态是“常规的”,因为它们常规地使用并且具有高成功率。油菜品系NS-B50027-4的实用性还延伸至与其他物种杂交。通常,合适的物种属于十字花科。因此,本发明实施方案包括在育种中使用油菜优良种事件NS-B50027-4的任何和所有的方法,包括自交、谱系育种、回交、杂交体产生和与群体杂交。使用油菜品系优良种事件NS-B50027-4作为亲本产生的所有植物和植物群体都在这些实施方案的范围内,包括由来源于油菜品系NS-B50027-4的品种开发的那些。本领域普通技术人员可以使用独特的分子标记谱或育种记录来鉴定来源于油菜品系NS-B50027-4的子代品系或子代的群体。
实施例
实施例1.品系NS-B50027-4在田间试验中的表征和选择
植物育种的一项艰巨任务是鉴定具有遗传优势的单株植物,因为对于大多数性状而言,真正的基因型价值可能被其他混杂的植物性状或环境因素所掩盖。鉴定优势植物的一种方法是观察其相对于其他实验植物和一种或更多种广泛种植的标准栽培种的性能。如果单个观察结果不确定,则重复观察提供对遗传价值的更好的估算。
最初鉴定为B0050-027-18的植物基于单粒传法通过收获每株植物一粒种子的样品和使用单粒种子样品种植下一代来选择。通常,由于一些种子未能萌发或一些植物未产生至少一粒种子,群体中的植物的数量随着每一代下降。结果,当继代完成时,并非所有在群体中最初采样的植物都在子代中显示。而且,原始的转基因事件增加了遗传的复杂性,使得无法对子代的基因型或表型做出预测。因此,植物自花授粉并连续几代选择类型,直到特定的品系变为纯合的,表现出具有优良农艺特性的选择性状,并产生真正的育种子代的均一群体。更具体地,测试品系在Horsham(Victoria,Australia)的Nuseed InnovationCenter(NIC)按照育种重选程序选择。候选品系的选择和开发基于:
(a)T-DNA插入片段的拷贝数;
(b)DHA表达的分离模式;
(c)纯合性;(基于脂肪酸表型和基因型);
(d)LC-ω3-DHA的产生;和
(e)基于冬季和夏季不同地点的子代测试的适合作物生产的农艺性状。
在澳大利亚,油菜在南部旱地种植区并且主要是在冬季降雨环境中生长。澳大利亚生产主要来自具有较低的春化(vernalization)要求的春季型油菜栽培种。一般而言,澳大利亚栽培种的开花期开始通常具有些许延迟,并且在冬季月份具有相对高的植物活力或生物质产量。澳大利亚的油菜作物通常在第一次大降雨后事件后的4月至5月播种,并且在10月至12月收获。产量主要受生长季节期间的水量和栽培种的水分利用效率的影响。对斑点小球腔菌(Leptosphaeria maculans)引起的黑胫病的主要病变型基因的抗性可以在幼苗存活和茎溃疡方面区分栽培种,但澳大利亚栽培种在推荐的农艺措施下生长时,通常被认为具有高抗性。在五至七个月的生长季节之后,并发生在春末或初夏种子发育。除水的可利用度外,产量可以明显地受到极端温度(<0℃至>35℃)的影响,这可能导致种子和种荚的败育。
如本文所述,油菜种质的转化是用八基因构建体进行的,所述八基因构建体引起了LC-ω3脂肪酸,特别是DHA的种子特异性积累。广义地说,尽管植物携带标记基因(MG),表型用产品质量(PQ)(产生的ω-3脂肪酸)表征。再选择转化材料的基因座纯合性、DHA在种子中的表达、以及适合于商业化生产的农艺性状和产量潜能。
比较在八个试验地点(地点)来自转基因事件的三个T2代来源的姐妹株(sib)与八个其他油菜栽培种(品系)的一系列重要的农艺学性状和种子性状。2015年在维多利亚州,生长季降雨量低于长期平均值,并且缩短了生长季节。八个澳大利亚试验地点代表了宽范围的环境产量潜力,如地点平均地点产量的范围所指示的(即,AV Garnet:0.7至2.4t/ha)。转基因品系B0050-027-18-X由三个转基因品系代表:B0050-027-18-20(T3)、B0050-027-18-36-13(T4)和B0050-027-18-105-13(T4)。测试品系的农艺性状变化与在所有测试环境中评估的商业栽培种的农艺性状的变化相当。该结论得到以下发现的支持:基于跨地点分析(MET-REML),最高产量测试品系的籽粒产量与最高产量的商业栽培种是统计学上相当的。此外,对于每个地点,最高产量的测试品系比至少一个栽培种具有显著更高的产量,除了在一个地点没有显著差异。测试品系产生具有略低百分比种子油且具有改变的脂肪酸组成的种子;但这并不影响产量或农艺性状。LCω3DHA脂肪酸的表达在测试环境中是高度稳定的。
测试品系来源于转化的小植株(AV Jade变种)。通过允许隔离的植物自花授粉(即,防虫篷)使种子积累(bulked)。
用于比较的对照栽培种(商用育种品系)提供了在种植区广泛生长的良好适应的(即高产但变化的产量潜力和油含量)栽培种的农艺学多样性(例如植物习性、物候学)范围。这些栽培种都是开放授粉的,并在例如澳大利亚国家品种测试计划和区域年度作物报告中描述和广泛评估。参见“nvtonline”网站。此外,对于澳大利亚的黑胫病,植物疾病抗性的变异被详细描述。Van De Wouw等人,67Crop&Pasture Sci.273(2015)。在澳大利亚,黑胫病可以引起高达90%的产量损失。Marcroft&Bluett,Agricul.Notes,AG1352,Victoria,Dept.Primary Indus.(2008)。已经随时间记录了商业栽培种对特定种子脂肪酸组成和种子油含量的遗传变异。参见Seberry等人,Quality of Australian canola 2011(Australian Oilseeds Fed.,2012)。来自栽培种AV Jade的植物被转化以产生转基因T0,并且因此AV Jade可被认为是本文描述的转基因事件的未转化的等值线(isoline)。
测试品系的表型变异以植物萌发、植物活力、开花时间、开花持续时间、株高、落籽、抗倒伏性、黑胫病严重程度、植物收获计数、籽粒产量、籽粒水分、种子油百分比和脂肪酸含量特别是种子LC-ω3多不饱和脂肪酸(LC-PUFA)含量(具体涉及EPA、DPA和DHA的产量)为特征。对于所有测量的性状,使用统计软件GenStat中的ASREML进行有限估计似然分析。Gilmour等人,ASREML用户指南,release 3.0,Biometric Bulletin(3)(VSV Int’l,Waterhouse Stm Hemel Hempstead,UK,2009)。线性混合模型统计方法用于解释野外空间变异,如广泛描述的,并且用于野外植物育种和遗传研究。Cullis&Gleeson,47Biometrics1449(1991);Smith等人,57Biometrics 1138(2001);Welham等人,Analysis of linearmixed models by ASReml-R with Applications in Plant Breeding:Course Notes(VSVInt’l,Waterhouse Stm Hemel Hempstead,UK,2013)。进一步对籽粒产量(t/ha)进行Meta-REML跨地点分析,以确定所测试的品系的跨地点最佳线性无偏预测(BLUP)。
关于植物萌发,此计数是通过在播种后大约12天,在所有八个地点每块样地中两个1平方米(1m2)象限中对萌发植物的数量进行计数来估计的。两个象限的平均值用于估计每平方米萌发的植物数量,并作为性状变量进行分析。对所有地点的每块样地记录基于对每块样地的平均植物密度的目视估计的植物出苗得分,并且将其作为性状变量进行分析(例如,1=低=0-5株植物/m2;5=中等=25-30株植物/m2;9=高=45-50株植物/m2)。基于每平方米的数量的植物萌发和植物萌发得分在所有八个地点的品系处理之间显著变化。转基因品系的植物萌发的统计学变异显著在所有实验的栽培种表示的范围内。使用在所有地点的每块样地的植物包心期(cabbage stage)(即从六叶期开始)的营养生物质(vegetative biomass)的1至9分的观察结果预测生长季节早期的植物活力,并将其作为性状变量进行分析。
将开花时间记录为从播种到该块样地中50%的植物具有至少一朵开放的花的天数。对于所有试验中的每块样地均记录了这一点,并将其作为性状变量进行分析。基于50%的植物开花的开花开始(从播种开始的天数)在所有地点的品系处理之间显著变化。地点平均开花时间从99天至110天变化,并且指示该性状在试验地点之间的环境差异。转基因品系的开花时间的统计学变异显著地在所有实验的栽培种表示的范围内。
开花持续时间是开花时间和结束开花时之间的计算差异(表示为天数)。这是针对所有试验每块样地计算的,并且作为性状变量进行分析:开花持续时间=开花结束日-开花时间(50%)。基于50%的植物开花的开花开始(从播种开始的天数)在所有地点的品系品系之间显著变化。地点平均开花时间从99天至110天变化,反应该性状在试验地点之间的环境差异。在统计学上,转基因品系的开花时间的变异显著地在所有实验的栽培种表示的范围内。基于90%的植物没有花的开花结束(从播种开始的天数)在所有八个地点的品系之间显著变化。地点平均开花结束时间为128天至139天,反映该性状在实验地点之间的环境差异。统计学上,转基因品系的开花结束的变异显著地在所有地点的栽培种表示的范围内。
基于每平方米植物的收获时的植物在所有八个地点的品系之间显著变化。统计学上,转基因品系的收获时间时的植物数量的变异显著地在所有种植和位置的栽培种表示的范围内。萌发时的植物数量与收获时记录的植物数量显著相关。一些计算的存活百分比超过100%,这反映了两种栽培种(ATR Wahoo和AV Jade)的缓慢幼苗萌发:不是所有萌发的幼苗在植物萌发计数时都被记录。
在干燥种子成熟阶段的株高是从样地中心的基部到生长尖端测量的。使用样地中心以避免与地间空间区域可能相关的混杂的效应(边缘效应)。记录所有试验中每个样地的性状,并作为性状变量进行分析。成熟时的株高(cm)在所有地点的品系处理之间显著变化。地点平均株高从63cm到105cm变化,并且指示该性状在试验地点之间的环境差异。统计学上,转基因品系的成熟株高的变异显著地在所有实验的栽培种表示的范围内。
使用在两周时间段内记录的每1/8平方米的落籽计数分析成熟时的落籽(有时称为落荚)。这是通过在所有位置的每块样地的播种行之间在冠层下面放置两个托盘来进行的,并作为性状变量进行分析。落籽得分(基于1(零)至9级(高:+40)级)也在每个地点基于邻收获前在地面上观察到的种子数量记录并将其作为性状变量进行分析。基于收获时地面上的种子数量的落籽在八个地点中的四个的品系处理之间显著变化。地点平均落籽数从3到15(每1/8平方米)变化,并且指示所有地点的落籽的低水平。一个地点的落籽得分在品系之间也显著变化,并且与跨地点平均落籽计数密切相关。这表明将落籽记录为得分是落籽的良好预测物。统计学上,基于种子计数的落籽和转基因品系的得分的变异显著地在有所有实验的栽培种表示的范围内。
基于成熟时从植物基部倾斜的植物角度进行评分,将抗倒伏性记录为1(抗性)至9(易感的)。植物倒伏没有统计学上的显著变异。缺乏这种性状的变异可能与豆荚灌浆后期低于平均的降雨量有关。
五个地点中,代表斑点小球腔菌和油菜黑胫病菌(Leptosphaeria biglobosa)的黑胫病严重程度症状记录为1(低<5%)至9(高>40%)得分。由于缺乏可观察的变异,并非所有样地都被评分。没有观察到与溃疡和断茎相关的症状。黑胫病叶片症状在所有八个地点都被观察到处于非常低水平。一个地点使用裸种子(未经杀真菌剂处理的种子)播种。在该地点与用种子杀真菌剂处理的其他地点之间测试的品系中,植物萌发没有相对差异。叶片症状并不总是预测由斑点小球腔菌引起的茎溃疡的程度(澳大利亚产量损失的主要原因和抗性评级基础,参见Sosnowski等人,33Australian Plant Pathol.401(2004))。几项研究已经基于子叶、叶、茎(溃疡病)上的病原体感染和田间条件下的植物存活来评估黑胫病抗性。由于缺少溃疡和断茎,油菜品系可以被认为出于本文描述的目的对存在的疾病压力具有抗性。
植物收获计数通过在所有八个地点的每个样地的两个一平方米的象限中对植物进行计数来估算。然后使用两个象限的平均值来估算每平方米的植物数量,并将其作为性状变量进行分析。通过将植物计数的地点平均值表示为植物萌发计数的地点平均值的%来计算植物存活率(%):植物存活率%=(植物收获计数×100)/植物萌发计数。
当种子在生理上成熟时收获籽粒,并使用样地收割机干燥(~7%)。对于每次试验,保持收获方向一致(即,每行的前后范围)以避免收获方向错误。确定每个样地的干籽粒重量并基于样地面积转化为t/ha的单位,并作为性状变量分析。
收获时和在实验室样品中的籽粒水分被记录并作为性状变量分析。使用手持式水分计在田间收获时直接分析大量样品。还使用基于澳大利亚油籽联合(AOF)方法4-1.5的烘箱干燥方法测定水分百分比。该方法包括将在敞口罐中的5克样品在130℃用烘箱干燥持续1小时。将样品在干燥器中冷却40分钟并称重,并将水分百分比确定为质量损失百分比。收获时的籽粒水分(%)在所有八个地点的品系处理之间显著变化。收获时的地点平均籽粒水分从9%至12%变化,这表明种子在相似的籽粒阶段收获。统计学上,对于转基因的品系,收获时籽粒水分的变异显著地在所有实验的栽培种表示的范围内。收获时的籽粒水分%也与开花时间相关,这样晚期开花品系(即ATR Wahoo和Monola515TT)的种子在所有地点在收获时间具有显著更高的籽粒水分%。实验室种子水分在所有地点的品系之间显著变化。但是,品系和跨位点之间的差异非常低,并且平均约7%。这表明不存在种子储存的混淆效应。实验室中,转基因品系的种子水分的变异显著地在非转基因品系表示的范围内(P<0.05)。
使用自旋锁核磁共振(NMR)光谱法对调节至6%水分的种子分析种子油含量(%)。简而言之,将5克至10克种子的样品称重到NMR管中并通过NMR光谱仪分析。通过使用已知油含量百分比的20个参考样品初始创建的软件校准来确定种子油结果,如通过所提取的油的重量确定的。种子油含量在所有八个地点的品系之间显著变化(P<0.05)。地点平均种子油%从37.0%到41.5%变化,通常低于种植地点的平均值,并且可能是在籽粒灌浆期间经历的低于平均值的降雨量和高于平均温度的结果。相对品系差异在各个地点非常一致。所有地点的转基因品系的种子油含量的变异与非转基因品系相比略低——平均约2%,这可能提供遗传改进的靶。较低的油含量可能在遗传学上不和转基因事件连锁,但可能是转化较低油含量栽培种即AV Jade的结果。
与非转基因栽培种的农艺性状相比的事件NS-B50027-4的农艺性状的表征的总结在表4中示出(分析型REML;对于所有性状,F pr<0.001Sig)。
Figure BDA0003648514750000931
脂肪酸使用溶剂萃取、然后同时进行皂化和甲基化并通过GC-FID分析来确定。简而言之,这涉及压碎种子样品,并将油从压碎的种子子样品中提取到溶剂中。溶剂在氮气下蒸发掉,并将油子样品在新溶剂中稀释。将等分试样与Meth Prep II(皂化/甲基化试剂)反应。将样品在40℃加热以加速反应,并且然后注射到使用BPX-70柱的GC-FID上,用于脂肪酸确定。脂肪酸被计算为油的组成%,其中每个脂肪酸峰的面积被确定为色谱图中所有脂肪酸峰的总和的百分比。这些估计值作为性状变量单独分析。评估以下的特定脂肪酸%:棕榈酸;硬脂酸;油酸和顺式异油酸(cis-vaccenic);亚油酸;α亚麻酸(ALA);花生四烯酸(也称为二十烷酸)和十八碳四烯酸(SDA);二十碳烯酸、二十碳-11-烯酸和二十碳-9-烯酸;芥酸和二十碳四烯酸(ETA);二十碳五烯酸(EPA);二十二碳五烯酸(DPA);和二十二碳六烯酸(DHA)。表5显示了种子脂肪酸含量的跨地点分析(所有值为百分比;分析型REML;对于所有性状,F pr<0.001Sig):
Figure BDA0003648514750000941
如通过GC-FID分析的种子中作为硬脂酸存在的脂肪酸的百分比在所有八个地点的品系之间显著变化。地点平均%硬脂酸显示出非常小的变异,并且范围从1.6%至2.2%。统计学上,对于转基因品系的%硬脂酸的变异显著地在所有地点的非转基因品系表示的范围内。
如通过GC-FID分析的种子中作为油酸和顺式-异油酸的脂肪酸%在所有八个地点的品系之间显著变化。地点平均%油酸和顺式-异油酸从51%至58%变化。统计学上,对于转基因品系的%油酸和顺式-异油酸的变异显著地低于由所有地点的非转基因品系表示的范围。该结果与转基因插入片段有关,并且不影响商业农艺性状或籽粒生产。
如使用GC-FID分析的种子中作为亚油酸存在的脂肪酸%在所有八个地点的品系之间显著变化。每个地点的平均%亚油酸范围为从13.4%至14.7%。来源于一个T2事件(植物B0050-027-18)的转基因姐妹品系(sib line)的亚油酸%的变异显著地(P<0.05)低于所有地点的栽培种和来源于其他事件姐妹株来源的姐妹株表示的范围。亚油酸%的显著差异可能与转基因的表达相关。亚油酸%的减少可能与转基因插入片段相关,但不影响农艺性状或商业规模的籽粒生产。
作为ALA、花生酸和SDA存在的的脂肪酸%在所有八个地点的品系之间显著变化。ALA、花生酸和SDA%的地点平均值在从5%至11%之间变化。转基因品系的ALA、花生酸和SDA%的变异显著地(P<0.05)高于全部实验的非转基因栽培种表示的变异。在某些地点观察到的这种性状的显著差异与转基因的表达相关。该结果与转基因插入片段相关,并且不影响商业农艺性状或籽粒生产。由于Fad基因中的SNP,与其他栽培种相比,特种高油酸栽培种(Monola515TT)产生显著(P<0.05)较低的ALA%。
作为二十碳烯酸、二十碳-11-烯酸和二十碳-9-烯酸存在的脂肪酸的%在所有八个地点的品系之间显著变化。二十碳烯酸、二十碳-11-烯酸和二十碳-9-烯酸%的地点平均值的范围从2.0%至2.5%。转基因品系的二十碳烯酸、二十碳-11-烯酸和二十碳-9-烯酸%的变异显著地(P<0.05)高于所有实验的非转基因栽培种表示的变异。该结果与转基因插入片段相关,并且不影响商业农艺性状或籽粒生产。
作为芥酸和ETA存在的脂肪酸的%在五个地点记录,并且变化通常接近0%。与转基因插入片段相关的结果不在商业上影响农艺性状或籽粒生产。
种子LC-ω3多不饱和脂肪酸(LC-PUFA),特别是EPA、DPA和DHA被计算为每个样地样品的百分比,并作为性状变异分析,其中LC-PUFA=EPA%+DPA%+DHA%。针对每个样地计算预测的DHA,以Kg/ha为单位,并将其作为性状变量进行分析:DHA kg/ha=(油%x 0.01)x(DHA%x 0.01)x籽粒产量(t/ha)x 1000。对于每块样地计算预测的LC-PUFA,单位为Kg/ha,并将其作为性状变量分析:DHA kg/ha=(油%x 0.01)x(LC-PUFA%x 0.01)x籽粒产量(t/ha)x 1000。
作为EPA的脂肪酸的%在所有八个地点的品系中显著地(P<0.05)变化。转基因品系的%的变异显著地(P<0.05)高于非转基因栽培种表示的变异。与转基因插入片段相关的这一结果不影响农艺性状或籽粒生产,但确实使籽粒更有价值。
作为DPA的脂肪酸的%在所有地点的品系之间显著地(P<0.05)变化。转基因品系的%的变异显著地(P<0.05)高于所有地点的非转基因栽培种表示的变异。该结果与转基因插入片段相关,并且将不在商业上影响农艺性状或籽粒生产。
作为DHA的脂肪酸的%在所有八个地点的品系之间显著变化。转基因品系的%的变异显著地(P<0.05)高于所有地点的非转基因栽培种表示的变异。该结果与转基因插入片段相关,并且不影响商业农艺性状或籽粒生产。转基因姐妹品系之间的方差用作选择的基础。跨地点的DHA百分比和将优良种事件NS-B50027-4与非转基因栽培种进行比较(如通过GC-FID确定的)在表6中示出(分析型REML;对于所有地点,F pr<0.001Sig)。
Figure BDA0003648514750000961
基于脂肪酸谱、种子油%和籽粒产量计算的表示为Kg/ha的预测的DHA在所有地点的品系之间显著变化(P<0.05)。转基因品系的%的变异显著地(P<0.05)高于所有位置的非转基因品系表示的变异。该结果与转基因插入片段相关,并且除了使籽粒更有价值外,不影响商业的农艺性状或籽粒生产。转基因姐妹品系之间的方差用作选择的基础。在每面积的产量(kg/ha)单位方面DHA的稳定性高,这是因为种子油和种子中产生的DHA%的跨地点变异低。跨地点的DHA的预测的产量(Kg/ha)以及将优良种事件NS-B50027-4与非转基因栽培种的比较在表7中示出(分析型REML;对于所有地点,F pr<0.001Sig):
Figure BDA0003648514750000971
关于种子LC-PUFAω3——EPA、DPA和DHA百分比——在所有八个地点的品系中LC-PUFA百分比显著变化(P<0.05)。对于转基因品系的%的变异显著地(P<0.05)高于所有试验的栽培种表示的变异。该结果与转基因插入片段相关,并且除了增加籽粒的价值外,不影响农艺性状或商业的籽粒生产。转基因姐妹品系之间的变异用作选择的基础。在非转基因品系中观察到的痕量水平的LC-PUFA可能与花粉流动、种子移动或GC-FID误差相关。
表8示出了通过GC-FID测定的百分比值(分析型REML;对于所有地点,F pr<0.001Sig)
Figure BDA0003648514750000972
Figure BDA0003648514750000981
基于脂肪酸谱、种子油%和籽粒产量计算的表示为Kg/ha的预测的LC-PUFA,在所有地点的不同处理品系之间显著变化。统计学上,转基因品系的%的变异显著高于所有实验的栽培种表示的变异。该结果与转基因插入片段相关,并且不在商业上影响农艺性状和子粒产量。转基因姐妹品系之间的方差用作选择的基础。栽培种种子中的痕量水平可能与花粉流动、种子移动或GC-FID误差有关。由于种子油和种子中产生的%DHA的低的跨地点变异,在每面积产量的单位(Kg/ha)方面,LC-PUFA具有高稳定性。表9示出了预测的Kg/ha LC-PUFA值(在所有地点F pr<0.001)。
Figure BDA0003648514750000982
Figure BDA0003648514750000991
对于每个栽培地点,将使用NMR确定的种子油含量制表并且在表10中显示(单位为百分比;分析型REML;对于所有地点,Fpr<0.001Sig):
Figure BDA0003648514750000992
NS-B50027-4种子的脂肪酸含量的另外的分析在表11中显示:
Figure BDA0003648514750000993
Figure BDA0003648514750001001
Figure BDA0003648514750001002
Figure BDA0003648514750001003
Figure BDA0003648514750001011
表11中的数据证实,NS-B50027-4的种子除了LC-ω3脂肪酸外,还含有比常规油菜品种实质上更多的ALA。也可参见表5。尽管ALA不是LC-PUFA,但它是ω3脂肪酸。表11中NS-B50027-4种子油中ω3/ω6脂肪酸的比率为约3.59至约6.12;常规菜子油中ω3/ω6脂肪酸的比率为约0.5。Patterson等人,J.Nutr.Metab.(2012)。
表12显示了关于来自在澳大利亚实验培养中生长的16代优良种事件NS-B50027-4的种子中DHA和LC-PUFA百分比的数据。在澳大利亚进行的另外的田间试验生成了具有9.6%DHA和10.1%LC-PUFA的大量种子:
Figure BDA0003648514750001012
此外,在2016年在两个不同地点的受控实验条件下测试了NS-B50027-4在加拿大生长的能力。表13显示了将NS-B50027-4与几种非转基因油菜品系比较的农艺性状和产量数据:
Figure BDA0003648514750001021
因为油菜品系NS-B50027-4基本上是均一的,所以其可以通过种植这种品系的种子、在充分分离情况下自花授粉或近缘授粉条件下使所得油菜植物生长来繁殖,并使用常规农艺方法收获所得的种子。
实施例2.竞争性等位基因特异性PCR(KASP)检测
转基因在油菜中的表型表达由转基因盒本身的结构及其在植物基因组中的插入位置二者决定:转基因在植物基因组的特定位置的存在可能影响转基因的表达和整体表型。在植物基因组中掺入重组DNA分子通常是由细胞或组织的转化(或由另一种遗传操作)引起的。掺入的特定位点可能是随机的或预定的(如果使用了靶向整合方法)。通过遗传操作将商业上感兴趣的性状的农艺上或工业上成功的引入可以是依赖于不同因素的漫长过程。遗传转化的植物的实际转化和再生只是包括广泛的遗传表征、育种和田间试验评估,最终导致选择优良种事件的一系列选择步骤中的第一步。
NS-B50027-4是按照广泛选择育种和田间试验开发的品系,并且提供了产生至少约7%-15%DHA的油菜栽培种。遗传分析表明,NS-B50027-4在染色体A02上具有转基因插入片段,并且在染色体A05上具有另一个转基因插入片段。A05上的插入片段包含头对头对齐(RB-LB:LB-RB)的两个完整的以T-DNA为边界的八个基因的盒(Micpu-Δ6D、Pyrco-Δ5E、Pavsa-Δ5D、Picpa-ω3D、Pavsa-Δ4D、Lack1-Δ12D、Pyrco-Δ6E和PAT标记)。染色体A02上的插入片段包含一组四个基因Micpu-Δ6D、Pyrco-Δ5E、Pavsa-Δ5D和Picpa-ω3D。令人惊讶的是,分离杂交显示染色体A02和染色体A05二者上的插入片段都是达到约11%的DHA产量所需要的。
将来自DHA油菜基因渗入育种的8个不同的BC和F2群体的约1200个子代用于基于Woodland的Nuseed Molecular Lab开发的LGC Octopure SOP的DNA提取。简而言之,将直径为0.25英寸的两个冻干叶圆片在300μL的DNA提取缓冲液(100mM Tris-HCl,PH 8.0;25mMEDTA,PH 8.0;0.5%SDS,1.5M NaCl)中,使用GenoGrinder以1,400rpm研磨5分钟。在55℃水浴中孵育45分钟并以4,500rpm离心30分钟后,将50μL的上清液转移到100μL的具有磁性sbeadex珠的LGC结合缓冲液中。结合并洗涤后,将DNA洗脱至80μL的LGC DNA洗脱缓冲液中。
DNA浓度用NanoDrop 8000(Thermo Scientific)测量并且在5.0ng/μL-20.0ng/μL的范围内,平均为10.0ng/μL。将DNA样品稀释1倍。对于每个反应,将2.0μL(~5.0ng/μL)基因组DNA样品和2μL具有引物的主混合物分配至384孔板用于KASP基因分型。
除了来自DHA油菜基因渗入群体的子代,将八个对照包括在基因分型中。这些包括两个非GMO对照(Dwarf和AV Jade)、两个半合子对照(2.5ng Av Jade或2.5ng dwarf+2.5ngB0050-027-18-20-12-19);两个事件阳性对照(B0050-027-18-20-12-19)和四个非模板对照(NTC)。阳性对照(T5植物B0050-027-18-20-12-19)之前被用于通过测序表征DHA油菜事件。
开发了KASP测定以提供简单、经济、高通量和灵活的方法来检测和监测8种转基因和4种NS-B50027-4特异性连接,并进一步促进育种程序中的NS-B50027-4基因渗入。根据具有修改的制造商(LGC Ltd.,Middlesex,UK)的标准方案进行KASPTM基因分型化学、测定设计、基因分型和评分。
序列信息被上传到LGC Kraken Workflow Manager,并且使用它的测定设计程序Primer Picker设计KASP测定。典型的KASP测定包括两个等位基因特异性引物(用于转基因等位基因的引物_等位基因X和用于非转基因、野生型等位基因的引物_等位基因Y)和一种共同基因座特异性引物(引物_共同)。引物_等位基因X与荧光FAM缔合,并且引物_等位基因Y与荧光HEX缔合。
靶向连接的大多数测定是这种类型的三引物测定(表14)。为了检测DHA油菜,除了上文提及的常规三引物测定之外,还开发了四引物测定。四引物测定在反应中具有转基因等位基因特异性的引物_等位基因X、野生型等位基因特异性的引物_等位基因Y、ω3基因特异性的引物_共同和野生型特异性的引物_共同2。为了检测ω3盒中的8个基因,在每个测定中仅使用两个引物,引物_等位基因X和引物_共同(双引物测定);两种引物均为ω3基因特异性的(表14):
Figure BDA0003648514750001051
Figure BDA0003648514750001061
KASP基因分型系统需要两个组分:测定混合物和主混合物。测定混合物是所需的引物的混合物,并且主混合物包含所有其他所需组分,包括PCR缓冲液、通用荧光报告系统和Taq聚合酶。
KASP反应以4.0μL的体积进行,包括2.0μL(10.0ng)的基因组DNA、2.0μL的2x KASP主混合物和0.06μL的测定(引物)混合物。对于双引物测定,测定(引物)混合物是12μM的等位基因特异性的引物_等位基因X和12μM的引物_共同的组合,对于三引物测定,测定(引物)混合物是12μM的等位基因特异性的引物_等位基因X、12μM的等位基因特异性的引物_等位基因Y、和30μM的引物_共同的组合,并且对于四引物测定,测定(引物)混合物是12μM的等位基因特异性的引物_等位基因X、12μM的等位基因特异性的引物_等位基因Y、12μM的引物_共同和12μM引物_共同2的组合。
反应在LGC Hydrocycler 16中的384孔板中按照以下循环参数进行:94℃15分钟的1个循环,然后94℃30秒和64℃-57℃(每个循环降低1.0℃)60秒的8个循环,并且然后是94℃30秒和57℃60秒的30个循环。如果尚未获得清晰的基因分型簇,则通过94℃30秒和57℃60秒的三个额外循环将板进一步热循环。
在完成KASP反应后,转基因等位基因通过引物_等位基因X用FAM标记,并且非转基因野生型等位基因通过引物_等位基因Y用HEX标记。荧光信号在PheraStar酶标仪中读取,激发波长为485nm,并且FAM的发射波长为520nm且HEX的发射波长为535nm/556nm。使用LGCKraken数据库分析数据。
开发基因特异性的显性(NBN01-NBN08;一个测定/基因)用于检测构建体盒中的8种基因。开发靶向A02上的插入片段的上游连接(NBN57、NBN68、NBN58、NBN85和NBN14)和下游连接(NBN16、NBN62和NBN64)以及靶向A05上的插入片段的上游连接(NBN52、NBN51、NBN09、NBN50、NBN48和NBN10)和下游连接(NBN83、NBN82、NBN84、NBN66、NBN41和NBN43)的插入片段特异性、共显性KASP测定,并用来自NS-B50027-4基因渗入群体的1200个子代验证(表14)。超过10,000个样品已经使用这些标记物进行基因分型。
开发并验证了30个竞争等位基因特异性PCR(KASP)测定,所述测定针对DHA油菜事件NS-B50027-4的两个插入片段的8个基因和4个连接。这些测定提供了简单、经济、高通量和灵活的用于在育种计划中检测和监测NS-B50027-4的方法。
实施例3.NS-B50027-4和非转基因油菜的详细比较
将来自2014年至2016年实验田地块中油菜种子产量的数据制成表格。DHA和总EPA+DPA+DHA的范围基于几个实验田的观察结果。NS-B50027-4和非转基因“对照”油菜二者中主要脂肪酸的含量可以根据生长条件而变化几个百分点。在下表15中,“0.0”可以指被鉴定为低于准确确定组分的量所需要的量的痕量:
Figure BDA0003648514750001081
Figure BDA0003648514750001082
将从NS-B50027-4的实验培养中收获的种子压碎并通过冷压获得油。将从亲本等基因系AV Jade收获的种子进行类似处理,每种油的含量如表16所示地比较:
Figure BDA0003648514750001091
Figure BDA0003648514750001101
根据布达佩斯条约,申请人已将油菜NS-B50027-4的至少2500个种子保藏在位于美国弗吉尼亚州马纳萨斯大学楼10801,20110-2209的美国典型培养物保藏中心
Figure BDA0003648514750001102
登录号PTA-123186,并且种子的生存力由
Figure BDA0003648514750001103
确认。在本申请未决期间,可向专员请求来获得本发明;在授予专利权后,对公众的可得性的所有限制均不可撤销地撤销;品系NS-B50027-4的保藏将在ATCC保藏机构(一个公共保藏结构)持续30年的时间段、或最近一次请求后5年、或持续专利的有效期,以较迟者为准;并且如果在此期间变得不能存活的,则将被替换。在保藏时已测试种子的生存力。申请人已满足37C.F.R.§§1.801-1.809的所有要求。申请人对保藏材料从ATCC的可得性没有限制;但是,申请人无权放弃法律对生物材料转移或商业运输的任何限制。根据本专利或“植物品种保护法”(7U.S.C.§2321et seq.),申请人不会豁免任何侵犯权利的行为。
尽管出于清楚和理解的目的通过说明和实施例详细描述了前述实施方案,但本领域技术人员将清楚某些变化和修饰,诸如单基因修饰和突变、体细胞克隆变体、选自本发明近交品系的植物的大群体的变体个体等可以在本发明的范围内实施,本发明的范围仅由所附权利要求限定。
序列表
<110> 纽希得营养澳大利亚私人有限公司
<120> 优良种事件油菜NS-B50027-4
<130> 87376.0002
<150> 62/351,246
<151> 2016-06-16
<160> 66
<170> PatentIn version 3.5
<210> 1
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 1
gaaggtgacc aagttcatgc tccaagcacc gtagtaagag agca 44
<210> 2
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 2
gctaagaagt ggggactcaa ctacaa 26
<210> 3
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 3
gaaggtgacc aagttcatgc tgctcttgct ggaactcttg g 41
<210> 4
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 4
gggttagcca cattgtaggt aacgta 26
<210> 5
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 5
gaaggtgacc aagttcatgc ttaagagaca ccctggtgga aaga 44
<210> 6
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 6
tagcatcagt tccaacttgg taagcaat 28
<210> 7
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 7
gaaggtgacc aagttcatgc tgaacacgta agcagaccaa gcag 44
<210> 8
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 8
ccctcttctc cctaacgaat tcctt 25
<210> 9
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 9
gaaggtgacc aagttcatgc tgaggaacct gttgctgctg atga 44
<210> 10
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 10
gcgatcctag cacaaagttg aaggta 26
<210> 11
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 11
gaaggtgacc aagttcatgc tggatggatc gcttacctct tcgt 44
<210> 12
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 12
cagggtaagg ttgtcctgta acgtt 25
<210> 13
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 13
gaaggtgacc aagttcatgc tctattggat ggggactcaa gc 42
<210> 14
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 14
gggagatcct tagtagcaga agagat 26
<210> 15
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 15
gaaggtgacc aagttcatgc tcctgagagg cgtcctgttg aaat 44
<210> 16
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 16
aacagcagcc atatcagcag cagta 25
<210> 17
<211> 45
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 17
gaaggtgacc aagttcatgc ttgttcttgg gtgggtctgt ccttc 45
<210> 18
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 18
gaaggtcgga gtcaacggat tgtgttcttg ggtgggtctg tcctta 46
<210> 19
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 19
atccactagc agattgtcgt ttccc 25
<210> 20
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 20
gttggctaag gtcacggtgg ag 22
<210> 21
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 21
gaaggtgacc aagttcatgc tccgccttca gtttaaacta tcagtgtt 48
<210> 22
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 22
gaaggtcgga gtcaacggat tggtcacggt ggaggtcacc a 41
<210> 23
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 23
ggtgtgttct tgggtgggtc tg 22
<210> 24
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 24
gaaggtgacc aagttcatgc tacttttttt tcaactgttg gctaaggta 49
<210> 25
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 25
gaaggtcgga gtcaacggat tacttttttt tcaactgttg gctaaggtc 49
<210> 26
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 26
gtgtgttctt gggtgggtct g 21
<210> 27
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 27
gtcgtttccc gccttcagtt t 21
<210> 28
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 28
gaaggtgacc aagttcatgc taaactatca gtgtttgaac acctcc 46
<210> 29
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 29
gaaggtcgga gtcaacggat tacaacttgt cgtgctacac acct 44
<210> 30
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 30
ggttgtgtga aaacgtgtga gc 22
<210> 31
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 31
gaaggtgacc aagttcatgc tcttttagct aaataagagg ttctgtatac t 51
<210> 32
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 32
gaaggtcgga gtcaacggat tcttttagct aaataagagg ttctgtatac a 51
<210> 33
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 33
gattgtgatt ccgggcagt 19
<210> 34
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 34
gtgtgaaaac gtgtgagcaa t 21
<210> 35
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 35
gaaggtgacc aagttcatgc tttgtgattc cgggcagtag 40
<210> 36
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 36
gaaggtcgga gtcaacggat ttgtgagcaa ttgttggagg t 41
<210> 37
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> KASP引物
<400> 37
tcttatcaac attaagaaca taatctttta g 31
<210> 38
<211> 15
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 芸薹属(Brassica)染色体A02上的插入缺失
<400> 38
gtagcacgac aagtt 15
<210> 39
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 插入缺失芸薹属染色体A05
<400> 39
cacggtggag gtcaccatgt 20
<210> 40
<211> 15004
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 转基因插入片段和芸薹属侧翼区
<400> 40
gagccttgag tgctactttg ggaacaaaaa cttggtttga tgctatccta gtctttttct 60
cttttataaa ctattattag ataaaaacta aaaaatagta tttatgagat ttgtcttttt 120
ttcacaatat aaattatttt aggtataaaa ataaataata gaattagtat tattagatat 180
ataaaataca tttaatttaa ttaataatat aactgtaaag tataattaag ttatacaata 240
tctaataaat ataaaaattg tattaaaata tgggaaaaca atattatatt ttaaagcgat 300
cttactcgat ctctctttga tcccaaagtt ttcattcctt ttaattatat ttgttgcaga 360
atattaaaac cagtgatttc tggggtttga taggattaag acacgatcgc agagaaagta 420
gaatcaatcg tggaagggaa gggatattcg aaaccctaat ttcgatcgta tccccatctt 480
ctacgaaagc atcgatcgac ttttttctga ttcagtgaga gtttgaaatc aaagtttgat 540
tttttcgacc tgatgggttt cttaaagaag ttaacgggga ttttcgggtt cgggcacaac 600
gatggtgggc acggagctgc tgcgagagac gaagatggtg aaggggataa cactggatca 660
gtctctgagg acggagataa acgccgggag ggtaatcagg caaggttccg tgaaaccgga 720
cttccaagga ggggttttgg agttccggtt caagtagccg tcgaacggtc tagtcctggt 780
cctattcttc agccttgtgc tgcttctgac ggtggagttc aggtttgtct ttctttcatg 840
gttgtgattt taactgtgta gaagtctagg gactgaagaa attaatgaga atttgagggt 900
tgctagtttt gattctgatc ttgtaatgtg gctacagtgt tgtacttgtc ttgttgcagg 960
atcgttaaat ccatttgttt ggttccgatc atcctatgtt agttggtaaa attggtcttg 1020
tgagtttgtt taagttgttt ttgtgtcttc attcattttc taagcttagc attgatgaac 1080
agttgaattt agaatctttg ttctaagctt aacattaatg aatatcgaat ctttgttcta 1140
ctcagtcctt tctttgtttt tggttgtgat atgttctcgt ttcaacgtag tttatgttct 1200
tcttgtgatt ggctttacat tctgcacggt ttccgcttta gttaggtgtc tgcattatag 1260
ttagttcatt gctatcttaa attctctgtt cattcatctc tatatatcaa attaaagagt 1320
ggcagtgaag tttatgacag gacacgatat atgttttagc ttgattagtt gcggttaaag 1380
caaaaagttt ttgtttcact ctgtctgcta cagaacctgt aatttagaaa tgatgatgga 1440
tctcatgtct taacggtttc gtattcatca tgagtcacga ggctgctata gagtttgaat 1500
cttaattggt tctgttgttg gggaaagaca ataatccagt ctttaagaag ctagtggggt 1560
tgattcatcc ccaagactat tcgattgtcc aaacgcattg atatgttttt tttaatcaag 1620
tttttgttga tggcaataaa ctaacatccc agcatagtta ttgactcgac ttagttttac 1680
cattagggac tacgatggta ctcaatgcgg ctaaggattg atgaagatgg agatgttgca 1740
gatgagttct tggaagatga taactgtaag actttgccca gaaaatgcaa aacaaaagct 1800
gcaaaagtga gaggtttagt gatatcttct gatgggaaac ttcagccatt aatgcattga 1860
gcagtgaaca ccaaggataa atatttactg attagtgtgt gattgaatca aagaaaggtt 1920
agaatctggt tttcatttag ccattcaatc tcgatgtaaa atcggttaga ttctggttgt 1980
tgatacttga gaacttgaaa tgttttgtaa ctgtgaattt tgttttgaaa atagacaagt 2040
gaatctgttt ggggttgtgt gaaaacgtgt gagcaattgt tggaggtgtt caaacactga 2100
tagtttaaac tgaaggcggg aaacgacaat ctgctagtgg atctcccagt cacgacgttg 2160
taaaacgggc gccccgcgga aagcttgcgg ccgcggtacc gcccgttcga ctcagatctt 2220
ccaaggcctc gtctccgagt ccgctgcttc tcgccgcgcc gatcacttct ccgccgccaa 2280
caaggcttgt agttaatagg aatcattcag ggattgtgat tccgggcagt agtaattaat 2340
aatatagtat tagtatagat aatatgtttc gtttgggatc tttggaacgt tgctctgttc 2400
cttgttgttc attttaaagc ttttgaggga tagttgcaga actgttcggt gatgcttcat 2460
cctctcaaga actagatttg ggtaaagaaa catccatgca tggatatgga atgttgttct 2520
tccgattgga gattatttta taaaatttaa aattcatgat ttaaaaaaac acataaaaac 2580
cacaaaattc atgatttatt gacaatacga tacaaaatta gcaccaccgg ctactggctc 2640
attacacatt tccccttccc ctcattctca ctttgtggct ttattattat tattattaca 2700
tatattttac cgttattatt tcacgtcaca taagcttgtt aattaatcat tagtgagcct 2760
tctcagcctt tccgttaacg tagtagtgct gtcccacctt atcaaggtta gagaaagtag 2820
ccttccaagc accgtagtaa gagagcacct tgtagttgag tccccacttc ttagcgaaag 2880
gaacgaatct tctgctaacc tcaggctgtc tgaattgagg catatcaggg aagaggtggt 2940
ggataacctg acagttaagg tatcccataa gccagttcac gtatcctcta gaaggatcga 3000
tatcaacggt gtgatcaaca gcgtagttaa cccaagaaag gtgcttatca gatggaacaa 3060
cagggaggtg agtatgagaa gtagagaagt gagcgaaaag gtacatgtaa gcgatccagt 3120
ttccgaaagt gaaccaccag taagcaacag gccaagagta tccagtagca agcttgataa 3180
cagcggttct aacaacatga gaaacgagca tccaagaagc ctcttcgtag ttcttcttac 3240
ggagaacttg tctagggtgg agaacgtaga tccagaaagc ttgaacaaga agtccagagg 3300
taacaggaac gaaagtccaa gcttgaagtc tagcccaagc tctagagaat cctctaggtc 3360
tgttatcctc aacagcagtg ttgaagaaag ccacagcagg agtggtatca agatccatat 3420
cgtgtctaac cttttgaggg gtagcatggt gcttgttatg catctggttc cacatctcac 3480
cagaagtaga aagtccgaat ccacaagtca tagcctgaag tctcttgtcc acgtaaacag 3540
atccggtaag agagttatgt ccaccctcat gttgaaccca tccacatcta gctccgaaga 3600
aagcaccgta aacaacagaa gcaatgatag ggtatccagc gtacataaga gcagttccaa 3660
gagcgaatgt agcaagaagc tcgagaagtc tgtaagccac atgggtgata gaaggcttga 3720
agaatccatc tctctcaagc tcagcacgcc atctagcgaa atcctcaagc ataggagcat 3780
cctcagactc agatctcttg atctcagcag gtctagaagg caaagctcta agcatcttcc 3840
aagccttgag agaacgcatg tggaattctt tgaaagcctc agtagcatca gcaccagtgt 3900
tagcaagcat gtagaagatc acagatccac cagggtgctt gaagttagtc acatcgtact 3960
caacgtcctc aactctaacc catctagtct cgaaagtagc agcaagctca tgaggctcaa 4020
gagtcttaag atcaacagga gcagtagaag catccttagc atcaagagcc tcagcagaag 4080
atttagacct ggtaagtgga gatctaggag aagatcttcc atcagtctta ggagggcaca 4140
tggtatggta attgtaaatg taattgtaat gttgtttgtt gtttgttgtt gttggtaatt 4200
gttgtaaaat taattaagtg ggtatctttt ggatggataa gcaagtagtg atgatgttct 4260
aggtgaagtg atgggggtgt tttatagcgg gagatggtga aatggatggt cgccacataa 4320
gaaatggagg ggaagggttc ttgcgccatt cttcagtttg catggatgca tgggtttcat 4380
tttgtaacac gtaataagga caatgaagtg caggtgtctc tcaagtttca gaggggatat 4440
gtggacagaa gaagaacggc gatgatattg atggaaatgg ccatctagtg tgaatctatt 4500
cggttgataa tactagtgca ttttggccgt taatcccttc aattaactgc acaaacttca 4560
gttgagtatt gattatttga ttataggttc tgtaaacaca ataccaagtt tatttagagg 4620
ggagacatac aaatagtttc gatataaata atagagtggt taaacttagt tattaaaact 4680
atatataaag tctaaaagtt aaattatttt tttaattgca aatatataaa gtctaaaggg 4740
gttacattat ttcttaagag atgtaactct gttggaatct gacttaatcc gtctcatcac 4800
tctggtttcc agttctaatc taatgaattg ttttctgcca aagaatttga agcaagaagt 4860
aaattgatca atgccgtcaa cccacaccaa accgtcaacc cactaccatc gccgcggaga 4920
cccccaaact caacctccac ccatcggtaa gaagcacagg gcagcccgca ccaccaccaa 4980
tttggcgtgc atgacaccta gggacttggc acgggaggcg gcgcacgtgg atgcaaatga 5040
cgggatatca gatgacagga aacgacgttg agagaccata cgatgtagaa tatgagctca 5100
ccatcaacga gaaactagga aaatcacaaa aaaaacaact ctcgtaattg tacgagtggc 5160
acagatgggt ctgcctcaac atatctctaa tacggcgaag cctgcccaac acgtagttgc 5220
cggaatccgg tgtggagctc acgactctga aagataggcg cttcctgttt cgtttcgctc 5280
acccactgga cgtccgtcat gtgatggatt tcggtcattg gtttgctgac aaccacattc 5340
tgaagctcca tgagatgagt cttcacaata ggtcctgctc aataccgtgg agttatggtt 5400
gcaagtccat aacttgccgt tcgaatattt tgcggagcca gtcggacggg aattggcgag 5460
ctcggctgac acctataaag gccatgacaa gaagaaccaa aagttcttcc ctaatgcttt 5520
catgaggctt cgggtcgtta tggatgtcgg aaaacccctc ttgaaggaac gagacgttat 5580
tatgcatgac ggtaagacta ttacttgtca gtataagtat gaaagattac ctgtcttctg 5640
ctttgtttgt ggattgattg gacacgttga aaaaaaatgt gcacttcgat ttcaatactc 5700
agagatcgac ttcccttttc tctaggagta ttcgatcaag gcattaacat ggaaggaagc 5760
tcaagctcta aaggcttcac aatggaacct gaaaaatttc aacaagccta aactgaaatc 5820
gaagtcaaat cacccaaccg ggagctctaa atcagcaaac actcctcctc cacagtatcc 5880
aatcatcgtg cacgatgctc caggtattgc aagccaggta ttgcaagcta ggagtaggat 5940
agagacctta aacgtcgttg gtgtgaagag tcatcttcag acctaatgga gatagatgta 6000
gacggcggca cgaagactct gaaacaccag aaaggctagt ccaggataag gatctgctat 6060
cccaactgac ctctcgttag tcccaaggcc tctcaactag agcaggagga aggatggtca 6120
caagactagg ataatgatgt ttccaatatg aacctgaatg tccatagcta atttttttag 6180
tcttgcttct gcactttttg tttattatgt tctggtgact atgttattta cccttgtccg 6240
tatgcttgag ggtaccctag tagattggtt ggttggtttc catgtaccag aaggcttacc 6300
ctattagttg aaagttgaaa ctttgttccc tactcaattc ctagttgtgt aaatgtatgt 6360
atatgtaatg tgtataaaac gtagtactta aatgactagg agtggttctt gagaccgatg 6420
agagatggga gcagaactaa agatgatgac ataattaaga acgaatttga aaggctctta 6480
ggtttgaatc ctattcgaga atgtttttgt caaagatagt ggcgattttg aaccaaagaa 6540
aacatttaaa aaatcagtat ccggttacgt tcatgcaaat agaaagtggt ctaggatctg 6600
attgtaattt tagacttaaa gagtctctta agattcaatc ctggctgtgt acaaaactac 6660
aaataatata ttttagacta tttggcctta actaaacttc cactcattat ttactgaggt 6720
tagagaatag acttgcgaat aaacacattc ccgagaaata ctcatgatcc cataattagt 6780
cagagggtat gccaatcaga tctaagaaca cacattccct caaattttaa tgcacatgta 6840
atcatagttt agcacaattc aaaaataatg tagtattaaa gacagaaatt tgtagacttt 6900
tttttggcgt taaaagaaga ctaagtttat acgtacattt tattttaagt ggaaaaccga 6960
aattttccat cgaaatatat gaatttagta tatatatttc tgcaatgtac tattttgcta 7020
ttttggcaac tttcagtgga ctactacttt attacaatgt gtatggatgc atgagtttga 7080
gtatacacat gtctaaatgc atgctttgta aaacgtaacg gaccacaaaa gaggatccat 7140
acaaatacat ctcatagctt cctccattat tttccgacac aaacagagca ttttacaaca 7200
attaccaaca acaacaaaca acaaacaaca ttacaattac atttacaatt accataccat 7260
ggcctctatc gctatccctg ctgctcttgc tggaactctt ggatacgtta cctacaatgt 7320
ggctaaccct gatatcccag cttctgagaa agttcctgct tacttcatgc aggttgagta 7380
ctggggacct actatcggaa ctattggata cctcctcttc atctacttcg gaaagcgtat 7440
catgcagaac agatctcaac ctttcggact caagaacgct atgctcgttt acaacttcta 7500
ccagaccttc ttcaacagct actgcatcta ccttttcgtt acttctcata gggctcaggg 7560
acttaaggtt tggggaaaca tccctgatat gactgctaac tcttggggaa tctctcaggt 7620
tatctggctt cactacaaca acaagtacgt tgagcttctc gacaccttct tcatggtgat 7680
gaggaagaag ttcgaccagc tttctttcct tcacatctac caccacactc ttctcatctg 7740
gtcatggttc gttgttatga agcttgagcc tgttggagat tgctacttcg gatcttctgt 7800
taacaccttc gtgcacgtga tcatgtactc ttactacgga cttgctgctc ttggagttaa 7860
ctgtttctgg aagaagtaca tcacccagat ccagatgctt cagttctgta tctgtgcttc 7920
tcactctatc tacaccgctt acgttcagaa taccgctttc tggcttcctt accttcaact 7980
ctgggttatg gtgaacatgt tcgttctctt cgccaacttc taccgtaaga ggtacaagtc 8040
taagggtgct aagaagcagt gataaggcgc gcggcgcgcc gggccgccgc catgtgacag 8100
atcgaaggaa gaaagtgtaa taagacgact ctcactactc gatcgctagt gattgtcatt 8160
gttatatata ataatgttat ctttcacaac ttatcgtaat gcatgtgaaa ctataacaca 8220
ttaatcctac ttgtcatatg ataacactct ccccatttaa aactcttgtc aatttaaaga 8280
tataagattc tttaaatgat taaaaaaaat atattataaa ttcaatcact cctactaata 8340
aattattaat tattatttat tgattaaaaa aatacttata ctaatttagt ctgaatagaa 8400
taattagatt ctagtctcat ccccttttaa accaacttag taaacgtttt tttttttaat 8460
tttatgaagt taagttttta ccttgttttt aaaaagaatc gttcataaga tgccatgcca 8520
gaacattagc tacacgttac acatagcatg cagccgcgga gaattgtttt tcttcgccac 8580
ttgtcactcc cttcaaacac ctaagagctt ctctctcaca gcacacacat acaatcacat 8640
gcgtgcatgc attattacac gtgatcgcca tgcaaatctc ctttatagcc tataaattaa 8700
ctcatccgct tcactcttta ctcaaaccaa aactcatcga tacaaacaag attaaaaaca 8760
tacacgagga tcttttacaa caattaccaa caacaacaaa caacaaacaa cattacaatt 8820
acatttacaa ttaccatacc atgcctccaa gggactctta ctcttatgct gctcctcctt 8880
ctgctcaact tcacgaagtt gatactcctc aagagcacga caagaaagag cttgttatcg 8940
gagatagggc ttacgatgtt accaacttcg ttaagagaca ccctggtgga aagatcattg 9000
cttaccaagt tggaactgat gctaccgatg cttacaagca gttccatgtt agatctgcta 9060
aggctgacaa gatgcttaag tctcttcctt ctcgtcctgt tcacaaggga tactctccaa 9120
gaagggctga tcttatcgct gatttccaag agttcaccaa gcaacttgag gctgagggaa 9180
tgttcgagcc ttctcttcct catgttgctt acagacttgc tgaggttatc gctatgcatg 9240
ttgctggtgc tgctcttatc tggcatggat acactttcgc tggaatcgct atgcttggag 9300
ttgttcaggg aagatgtgga tggcttatgc atgagggtgg acattactct ctcactggaa 9360
acattgcttt cgacagagct atccaagttg cttgttacgg acttggatgt ggaatgtctg 9420
gtgcttggtg gcgtaaccag cataacaagc accatgctac tcctcaaaag cttcagcacg 9480
atgttgatct tgataccctt cctctcgttg ctttccatga gagaatcgct gctaaggtta 9540
agtctcctgc tatgaaggct tggctttcta tgcaagctaa gcttttcgct cctgttacca 9600
ctcttcttgt tgctcttgga tggcagcttt accttcatcc tagacacatg ctcaggacta 9660
agcactacga tgagcttgct atgctcggaa tcagatacgg acttgttgga taccttgctg 9720
ctaactacgg tgctggatac gttctcgctt gttaccttct ttacgttcag cttggagcta 9780
tgtacatctt ctgcaacttc gctgtttctc atactcacct ccctgttgtt gagcctaacg 9840
agcatgctac ttgggttgag tacgctgcta accacactac taactgttct ccatcttggt 9900
ggtgtgattg gtggatgtct taccttaact accagatcga gcaccacctt tacccttcta 9960
tgcctcaatt cagacaccct aagatcgctc ctagagttaa gcagcttttc gagaagcacg 10020
gacttcacta cgatgttaga ggatacttcg aggctatggc tgatactttc gctaaccttg 10080
ataacgttgc ccatgctcct gagaagaaaa tgcagtaatg agatcgttca aacatttggc 10140
aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc atataatttc 10200
tgttgaatta cgttaagcac gtaataatta acatgtaatg catgacgtta tttatgagat 10260
gggtttttat gattagagtc ccgcaattat acatttaata cgcgatagaa aacaaaatat 10320
agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta gatcggtcga 10380
ttaaaaatcc caattatatt tggtctaatt tagtttggta ttgagtaaaa caaattcgaa 10440
ccaaaccaaa atataaatat atagttttta tatatatgcc tttaagactt tttatagaat 10500
tttctttaaa aaatatctag aaatatttgc gactcttctg gcatgtaata tttcgttaaa 10560
tatgaagtgc tccattttta ttaactttaa ataattggtt gtacgatcac tttcttatca 10620
agtgttacta aaatgcgtca atctctttgt tcttccatat tcatatgtca aaatctatca 10680
aaattcttat atatcttttt cgaatttgaa gtgaaatttc gataatttaa aattaaatag 10740
aacatatcat tatttaggta tcatattgat ttttatactt aattactaaa tttggttaac 10800
tttgaaagtg tacatcaacg aaaaattagt caaacgacta aaataaataa atatcatgtg 10860
ttattaagaa aattctccta taagaatatt ttaatagatc atatgtttgt aaaaaaaatt 10920
aatttttact aacacatata tttacttatc aaaaatttga caaagtaaga ttaaaataat 10980
attcatctaa caaaaaaaaa accagaaaat gctgaaaacc cggcaaaacc gaaccaatcc 11040
aaaccgatat agttggtttg gtttgatttt gatataaacc gaaccaactc ggtccatttg 11100
cacccctaat cataatagct ttaatatttc aagatattat taagttaacg ttgtcaatat 11160
cctggaaatt ttgcaaaatg aatcaagcct atatggctgt aatatgaatt taaaagcagc 11220
tcgatgtggt ggtaatatgt aatttacttg attctaaaaa aatatcccaa gtattaataa 11280
tttctgctag gaagaaggtt agctacgatt tacagcaaag ccagaataca aagaaccata 11340
aagtgattga agctcgaaat atacgaagga acaaatattt ttaaaaaaat acgcaatgac 11400
ttggaacaaa agaaagtgat atattttttg ttcttaaaca agcatcccct ctaaagaatg 11460
gcagttttcc tttgcatgta actattatgc tcccttcgtt acaaaaattt tggactacta 11520
ttgggaactt cttctgaaaa tagtgataga acccacacga gcatgtgctt tccatttaat 11580
tttaaaaacc aagaaacata catacataac attccatcag cctctctctc tttttattac 11640
ggttaatgac ttaaaacaca tcttattatc ccatccttaa cacctagcag tgtctttata 11700
cgatctcatc gatcaccact tcaaaaccat gcagactgct gctgcccctg gagctggcat 11760
cggctaggct gggtgccgca ctgtcccgga aggtccctag cgacttgttt agattgatgg 11820
gaccacctct caacttcctg ctgctgtccc tgctgctgga tgtcctgcct catctggccg 11880
attgcacgct ccagtcccct gcatgtgcac tcgctcctca attgcttaag atcatcgcag 11940
cagctatcga agtgctggct ctgttgccct cctccacggc cttggttgta gtagtagctg 12000
ccgccgccct tctggacttt ttcccacagg aaccgccgaa taattcgata gaaccacacg 12060
agcatgtgct ttcatttatt ttaaaaacca agaaacatac ataacatttc atcagcctct 12120
ctctctctct ctctctctct ctctctctct ctctctctct ctctctcttt attacagctg 12180
ttacactaac ttaaaacaca ttcatctcat tattattatt attatccatc cttaacacct 12240
agcagtgtct ttgtacgatc tcataatcga tcaccccttc atcaggtatc cttaggcttc 12300
actccaacgt tgttgcagtt acggaacatg tacacaccat catggttctc aacgaactgg 12360
caagatctcc aagttttcca aaggctaacc cacatgttct catcggtgtg tctgtagtgc 12420
tctcccataa ctttcttgat gcactcggta gcttctctag catggtagaa tgggatcctt 12480
gaaacgtagt gatggagcac atgagtctcg atgatgtcat ggaagatgat tccgaggatt 12540
ccgaactctc tatcgatagt agcagcagca cccttagcga aagtccactc ttgagcatcg 12600
taatgaggca tagaagaatc ggtgtgctga aggaaggtaa cgaaaacaag ccagtggtta 12660
acaaggatcc aaggacagaa ccatgtgatg aaagtaggcc agaatccgaa aaccttgtaa 12720
gcggtgtaaa cagaagtgag ggtagcaagg attccaagat cagaaagaac gatgtaccag 12780
tagtccttct tatcgaaaac agggctagaa ggccagtagt gagacttgaa gaacttagaa 12840
acaccagggt aaggttgtcc agtagcgtta gtagcaaggt aaagagaaag tcctccaagc 12900
tgttggaaca agagagcgaa aacagagtag ataggagttt cctcagcgat atcgtgaagg 12960
ctggtaactt ggtgcttctc tttgaattcc tcggcggtgt aaggaacgaa aaccatatct 13020
ctggtcatgt gtccagtagc cttatggtgc ttagcatgag agaacttcca gctgaagtaa 13080
ggaaccataa caagagagtg gagaacccat ccaacggtat cgttaaccca tccgtagtta 13140
gagaaagcag aatgtccaca ctcatgtcca aggatccaga ttccgaatcc gaaacaagag 13200
atagagaaca cgtaagcaga ccaagcagcg aatctaagga attcgttagg gagaagaggg 13260
atgtaggtaa gtccaacgta agcgatagca gagatagcca cgatatctct caccacgtaa 13320
gacatagact tcacgagaga tctctcgtaa cagtgcttag ggatagcgtc aaggatatcc 13380
ttgatggtgt aatctggcac cttgaaaacg tttccgaagg tatcgatagc ggtcttttgc 13440
tgcttgaaag atgcaacgtt tccagaacgc ctaacggtct tagtagatcc ctcaaggatc 13500
tcagatccag acacggtaac cttagacatg gtatggtaat tgtaaatgta attgtaatgt 13560
tgtttgttgt ttgttgttgt tggtaattgt tgtaaaattt ttggtggtga ttggttcttt 13620
aaggtgtgag agtgagttgt gagttgtgtg gtgggtttgg tgagattggg gatggtgggt 13680
ttatatagtg gagactgagg aatggggtcg tgagtgttaa ctttgcatgg gctacacgtg 13740
ggttcttttg ggcttacacg tagtattatt catgcaaatg cagccaatac atatacggta 13800
ttttaataat gtgtgggaat acaatatgcc gagtatttta ctaattttgg caatgacaag 13860
tgtacatttg gattatctta cttggcctct cttgctttaa tttggattat ttttattctc 13920
ttaccttggc cgttcatatt cacatcccta aaggcaagac agaattgaat ggtggccaaa 13980
aattaaaacg atggatatga cctacatagt gtaggatcaa ttaacgtcga aggaaaatac 14040
tgattctgcc cgttcgactc agatcttcca aggcctcgtc tccgagtccg ctgcttctcg 14100
ccgcgccgat cacttctccg ccgccaacaa ggcttgtagt taataggaat cattcaggga 14160
ttgtgattcc gggcagtagt aattaataat atagtattag tatacagaac ctcttattta 14220
gctaaaagat tatgttctta atgttgataa gaagtttgag aaacaaatat aattgagctt 14280
ctgattagtt gatcgtaatt ggtcattaat aattgtatct aaccagtgca gtataagagc 14340
gtataagagc atcttcaaaa agactttatt ttagagttaa tcagtgcagt ataagagcat 14400
ctctaaaaaa actctaatta tagagttttg caaactctat atttgaagtt ttaaggtgtt 14460
tttttttcaa aagcaaaact tcaaatttaa cttcaaaatt atttgtaatt tacactatgc 14520
tctttatatt tatcataatt aatataaggg ggtgttagtg ggacttagat ttctatagag 14580
tttgttgatt ttaaaagttg agagatttgt taaatttaga aagagatgta gagaattttg 14640
tctattgtga aaatctatga aaatagagta atgtaatgat tctaagaatt caaagtaaac 14700
atgtagtatt ctcaaaatct aaatttgtga aacagtggtc ccagattttc aagactcaga 14760
ctaaaggcta tggaggaagc tagggttttg gcgattggcg acactagggt ttcgagtacg 14820
gcagatttgg atgaaactat gatggatgtg ggggagagag ggagaccgcc aggagatccg 14880
ccagataagt taacctcatg ggtagcgaag gtggtggaga cggctgaggg agggatgcca 14940
gtaccggagg ttttgattgc agattctttt gtgtcggaga gggtacgggt agaatttccg 15000
aatg 15004
<210> 41
<211> 49789
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 插入到芸薹属的嵌合的16个转基因
<400> 41
aaaaaataca accaaagaaa aatataccag aaggttgtga tttggtccat tatataaaaa 60
ttacgaaatg aatttcttta tccttttatc tcaaatttta ttgaagactt ttgtaggatt 120
atagttgact ttatgctcac atatatatac actgatcaaa actttttaaa aacataaaga 180
aattgtgaaa caataaaaat aaaatgaaat gagtaattaa tgagtagatt aagacattgg 240
accctccaca ggcgataaag taaaataatc agaagttgca ggaggcaaag gaggactact 300
actaatactt ggaacttgga agtagctatc gtgcgcatct gcctccaagt ccaacacctt 360
ataacaaatt tccgccggga agaaagaaaa gtctctctgc cctctcttct ttagcctcca 420
gcttctgcaa accatacgta caaacaagat agacacaatc ctccctacct ccttcttcta 480
tcttcatcga aagattcaac caccactcaa gtcttctctc tcttttttgg aaagaaaaaa 540
ggtaaaagct ttcttctttc tgagcaaact cccatgaatt tcccttttgg gggtttaggg 600
tctttccttt tatgttccta cttcggtata attcgatttc atgcgaactt agattataaa 660
aatttgatct tttttttgtg gggtttgaaa ttgaaatcca ttttaggggt taccatcgtt 720
gaccaaatgt ctcgactttg ttcgaatcat gatgttactt aatcatggag gagaagaagg 780
atttttataa ccatgtctct gttgcttgct gcttaaaccc tatataattg gaaacttttt 840
gttttagtct gtgtctgaaa gtttctatat tcgtattgtc tattttgtaa agactaaaac 900
aaaaatgcct atttttagtt tgttcttgtt ccgcaacacc gttactgaac tcttcgttca 960
cttaaacagt ttgtgtgtgt gagaaacagc gtaatgagct gctttggttg ttgtggtggt 1020
gacgattttc gtcgagttgc tgaaactgga cccaagccag tgtacggcgc aggaggtact 1080
ttaagcttat aaccctttgt ctatcctttg gctagcggct aatgttgatg aactttttta 1140
ttcaaccgtt ggctaaggta acactgatag tttaaactga aggcgggaaa cgacaatctg 1200
ctagtggatc tcccagtcac gacgttgtaa aacgggcgcc ccgcggaaag cttgcggccg 1260
cggtaccgcc cgttcgactc agatcttcca aggcctcgtc tccgagtccg ctgcttctcg 1320
ccgcgccgat cacttctccg ccgccaacaa ggcttgtagt taataggaat cattcaggga 1380
ttgtgattcc gggcagtagt aattaataat atagtattag tatagataat atgtttcgtt 1440
tgggatcttt ggaacgttgc tctgttcctt gttgttcatt ttaaagcttt tgagggatag 1500
ttgcagaact gttcggtgat gcttcatcct ctcaagaact agatttgggt aaagaaacat 1560
ccatgcatgg atatggaatg ttgttcttcc gattggagat tattttataa aatttaaaat 1620
tcatgattta aaaaaacaca taaaaaccac aaaattcatg atttattgac aatacgatac 1680
aaaattagca ccaccggcta ctggctcatt acacatttcc ccttcccctc attctcactt 1740
tgtggcttta ttattattat tattacatat attttaccgt tattatttca cgtcacataa 1800
gcttgttaat taatcattag tgagccttct cagcctttcc gttaacgtag tagtgctgtc 1860
ccaccttatc aaggttagag aaagtagcct tccaagcacc gtagtaagag agcaccttgt 1920
agttgagtcc ccacttctta gcgaaaggaa cgaatcttct gctaacctca ggctgtctga 1980
attgaggcat atcagggaag aggtggtgga taacctgaca gttaaggtat cccataagcc 2040
agttcacgta tcctctagaa ggatcgatat caacggtgtg atcaacagcg tagttaaccc 2100
aagaaaggtg cttatcagat ggaacaacag ggaggtgagt atgagaagta gagaagtgag 2160
cgaaaaggta catgtaagcg atccagtttc cgaaagtgaa ccaccagtaa gcaacaggcc 2220
aagagtatcc agtagcaagc ttgataacag cggttctaac aacatgagaa acgagcatcc 2280
aagaagcctc ttcgtagttc ttcttacgga gaacttgtct agggtggaga acgtagatcc 2340
agaaagcttg aacaagaagt ccagaggtaa caggaacgaa agtccaagct tgaagtctag 2400
cccaagctct agagaatcct ctaggtctgt tatcctcaac agcagtgttg aagaaagcca 2460
cagcaggagt ggtatcaaga tccatatcgt gtctaacctt ttgaggggta gcatggtgct 2520
tgttatgcat ctggttccac atctcaccag aagtagaaag tccgaatcca caagtcatag 2580
cctgaagtct cttgtccacg taaacagatc cggtaagaga gttatgtcca ccctcatgtt 2640
gaacccatcc acatctagct ccgaagaaag caccgtaaac aacagaagca atgatagggt 2700
atccagcgta cataagagca gttccaagag cgaatgtagc aagaagctcg agaagtctgt 2760
aagccacatg ggtgatagaa ggcttgaaga atccatctct ctcaagctca gcacgccatc 2820
tagcgaaatc ctcaagcata ggagcatcct cagactcaga tctcttgatc tcagcaggtc 2880
tagaaggcaa agctctaagc atcttccaag ccttgagaga acgcatgtgg aattctttga 2940
aagcctcagt agcatcagca ccagtgttag caagcatgta gaagatcaca gatccaccag 3000
ggtgcttgaa gttagtcaca tcgtactcaa cgtcctcaac tctaacccat ctagtctcga 3060
aagtagcagc aagctcatga ggctcaagag tcttaagatc aacaggagca gtagaagcat 3120
ccttagcatc aagagcctca gcagaagatt tagacctggt aagtggagat ctaggagaag 3180
atcttccatc agtcttagga gggcacatgg tatggtaatt gtaaatgtaa ttgtaatgtt 3240
gtttgttgtt tgttgttgtt ggtaattgtt gtaaaattaa ttaagtgggt atcttttgga 3300
tggataagca agtagtgatg atgttctagg tgaagtgatg ggggtgtttt atagcgggag 3360
atggtgaaat ggatggtcgc cacataagaa atggagggga agggttcttg cgccattctt 3420
cagtttgcat ggatgcatgg gtttcatttt gtaacacgta ataaggacaa tgaagtgcag 3480
gtgtctctca agtttcagag gggatatgtg gacagaagaa gaacggcgat gatattgatg 3540
gaaatggcca tctagtgtga atctattcgg ttgataatac tagtgcattt tggccgttaa 3600
tcccttcaat taactgcaca aacttcagtt gagtattgat tatttgatta taggttctgt 3660
aaacacaata ccaagtttat ttagagggga gacatacaaa tagtttcgat ataaataata 3720
gagtggttaa acttagttat taaaactata tataaagtct aaaagttaaa ttattttttt 3780
aattgcaaat atataaagtc taaaggggtt acattatttc ttaagagatg taactctgtt 3840
ggaatctgac ttaatccgtc tcatcactct ggtttccagt tctaatctaa tgaattgttt 3900
tctgccaaag aatttgaagc aagaagtaaa ttgatcaatg ccgtcaaccc acaccaaacc 3960
gtcaacccac taccatcgcc gcggagaccc ccaaactcaa cctccaccca tcggtaagaa 4020
gcacagggca gcccgcacca ccaccaattt ggcgtgcatg acacctaggg acttggcacg 4080
ggaggcggcg cacgtggatg caaatgacgg gatatcagat gacaggaaac gacgttgaga 4140
gaccatacga tgtagaatat gagctcacca tcaacgagaa actaggaaaa tcacaaaaaa 4200
aacaactctc gtaattgtac gagtggcaca gatgggtctg cctcaacata tctctaatac 4260
ggcgaagcct gcccaacacg tagttgccgg aatccggtgt ggagctcacg actctgaaag 4320
ataggcgctt cctgtttcgt ttcgctcacc cactggacgt ccgtcatgtg atggatttcg 4380
gtcattggtt tgctgacaac cacattctga agctccatga gatgagtctt cacaataggt 4440
cctgctcaat accgtggagt tatggttgca agtccataac ttgccgttcg aatattttgc 4500
ggagccagtc ggacgggaat tggcgagctc ggctgacacc tataaaggcc atgacaagaa 4560
gaaccaaaag ttcttcccta atgctttcat gaggcttcgg gtcgttatgg atgtcggaaa 4620
acccctcttg aaggaacgag acgttattat gcatgacggt aagactatta cttgtcagta 4680
taagtatgaa agattacctg tcttctgctt tgtttgtgga ttgattggac acgttgaaaa 4740
aaaatgtgca cttcgatttc aatactcaga gatcgacttc ccttttctct aggagtattc 4800
gatcaaggca ttaacatgga aggaagctca agctctaaag gcttcacaat ggaacctgaa 4860
aaatttcaac aagcctaaac tgaaatcgaa gtcaaatcac ccaaccggga gctctaaatc 4920
agcaaacact cctcctccac agtatccaat catcgtgcac gatgctccag gtattgcaag 4980
ccaggtattg caagctagga gtaggataga gaccttaaac gtcgttggtg tgaagagtca 5040
tcttcagacc taatggagat agatgtagac ggcggcacga agactctgaa acaccagaaa 5100
ggctagtcca ggataaggat ctgctatccc aactgacctc tcgttagtcc caaggcctct 5160
caactagagc aggaggaagg atggtcacaa gactaggata atgatgtttc caatatgaac 5220
ctgaatgtcc atagctaatt tttttagtct tgcttctgca ctttttgttt attatgttct 5280
ggtgactatg ttatttaccc ttgtccgtat gcttgagggt accctagtag attggttggt 5340
tggtttccat gtaccagaag gcttacccta ttagttgaaa gttgaaactt tgttccctac 5400
tcaattccta gttgtgtaaa tgtatgtata tgtaatgtgt ataaaacgta gtacttaaat 5460
gactaggagt ggttcttgag accgatgaga gatgggagca gaactaaaga tgatgacata 5520
attaagaacg aatttgaaag gctcttaggt ttgaatccta ttcgagaatg tttttgtcaa 5580
agatagtggc gattttgaac caaagaaaac atttaaaaaa tcagtatccg gttacgttca 5640
tgcaaataga aagtggtcta ggatctgatt gtaattttag acttaaagag tctcttaaga 5700
ttcaatcctg gctgtgtaca aaactacaaa taatatattt tagactattt ggccttaact 5760
aaacttccac tcattattta ctgaggttag agaatagact tgcgaataaa cacattcccg 5820
agaaatactc atgatcccat aattagtcag agggtatgcc aatcagatct aagaacacac 5880
attccctcaa attttaatgc acatgtaatc atagtttagc acaattcaaa aataatgtag 5940
tattaaagac agaaatttgt agactttttt ttggcgttaa aagaagacta agtttatacg 6000
tacattttat tttaagtgga aaaccgaaat tttccatcga aatatatgaa tttagtatat 6060
atatttctgc aatgtactat tttgctattt tggcaacttt cagtggacta ctactttatt 6120
acaatgtgta tggatgcatg agtttgagta tacacatgtc taaatgcatg ctttgtaaaa 6180
cgtaacggac cacaaaagag gatccataca aatacatctc atagcttcct ccattatttt 6240
ccgacacaaa cagagcattt tacaacaatt accaacaaca acaaacaaca aacaacatta 6300
caattacatt tacaattacc ataccatggc ctctatcgct atccctgctg ctcttgctgg 6360
aactcttgga tacgttacct acaatgtggc taaccctgat atcccagctt ctgagaaagt 6420
tcctgcttac ttcatgcagg ttgagtactg gggacctact atcggaacta ttggatacct 6480
cctcttcatc tacttcggaa agcgtatcat gcagaacaga tctcaacctt tcggactcaa 6540
gaacgctatg ctcgtttaca acttctacca gaccttcttc aacagctact gcatctacct 6600
tttcgttact tctcataggg ctcagggact taaggtttgg ggaaacatcc ctgatatgac 6660
tgctaactct tggggaatct ctcaggttat ctggcttcac tacaacaaca agtacgttga 6720
gcttctcgac accttcttca tggtgatgag gaagaagttc gaccagcttt ctttccttca 6780
catctaccac cacactcttc tcatctggtc atggttcgtt gttatgaagc ttgagcctgt 6840
tggagattgc tacttcggat cttctgttaa caccttcgtg cacgtgatca tgtactctta 6900
ctacggactt gctgctcttg gagttaactg tttctggaag aagtacatca cccagatcca 6960
gatgcttcag ttctgtatct gtgcttctca ctctatctac accgcttacg ttcagaatac 7020
cgctttctgg cttccttacc ttcaactctg ggttatggtg aacatgttcg ttctcttcgc 7080
caacttctac cgtaagaggt acaagtctaa gggtgctaag aagcagtgat aaggcgcgcg 7140
gcgcgccggg ccgccgccat gtgacagatc gaaggaagaa agtgtaataa gacgactctc 7200
actactcgat cgctagtgat tgtcattgtt atatataata atgttatctt tcacaactta 7260
tcgtaatgca tgtgaaacta taacacatta atcctacttg tcatatgata acactctccc 7320
catttaaaac tcttgtcaat ttaaagatat aagattcttt aaatgattaa aaaaaatata 7380
ttataaattc aatcactcct actaataaat tattaattat tatttattga ttaaaaaaat 7440
acttatacta atttagtctg aatagaataa ttagattcta gtctcatccc cttttaaacc 7500
aacttagtaa acgttttttt ttttaatttt atgaagttaa gtttttacct tgtttttaaa 7560
aagaatcgtt cataagatgc catgccagaa cattagctac acgttacaca tagcatgcag 7620
ccgcggagaa ttgtttttct tcgccacttg tcactccctt caaacaccta agagcttctc 7680
tctcacagca cacacataca atcacatgcg tgcatgcatt attacacgtg atcgccatgc 7740
aaatctcctt tatagcctat aaattaactc atccgcttca ctctttactc aaaccaaaac 7800
tcatcgatac aaacaagatt aaaaacatac acgaggatct tttacaacaa ttaccaacaa 7860
caacaaacaa caaacaacat tacaattaca tttacaatta ccataccatg cctccaaggg 7920
actcttactc ttatgctgct cctccttctg ctcaacttca cgaagttgat actcctcaag 7980
agcacgacaa gaaagagctt gttatcggag atagggctta cgatgttacc aacttcgtta 8040
agagacaccc tggtggaaag atcattgctt accaagttgg aactgatgct accgatgctt 8100
acaagcagtt ccatgttaga tctgctaagg ctgacaagat gcttaagtct cttccttctc 8160
gtcctgttca caagggatac tctccaagaa gggctgatct tatcgctgat ttccaagagt 8220
tcaccaagca acttgaggct gagggaatgt tcgagccttc tcttcctcat gttgcttaca 8280
gacttgctga ggttatcgct atgcatgttg ctggtgctgc tcttatctgg catggataca 8340
ctttcgctgg aatcgctatg cttggagttg ttcagggaag atgtggatgg cttatgcatg 8400
agggtggaca ttactctctc actggaaaca ttgctttcga cagagctatc caagttgctt 8460
gttacggact tggatgtgga atgtctggtg cttggtggcg taaccagcat aacaagcacc 8520
atgctactcc tcaaaagctt cagcacgatg ttgatcttga tacccttcct ctcgttgctt 8580
tccatgagag aatcgctgct aaggttaagt ctcctgctat gaaggcttgg ctttctatgc 8640
aagctaagct tttcgctcct gttaccactc ttcttgttgc tcttggatgg cagctttacc 8700
ttcatcctag acacatgctc aggactaagc actacgatga gcttgctatg ctcggaatca 8760
gatacggact tgttggatac cttgctgcta actacggtgc tggatacgtt ctcgcttgtt 8820
accttcttta cgttcagctt ggagctatgt acatcttctg caacttcgct gtttctcata 8880
ctcacctccc tgttgttgag cctaacgagc atgctacttg ggttgagtac gctgctaacc 8940
acactactaa ctgttctcca tcttggtggt gtgattggtg gatgtcttac cttaactacc 9000
agatcgagca ccacctttac ccttctatgc ctcaattcag acaccctaag atcgctccta 9060
gagttaagca gcttttcgag aagcacggac ttcactacga tgttagagga tacttcgagg 9120
ctatggctga tactttcgct aaccttgata acgttgccca tgctcctgag aagaaaatgc 9180
agtaatgaga tcgttcaaac atttggcaat aaagtttctt aagattgaat cctgttgccg 9240
gtcttgcgat gattatcata taatttctgt tgaattacgt taagcacgta ataattaaca 9300
tgtaatgcat gacgttattt atgagatggg tttttatgat tagagtcccg caattataca 9360
tttaatacgc gatagaaaac aaaatatagc gcgcaaacta ggataaatta tcgcgcgcgg 9420
tgtcatctat gttactagat cggtcgatta aaaatcccaa ttatatttgg tctaatttag 9480
tttggtattg agtaaaacaa attcgaacca aaccaaaata taaatatata gtttttatat 9540
atatgccttt aagacttttt atagaatttt ctttaaaaaa tatctagaaa tatttgcgac 9600
tcttctggca tgtaatattt cgttaaatat gaagtgctcc atttttatta actttaaata 9660
attggttgta cgatcacttt cttatcaagt gttactaaaa tgcgtcaatc tctttgttct 9720
tccatattca tatgtcaaaa tctatcaaaa ttcttatata tctttttcga atttgaagtg 9780
aaatttcgat aatttaaaat taaatagaac atatcattat ttaggtatca tattgatttt 9840
tatacttaat tactaaattt ggttaacttt gaaagtgtac atcaacgaaa aattagtcaa 9900
acgactaaaa taaataaata tcatgtgtta ttaagaaaat tctcctataa gaatatttta 9960
atagatcata tgtttgtaaa aaaaattaat ttttactaac acatatattt acttatcaaa 10020
aatttgacaa agtaagatta aaataatatt catctaacaa aaaaaaaacc agaaaatgct 10080
gaaaacccgg caaaaccgaa ccaatccaaa ccgatatagt tggtttggtt tgattttgat 10140
ataaaccgaa ccaactcggt ccatttgcac ccctaatcat aatagcttta atatttcaag 10200
atattattaa gttaacgttg tcaatatcct ggaaattttg caaaatgaat caagcctata 10260
tggctgtaat atgaatttaa aagcagctcg atgtggtggt aatatgtaat ttacttgatt 10320
ctaaaaaaat atcccaagta ttaataattt ctgctaggaa gaaggttagc tacgatttac 10380
agcaaagcca gaatacaaag aaccataaag tgattgaagc tcgaaatata cgaaggaaca 10440
aatattttta aaaaaatacg caatgacttg gaacaaaaga aagtgatata ttttttgttc 10500
ttaaacaagc atcccctcta aagaatggca gttttccttt gcatgtaact attatgctcc 10560
cttcgttaca aaaattttgg actactattg ggaacttctt ctgaaaatag tgatagaacc 10620
cacacgagca tgtgctttcc atttaatttt aaaaaccaag aaacatacat acataacatt 10680
ccatcagcct ctctctcttt ttattacggt taatgactta aaacacatct tattatccca 10740
tccttaacac ctagcagtgt ctttatacga tctcatcgat caccacttca aaaccatgca 10800
gactgctgct gcccctggag ctggcatcgg ctaggctggg tgccgcactg tcccggaagg 10860
tccctagcga cttgtttaga ttgatgggac cacctctcaa cttcctgctg ctgtccctgc 10920
tgctggatgt cctgcctcat ctggccgatt gcacgctcca gtcccctgca tgtgcactcg 10980
ctcctcaatt gcttaagatc atcgcagcag ctatcgaagt gctggctctg ttgccctcct 11040
ccacggcctt ggttgtagta gtagctgccg ccgcccttct ggactttttc ccacaggaac 11100
cgccgaataa ttcgatagaa ccacacgagc atgtgctttc atttatttta aaaaccaaga 11160
aacatacata acatttcatc agcctctctc tctctctctc tctctctctc tctctctctc 11220
tctctctctc tctctttatt acagctgtta cactaactta aaacacattc atctcattat 11280
tattattatt atccatcctt aacacctagc agtgtctttg tacgatctca taatcgatca 11340
ccccttcatc aggtatcctt aggcttcact ccaacgttgt tgcagttacg gaacatgtac 11400
acaccatcat ggttctcaac gaactggcaa gatctccaag ttttccaaag gctaacccac 11460
atgttctcat cggtgtgtct gtagtgctct cccataactt tcttgatgca ctcggtagct 11520
tctctagcat ggtagaatgg gatccttgaa acgtagtgat ggagcacatg agtctcgatg 11580
atgtcatgga agatgattcc gaggattccg aactctctat cgatagtagc agcagcaccc 11640
ttagcgaaag tccactcttg agcatcgtaa tgaggcatag aagaatcggt gtgctgaagg 11700
aaggtaacga aaacaagcca gtggttaaca aggatccaag gacagaacca tgtgatgaaa 11760
gtaggccaga atccgaaaac cttgtaagcg gtgtaaacag aagtgagggt agcaaggatt 11820
ccaagatcag aaagaacgat gtaccagtag tccttcttat cgaaaacagg gctagaaggc 11880
cagtagtgag acttgaagaa cttagaaaca ccagggtaag gttgtccagt agcgttagta 11940
gcaaggtaaa gagaaagtcc tccaagctgt tggaacaaga gagcgaaaac agagtagata 12000
ggagtttcct cagcgatatc gtgaaggctg gtaacttggt gcttctcttt gaattcctcg 12060
gcggtgtaag gaacgaaaac catatctctg gtcatgtgtc cagtagcctt atggtgctta 12120
gcatgagaga acttccagct gaagtaagga accataacaa gagagtggag aacccatcca 12180
acggtatcgt taacccatcc gtagttagag aaagcagaat gtccacactc atgtccaagg 12240
atccagattc cgaatccgaa acaagagata gagaacacgt aagcagacca agcagcgaat 12300
ctaaggaatt cgttagggag aagagggatg taggtaagtc caacgtaagc gatagcagag 12360
atagccacga tatctctcac cacgtaagac atagacttca cgagagatct ctcgtaacag 12420
tgcttaggga tagcgtcaag gatatccttg atggtgtaat ctggcacctt gaaaacgttt 12480
ccgaaggtat cgatagcggt cttttgctgc ttgaaagatg caacgtttcc agaacgccta 12540
acggtcttag tagatccctc aaggatctca gatccagaca cggtaacctt agacatggta 12600
tggtaattgt aaatgtaatt gtaatgttgt ttgttgtttg ttgttgttgg taattgttgt 12660
aaaatttttg gtggtgattg gttctttaag gtgtgagagt gagttgtgag ttgtgtggtg 12720
ggtttggtga gattggggat ggtgggttta tatagtggag actgaggaat ggggtcgtga 12780
gtgttaactt tgcatgggct acacgtgggt tcttttgggc ttacacgtag tattattcat 12840
gcaaatgcag ccaatacata tacggtattt taataatgtg tgggaataca atatgccgag 12900
tattttacta attttggcaa tgacaagtgt acatttggat tatcttactt ggcctctctt 12960
gctttaattt ggattatttt tattctctta ccttggccgt tcatattcac atccctaaag 13020
gcaagacaga attgaatggt ggccaaaaat taaaacgatg gatatgacct acatagtgta 13080
ggatcaatta acgtcgaagg aaaatactga ttctctcaag catacggaca agggtaaata 13140
acatagtcac cagaacataa taaacaaaaa gtgcagaagc aagactaaaa aaattagcta 13200
tggacattca ggttcatatt ggaaacatca ttatcctagt cttgtgacca tccttcctcc 13260
tgctctagtt gagaggcctt gggactaacg agaggtcagt tgggatagca gatccttatc 13320
ctggactagc ctttctggtg tttcagagtc ttcgtgccgc cgtctacatc tatctccatt 13380
aggtctgaag atgactcttc acaccaacga cgtttaaggt ctctatccta ctcctagctt 13440
gcaatacctg gcttgcaata cctggagcat cgtgcacgat gattggatac tgtggaggag 13500
gagtgtttgc tgatttagag ctcccggttg ggtgatttga cttcgatttc agtttaggct 13560
tgttgaaatt tttcaggttc cattgtgaag cctttagagc ttgagcttcc ttccatgtta 13620
atgccttgat cgaatactcc tagagaaaag ggaagtcgat ctctgagtat tgaaatcgaa 13680
gtgcacattt tttttcaacg tgtccaatca atccacaaac aaagcagaag acaggtaatc 13740
tttcatactt atactgacaa gtaatagtct taccgtcatg cataataacg tctcgttcct 13800
tcaagagggg ttttccgaca tccataacga cccgaagcct catgaaagca ttagggaaga 13860
acttttggtt cttcttgtca tggcctttat aggtgtcagc cgagctcgcc aattcccgtc 13920
cgactggctc cgcaaaatat tcgaacggca agttatggac ttgcaaccat aactccacgg 13980
tattgagcag gacctattgt gaagactcat ctcatggagc ttcagaatgt ggttgtcagc 14040
aaaccaatga ccgaaatcca tcacatgacg gacgtccagt gggtgagcga aacgaaacag 14100
gaagcgccta tctttcagag tcgtgagctc cacaccggat tccggcaact acgtgttggg 14160
caggcttcgc cgtattagag atatgttgag gcagacccat ctgtgccact cgtacaatta 14220
cgagagttgt tttttttgtg attttcctag tttctcgttg atggtgagct catattctac 14280
atcgtatggt ctctcaacgt cgtttcctgt catctgatat cccgtcattt gcatccacgt 14340
gcgccgcctc ccgtgccaag tccctaggtg tcatgcacgc caaattggtg gtggtgcggg 14400
ctgccctgtg cttcttaccg atgggtggag gttgagtttg ggggtctccg cggcgatggt 14460
agtgggttga cggtttggtg tgggttgacg gcattgatca atttacttct tgcttcaaat 14520
tctttggcag aaaacaattc attagattag aactggaaac cagagtgatg agacggatta 14580
agtcagattc caacagagtt acatctctta agaaataatg taaccccttt agactttata 14640
tatttgcaat taaaaaaata atttaacttt tagactttat atatagtttt aataactaag 14700
tttaaccact ctattattta tatcgaaact atttgtatgt ctcccctcta aataaacttg 14760
gtattgtgtt tacagaacct ataatcaaat aatcaatact caactgaagt ttgtgcagtt 14820
aattgaaggg attaacggcc aaaatgcact agtattatca accgaataga ttcacactag 14880
atggccattt ccatcaatat catcgccgtt cttcttctgt ccacatatcc cctctgaaac 14940
ttgagagaca cctgcacttc attgtcctta ttacgtgtta caaaatgaaa cccatgcatc 15000
catgcaaact gaagaatggc gcaagaaccc ttcccctcca tttcttatgt ggcgaccatc 15060
catttcacca tctcccgcta taaaacaccc ccatcacttc acctagaaca tcatcactac 15120
ttgcttatcc atccaaaaga tacccacttt tacaacaatt accaacaaca acaaacaaca 15180
aacaacatta caattacatt tacaattacc ataccatgcc acctagcgct gctaagcaaa 15240
tgggagcttc tactggtgtt catgctggtg ttactgactc ttctgctttc accagaaagg 15300
atgttgctga tagacctgat ctcaccatcg ttggagattc tgtttacgat gctaaggctt 15360
tcagatctga gcatcctggt ggtgctcatt tcgtttcttt gttcggagga agagatgcta 15420
ctgaggcttt catggaatac catagaaggg cttggcctaa gtctagaatg tctagattcc 15480
acgttggatc tcttgcttct actgaggaac ctgttgctgc tgatgaggga taccttcaac 15540
tttgtgctag gatcgctaag atggtgcctt ctgtttcttc tggattcgct cctgcttctt 15600
actgggttaa ggctggactt atccttggat ctgctatcgc tcttgaggct tacatgcttt 15660
acgctggaaa gagacttctc ccttctatcg ttcttggatg gcttttcgct cttatcggtc 15720
ttaacatcca gcatgatgct aaccatggtg ctttgtctaa gtctgcttct gttaaccttg 15780
ctcttggact ttgtcaggat tggatcggag gatctatgat cctttggctt caagagcatg 15840
ttgttatgca ccacctccac actaacgatg ttgataagga tcctgatcaa aaggctcacg 15900
gtgctcttag actcaagcct actgatgctt ggtcacctat gcattggctt cagcatcttt 15960
accttttgcc tggtgagact atgtacgctt tcaagctttt gttcctcgac atctctgagc 16020
ttgttatgtg gcgttgggag ggtgagccta tctctaagct tgctggatac ctctttatgc 16080
cttctttgct tctcaagctt accttctggg ctagattcgt tgctttgcct ctttaccttg 16140
ctccttctgt tcatactgct gtgtgtatcg ctgctactgt tatgactgga tctttctacc 16200
tcgctttctt cttcttcatc tcccacaact tcgagggtgt tgcttctgtt ggacctgatg 16260
gatctatcac ttctatgact agaggtgcta gcttccttaa gagacaagct gagacttctt 16320
ctaacgttgg aggacctctt cttgctactc ttaacggtgg actcaactac caaattgagc 16380
atcacttgtt ccctagagtt caccatggat tctaccctag acttgctcct cttgttaagg 16440
ctgagcttga ggctagagga atcgagtaca agcactaccc tactatctgg tctaaccttg 16500
cttctaccct cagacatatg tacgctcttg gaagaaggcc tagatctaag gctgagtaat 16560
gacaagctta tgtgacgtga aataataacg gtaaaatata tgtaataata ataataataa 16620
agccacaaag tgagaatgag gggaagggga aatgtgtaat gagccagtag ccggtggtgc 16680
taattttgta tcgtattgtc aataaatcat gaattttgtg gtttttatgt gtttttttaa 16740
atcatgaatt ttaaatttta taaaataatc tccaatcgga agaacaacat tccatatcca 16800
tgcatggatg tttctttacc caaatctagt tcttgagagg atgaagcatc accgaacagt 16860
tctgcaacta tccctcaaaa gctttaaaat gaacaacaag gaacagagca acgttccaaa 16920
gatcccaaac gaaacatatt atctatacta atactatatt attaattact actgcccgga 16980
atcacaatcc ctgaatgatt cctattaact acaagccttg ttggcggcgg agaagtgatc 17040
ggcgcggcga gaagcagcgg actcggagac gaggccttgg aagatctgag tcgaacgggc 17100
agaatcagta ttttccttcg acgttaattg atcctacact atgtaggtca tatccatcgt 17160
tttaattttt ggccaccatt caattctgtc ttgcctttag ggatgtgaat atgaacggcc 17220
aaggtaagag aataaaaata atccaaatta aagcaagaga ggccaagtaa gataatccaa 17280
atgtacactt gtcattgcca aaattagtaa aatactcggc atattgtatt cccacacatt 17340
attaaaatac cgtatatgta ttggctgcat ttgcatgaat aatactacgt gtaagcccaa 17400
aagaacccac gtgtagccca tgcaaagtta acactcacga ccccattcct cagtctccac 17460
tatataaacc caccatcccc aatctcacca aacccaccac acaactcaca actcactctc 17520
acaccttaaa gaaccaatca ccaccaaaaa ttttacaaca attaccaaca acaacaaaca 17580
acaaacaaca ttacaattac atttacaatt accataccat gagcgctgtt accgttactg 17640
gatctgatcc taagaacaga ggatcttcta gcaacaccga gcaagaggtt ccaaaagttg 17700
ctatcgatac caacggaaac gtgttctctg ttcctgattt caccatcaag gacatccttg 17760
gagctatccc tcatgagtgt tacgagagaa gattggctac ctctctctac tacgtgttca 17820
gagatatctt ctgcatgctt accaccggat accttaccca taagatcctt taccctctcc 17880
tcatctctta cacctctaac agcatcatca agttcacttt ctgggccctt tacacttacg 17940
ttcaaggact tttcggaacc ggaatctggg ttctcgctca tgagtgtgga catcaagctt 18000
tctctgatta cggaatcgtg aacgatttcg ttggatggac ccttcactct taccttatgg 18060
ttccttactt cagctggaag tactctcatg gaaagcacca taaggctact ggacacatga 18120
ccagagatat ggttttcgtt cctgccacca aagaggaatt caagaagtct aggaacttct 18180
tcggtaacct cgctgagtac tctgaggatt ctccacttag aaccctttac gagcttcttg 18240
ttcaacaact tggaggatgg atcgcttacc tcttcgttaa cgttacagga caaccttacc 18300
ctgatgttcc ttcttggaaa tggaaccact tctggcttac ctctccactt ttcgagcaaa 18360
gagatgctct ctacatcttc ctttctgatc ttggaatcct cacccaggga atcgttctta 18420
ctctttggta caagaaattc ggaggatggt cccttttcat caactggttc gttccttaca 18480
tctgggttaa ccactggctc gttttcatca cattccttca gcacactgat cctactatgc 18540
ctcattacaa cgctgaggaa tggactttcg ctaagggtgc tgctgctact atcgatagaa 18600
agttcggatt catcggacct cacatcttcc atgatatcat cgagactcat gtgcttcacc 18660
actactgttc taggatccca ttctacaacg ctagacctgc ttctgaggct atcaagaaag 18720
ttatgggaaa gcactacagg tctagcgacg agaacatgtg gaagtcactt tggaagtctt 18780
tcaggtcttg ccaatacgtt gacggtgata acggtgttct catgttccgt aacatcaaca 18840
actgcggagt tggagctgct gagaagtaat gaaggggtga tcgattatga gatcgtacaa 18900
agacactgct aggtgttaag gatggataat aataataata atgagatgaa tgtgttttaa 18960
gttagtgtaa cagctgtaat aaagagagag agagagagag agagagagag agagagagag 19020
agagagagag agaggctgat gaaatgttat gtatgtttct tggtttttaa aataaatgaa 19080
agcacatgct cgtgtggttc tatcgaatta ttcggcggtt cctgtgggaa aaagtccaga 19140
agggccgccg cagctactac tacaaccaag gccgtggagg agggcaacag agccagcact 19200
tcgatagctg ctgcgatgat cttaagcaat tgaggagcga gtgcacatgc aggggactgg 19260
agcgtgcaat cggccagatg aggcaggaca tccagcagca gggacagcag caggaagttg 19320
agaggtggtc ccatcaatct aaacaagtcg ctagggacct tccgggacag tgcggcaccc 19380
agcctagccg atgccagctc caggggcagc agcagtctgc atggttttga agtggtgatc 19440
gatgagatcg tataaagaca ctgctaggtg ttaaggatgg gataataaga tgtgttttaa 19500
gtcattaacc gtaataaaaa gagagagagg ctgatggaat gttatgtatg tatgtttctt 19560
ggtttttaaa attaaatgga aagcacatgc tcgtgtgggt tctatctcga ttaaaaatcc 19620
caattatatt tggtctaatt tagtttggta ttgagtaaaa caaattcgaa ccaaaccaaa 19680
atataaatat atagttttta tatatatgcc tttaagactt tttatagaat tttctttaaa 19740
aaatatctag aaatatttgc gactcttctg gcatgtaata tttcgttaaa tatgaagtgc 19800
tccattttta ttaactttaa ataattggtt gtacgatcac tttcttatca agtgttacta 19860
aaatgcgtca atctctttgt tcttccatat tcatatgtca aaatctatca aaattcttat 19920
atatcttttt cgaatttgaa gtgaaatttc gataatttaa aattaaatag aacatatcat 19980
tatttaggta tcatattgat ttttatactt aattactaaa tttggttaac tttgaaagtg 20040
tacatcaacg aaaaattagt caaacgacta aaataaataa atatcatgtg ttattaagaa 20100
aattctccta taagaatatt ttaatagatc atatgtttgt aaaaaaaatt aatttttact 20160
aacacatata tttacttatc aaaaatttga caaagtaaga ttaaaataat attcatctaa 20220
caaaaaaaaa accagaaaat gctgaaaacc cggcaaaacc gaaccaatcc aaaccgatat 20280
agttggtttg gtttgatttt gatataaacc gaaccaactc ggtccatttg cacccctaat 20340
cataatagct ttaatatttc aagatattat taagttaacg ttgtcaatat cctggaaatt 20400
ttgcaaaatg aatcaagcct atatggctgt aatatgaatt taaaagcagc tcgatgtggt 20460
ggtaatatgt aatttacttg attctaaaaa aatatcccaa gtattaataa tttctgctag 20520
gaagaaggtt agctacgatt tacagcaaag ccagaataca aagaaccata aagtgattga 20580
agctcgaaat atacgaagga acaaatattt ttaaaaaaat acgcaatgac ttggaacaaa 20640
agaaagtgat atattttttg ttcttaaaca agcatcccct ctaaagaatg gcagttttcc 20700
tttgcatgta actattatgc tcccttcgtt acaaaaattt tggactacta ttgggaactt 20760
cttctgaaaa tagtcctgca ggctagtaga ttggttggtt ggtttccatg taccagaagg 20820
cttaccctat tagttgaaag ttgaaacttt gttccctact caattcctag ttgtgtaaat 20880
gtatgtatat gtaatgtgta taaaacgtag tacttaaatg actaggagtg gttcttgaga 20940
ccgatgagag atgggagcag aactaaagat gatgacataa ttaagaacga atttgaaagg 21000
ctcttaggtt tgaatcctat tcgagaatgt ttttgtcaaa gatagtggcg attttgaacc 21060
aaagaaaaca tttaaaaaat cagtatccgg ttacgttcat gcaaatagaa agtggtctag 21120
gatctgattg taattttaga cttaaagagt ctcttaagat tcaatcctgg ctgtgtacaa 21180
aactacaaat aatatatttt agactatttg gccttaacta aacttccact cattatttac 21240
tgaggttaga gaatagactt gcgaataaac acattcccga gaaatactca tgatcccata 21300
attagtcaga gggtatgcca atcagatcta agaacacaca ttccctcaaa ttttaatgca 21360
catgtaatca tagtttagca caattcaaaa ataatgtagt attaaagaca gaaatttgta 21420
gacttttttt tggcgttaaa agaagactaa gtttatacgt acattttatt ttaagtggaa 21480
aaccgaaatt ttccatcgaa atatatgaat ttagtatata tatttctgca atgtactatt 21540
ttgctatttt ggcaactttc agtggactac tactttatta caatgtgtat ggatgcatga 21600
gtttgagtat acacatgtct aaatgcatgc tttgtaaaac gtaacggacc acaaaagagg 21660
atccatacaa atacatctca tagcttcctc cattattttc cgacacaaac agagcatttt 21720
acaacaatta ccaacaacaa caaacaacaa acaacattac aattacattt acaattacca 21780
taccatggaa tttgctcaac ctctcgttgc tatggctcaa gagcagtacg ctgctatcga 21840
tgctgttgtt gctcctgcta tcttctctgc taccgactct attggatggg gactcaagcc 21900
tatctcttct gctactaagg atctccctct cgttgaatct cctacccctc ttatcctttc 21960
tctcctcgct tacttcgcta tcgttggttc tggactcgtt taccgtaaag tgttccctag 22020
aaccgttaag ggacaggatc ctttccttct caaggctctt atgctcgctc acaacgtttt 22080
ccttatcgga ctcagccttt acatgtgcct caagctcgtt tacgaggctt acgtgaacaa 22140
gtactccttc tggggaaacg cttacaaccc tgctcaaacc gagatggcta aggtgatctg 22200
gatcttctac gtgtccaaga tctacgagtt catggacacc ttcatcatgc ttctcaaggg 22260
aaacgttaac caggtttcct tcctccatgt ttaccaccac ggatctatct ctggaatctg 22320
gtggatgatc acttatgctg ctccaggtgg agatgcttac ttctctgctg ctctcaactc 22380
ttgggttcat gtgtgcatgt acacctacta cttcatggct gctgttcttc ctaaggacga 22440
aaagaccaag agaaagtacc tttggtgggg aagatacctt acccagatgc aaatgttcca 22500
gttcttcatg aaccttctcc aggctgttta cctcctctac tcttcttctc cttaccctaa 22560
gttcattgct caactcctcg ttgtttacat ggttaccctc ctcatgcttt tcggaaactt 22620
ctactacatg aagcaccacg cttctaagtg ataagggccg ccgccatgtg acagatcgaa 22680
ggaagaaagt gtaataagac gactctcact actcgatcgc tagtgattgt cattgttata 22740
tataataatg ttatctttca caacttatcg taatgcatgt gaaactataa cacattaatc 22800
ctacttgtca tatgataaca ctctccccat ttaaaactct tgtcaattta aagatataag 22860
attctttaaa tgattaaaaa aaatatatta taaattcaat cactcctact aataaattat 22920
taattattat ttattgatta aaaaaatact tatactaatt tagtctgaat agaataatta 22980
gattctagcc tgcagggcgg ccgcggatcc catggagtca aagattcaaa tagaggacct 23040
aacagaactc gccgtaaaga ctggcgaaca gttcatacag agtctcttac gactcaatga 23100
caagaagaaa atcttcgtca acatggtgga gcacgacaca cttgtctact ccaaaaatat 23160
caaagataca gtctcagaag accaaagggc aattgagact tttcaacaaa gggtaatatc 23220
cggaaacctc ctcggattcc attgcccagc tatctgtcac tttattgtga agatagtgga 23280
aaaggaaggt ggctcctaca aatgccatca ttgcgataaa ggaaaggcca tcgttgaaga 23340
tgcctctgcc gacagtggtc ccaaagatgg acccccaccc acgaggagca tcgtggaaaa 23400
agaagacgtt ccaaccacgt cttcaaagca agtggattga tgtgatatct ccactgacgt 23460
aagggatgac gcacaatccc actatccttc gcaagaccct tcctctatat aaggaagttc 23520
atttcatttg gagagaacac gggggactga attaaatatg agccctgaga ggcgtcctgt 23580
tgaaatcaga cctgctactg ctgctgatat ggctgctgtt tgtgatatcg tgaaccacta 23640
catcgagact tctaccgtta acttcagaac tgagcctcaa actcctcaag agtggatcga 23700
tgatcttgag agactccaag atagataccc ttggcttgtt gctgaggttg agggtgttgt 23760
tgctggaatc gcttacgctg gaccttggaa ggctagaaac gcttacgatt ggactgttga 23820
gtctaccgtt tacgtttcac acagacatca gagacttgga cttggatcta ccctttacac 23880
tcaccttctc aagtctatgg aagctcaggg attcaagtct gttgttgctg ttatcggact 23940
ccctaacgat ccttctgtta gacttcatga ggctcttgga tacactgcta gaggaactct 24000
tagagctgct ggatacaagc acggtggatg gcatgatgtt ggattctggc aaagagattt 24060
cgagcttcct gctcctccta gacctgttag accagttact cagatctgaa tttgcgtgat 24120
cgttcaaaca tttggcaata aagtttctta agattgaatc ctgttgccgg tcttgcgatg 24180
attatcatat aatttctgtt gaattacgtt aagcatgtaa taattaacat gtaatgcatg 24240
acgttattta tgagatgggt ttttatgatt agagtcccgc aattatacat ttaatacgcg 24300
atagaaaaca aaatatagcg cgcaaactag gataaattat cgcgcgcggt gtcatctatg 24360
ttactagatc actagtgatg tacggttaaa accaccccag tacattaaaa acgtccgcaa 24420
tgtgttatta agttgtctaa gcgtcaattt gtttacacca caatatattg tggtgtaaac 24480
aaattgacgc ttagacaact taataacaca ttgcggacgt ttttaatgta ctggggtggt 24540
tttaaccgta catcactagt gatctagtaa catagatgac accgcgcgcg ataatttatc 24600
ctagtttgcg cgctatattt tgttttctat cgcgtattaa atgtataatt gcgggactct 24660
aatcataaaa acccatctca taaataacgt catgcattac atgttaatta ttacatgctt 24720
aacgtaattc aacagaaatt atatgataat catcgcaaga ccggcaacag gattcaatct 24780
taagaaactt tattgccaaa tgtttgaacg atcacgcaaa ttcagatctg agtaactggt 24840
ctaacaggtc taggaggagc aggaagctcg aaatctcttt gccagaatcc aacatcatgc 24900
catccaccgt gcttgtatcc agcagctcta agagttcctc tagcagtgta tccaagagcc 24960
tcatgaagtc taacagaagg atcgttaggg agtccgataa cagcaacaac agacttgaat 25020
ccctgagctt ccatagactt gagaaggtga gtgtaaaggg tagatccaag tccaagtctc 25080
tgatgtctgt gtgaaacgta aacggtagac tcaacagtcc aatcgtaagc gtttctagcc 25140
ttccaaggtc cagcgtaagc gattccagca acaacaccct caacctcagc aacaagccaa 25200
gggtatctat cttggagtct ctcaagatca tcgatccact cttgaggagt ttgaggctca 25260
gttctgaagt taacggtaga agtctcgatg tagtggttca cgatatcaca aacagcagcc 25320
atatcagcag cagtagcagg tctgatttca acaggacgcc tctcagggct catatttaat 25380
tcagtccccc gtgttctctc caaatgaaat gaacttcctt atatagagga agggtcttgc 25440
gaaggatagt gggattgtgc gtcatccctt acgtcagtgg agatatcaca tcaatccact 25500
tgctttgaag acgtggttgg aacgtcttct ttttccacga tgctcctcgt gggtgggggt 25560
ccatctttgg gaccactgtc ggcagaggca tcttcaacga tggcctttcc tttatcgcaa 25620
tgatggcatt tgtaggagcc accttccttt tccactatct tcacaataaa gtgacagata 25680
gctgggcaat ggaatccgag gaggtttccg gatattaccc tttgttgaaa agtctcaatt 25740
gccctttggt cttctgagac tgtatctttg atatttttgg agtagacaag tgtgtcgtgc 25800
tccaccatgt tgacgaagat tttcttcttg tcattgagtc gtaagagact ctgtatgaac 25860
tgttcgccag tctttacggc gagttctgtt aggtcctcta tttgaatctt tgactccatg 25920
ggatccgcgg ccgccctgca ggctagaatc taattattct attcagacta aattagtata 25980
agtatttttt taatcaataa ataataatta ataatttatt agtaggagtg attgaattta 26040
taatatattt tttttaatca tttaaagaat cttatatctt taaattgaca agagttttaa 26100
atggggagag tgttatcata tgacaagtag gattaatgtg ttatagtttc acatgcatta 26160
cgataagttg tgaaagataa cattattata tataacaatg acaatcacta gcgatcgagt 26220
agtgagagtc gtcttattac actttcttcc ttcgatctgt cacatggcgg cggcccttat 26280
cacttagaag cgtggtgctt catgtagtag aagtttccga aaagcatgag gagggtaacc 26340
atgtaaacaa cgaggagttg agcaatgaac ttagggtaag gagaagaaga gtagaggagg 26400
taaacagcct ggagaaggtt catgaagaac tggaacattt gcatctgggt aaggtatctt 26460
ccccaccaaa ggtactttct cttggtcttt tcgtccttag gaagaacagc agccatgaag 26520
tagtaggtgt acatgcacac atgaacccaa gagttgagag cagcagagaa gtaagcatct 26580
ccacctggag cagcataagt gatcatccac cagattccag agatagatcc gtggtggtaa 26640
acatggagga aggaaacctg gttaacgttt cccttgagaa gcatgatgaa ggtgtccatg 26700
aactcgtaga tcttggacac gtagaagatc cagatcacct tagccatctc ggtttgagca 26760
gggttgtaag cgtttcccca gaaggagtac ttgttcacgt aagcctcgta aacgagcttg 26820
aggcacatgt aaaggctgag tccgataagg aaaacgttgt gagcgagcat aagagccttg 26880
agaaggaaag gatcctgtcc cttaacggtt ctagggaaca ctttacggta aacgagtcca 26940
gaaccaacga tagcgaagta agcgaggaga gaaaggataa gaggggtagg agattcaacg 27000
agagggagat ccttagtagc agaagagata ggcttgagtc cccatccaat agagtcggta 27060
gcagagaaga tagcaggagc aacaacagca tcgatagcag cgtactgctc ttgagccata 27120
gcaacgagag gttgagcaaa ttccatggta tggtaattgt aaatgtaatt gtaatgttgt 27180
ttgttgtttg ttgttgttgg taattgttgt aaaatgctct gtttgtgtcg gaaaataatg 27240
gaggaagcta tgagatgtat ttgtatggat cctcttttgt ggtccgttac gttttacaaa 27300
gcatgcattt agacatgtgt atactcaaac tcatgcatcc atacacattg taataaagta 27360
gtagtccact gaaagttgcc aaaatagcaa aatagtacat tgcagaaata tatatactaa 27420
attcatatat ttcgatggaa aatttcggtt ttccacttaa aataaaatgt acgtataaac 27480
ttagtcttct tttaacgcca aaaaaaagtc tacaaatttc tgtctttaat actacattat 27540
ttttgaattg tgctaaacta tgattacatg tgcattaaaa tttgagggaa tgtgtgttct 27600
tagatctgat tggcataccc tctgactaat tatgggatca tgagtatttc tcgggaatgt 27660
gtttattcgc aagtctattc tctaacctca gtaaataatg agtggaagtt tagttaaggc 27720
caaatagtct aaaatatatt atttgtagtt ttgtacacag ccaggattga atcttaagag 27780
actctttaag tctaaaatta caatcagatc ctagaccact ttctatttgc atgaacgtaa 27840
ccggatactg attttttaaa tgttttcttt ggttcaaaat cgccactatc tttgacaaaa 27900
acattctcga ataggattca aacctaagag cctttcaaat tcgttcttaa ttatgtcatc 27960
atctttagtt ctgctcccat ctctcatcgg tctcaagaac cactcctagt catttaagta 28020
ctacgtttta tacacattac atatacatac atttacacaa ctaggaattg agtagggaac 28080
aaagtttcaa ctttcaacta atagggtaag ccttctggta catggaaacc aaccaaccaa 28140
tctactagcc tgcaggacta ttttcagaag aagttcccaa tagtagtcca aaatttttgt 28200
aacgaaggga gcataatagt tacatgcaaa ggaaaactgc cattctttag aggggatgct 28260
tgtttaagaa caaaaaatat atcactttct tttgttccaa gtcattgcgt atttttttaa 28320
aaatatttgt tccttcgtat atttcgagct tcaatcactt tatggttctt tgtattctgg 28380
ctttgctgta aatcgtagct aaccttcttc ctagcagaaa ttattaatac ttgggatatt 28440
tttttagaat caagtaaatt acatattacc accacatcga gctgctttta aattcatatt 28500
acagccatat aggcttgatt cattttgcaa aatttccagg atattgacaa cgttaactta 28560
ataatatctt gaaatattaa agctattatg attaggggtg caaatggacc gagttggttc 28620
ggtttatatc aaaatcaaac caaaccaact atatcggttt ggattggttc ggttttgccg 28680
ggttttcagc attttctggt tttttttttg ttagatgaat attattttaa tcttactttg 28740
tcaaattttt gataagtaaa tatatgtgtt agtaaaaatt aatttttttt acaaacatat 28800
gatctattaa aatattctta taggagaatt ttcttaataa cacatgatat ttatttattt 28860
tagtcgtttg actaattttt cgttgatgta cactttcaaa gttaaccaaa tttagtaatt 28920
aagtataaaa atcaatatga tacctaaata atgatatgtt ctatttaatt ttaaattatc 28980
gaaatttcac ttcaaattcg aaaaagatat ataagaattt tgatagattt tgacatatga 29040
atatggaaga acaaagagat tgacgcattt tagtaacact tgataagaaa gtgatcgtac 29100
aaccaattat ttaaagttaa taaaaatgga gcacttcata tttaacgaaa tattacatgc 29160
cagaagagtc gcaaatattt ctagatattt tttaaagaaa attctataaa aagtcttaaa 29220
ggcatatata taaaaactat atatttatat tttggtttgg ttcgaatttg ttttactcaa 29280
taccaaacta aattagacca aatataattg ggatttttaa tcgagataga acccacacga 29340
gcatgtgctt tccatttaat tttaaaaacc aagaaacata catacataac attccatcag 29400
cctctctctc tttttattac ggttaatgac ttaaaacaca tcttattatc ccatccttaa 29460
cacctagcag tgtctttata cgatctcatc gatcaccact tcaaaaccat gcagactgct 29520
gctgcccctg gagctggcat cggctaggct gggtgccgca ctgtcccgga aggtccctag 29580
cgacttgttt agattgatgg gaccacctct caacttcctg ctgctgtccc tgctgctgga 29640
tgtcctgcct catctggccg attgcacgct ccagtcccct gcatgtgcac tcgctcctca 29700
attgcttaag atcatcgcag cagctatcga agtgctggct ctgttgccct cctccacggc 29760
cttggttgta gtagtagctg cggcggccct tctggacttt ttcccacagg aaccgccgaa 29820
taattcgata gaaccacacg agcatgtgct ttcatttatt ttaaaaacca agaaacatac 29880
ataacatttc atcagcctct ctctctctct ctctctctct ctctctctct ctctctctct 29940
ctctctcttt attacagctg ttacactaac ttaaaacaca ttcatctcat tattattatt 30000
attatccatc cttaacacct agcagtgtct ttgtacgatc tcataatcga tcaccccttc 30060
attacttctc agcagctcca actccgcagt tgttgatgtt acggaacatg agaacaccgt 30120
tatcaccgtc aacgtattgg caagacctga aagacttcca aagtgacttc cacatgttct 30180
cgtcgctaga cctgtagtgc tttcccataa ctttcttgat agcctcagaa gcaggtctag 30240
cgttgtagaa tgggatccta gaacagtagt ggtgaagcac atgagtctcg atgatatcat 30300
ggaagatgtg aggtccgatg aatccgaact ttctatcgat agtagcagca gcacccttag 30360
cgaaagtcca ttcctcagcg ttgtaatgag gcatagtagg atcagtgtgc tgaaggaatg 30420
tgatgaaaac gagccagtgg ttaacccaga tgtaaggaac gaaccagttg atgaaaaggg 30480
accatcctcc gaatttcttg taccaaagag taagaacgat tccctgggtg aggattccaa 30540
gatcagaaag gaagatgtag agagcatctc tttgctcgaa aagtggagag gtaagccaga 30600
agtggttcca tttccaagaa ggaacatcag ggtaaggttg tcctgtaacg ttaacgaaga 30660
ggtaagcgat ccatcctcca agttgttgaa caagaagctc gtaaagggtt ctaagtggag 30720
aatcctcaga gtactcagcg aggttaccga agaagttcct agacttcttg aattcctctt 30780
tggtggcagg aacgaaaacc atatctctgg tcatgtgtcc agtagcctta tggtgctttc 30840
catgagagta cttccagctg aagtaaggaa ccataaggta agagtgaagg gtccatccaa 30900
cgaaatcgtt cacgattccg taatcagaga aagcttgatg tccacactca tgagcgagaa 30960
cccagattcc ggttccgaaa agtccttgaa cgtaagtgta aagggcccag aaagtgaact 31020
tgatgatgct gttagaggtg taagagatga ggagagggta aaggatctta tgggtaaggt 31080
atccggtggt aagcatgcag aagatatctc tgaacacgta gtagagagag gtagccaatc 31140
ttctctcgta acactcatga gggatagctc caaggatgtc cttgatggtg aaatcaggaa 31200
cagagaacac gtttccgttg gtatcgatag caacttttgg aacctcttgc tcggtgttgc 31260
tagaagatcc tctgttctta ggatcagatc cagtaacggt aacagcgctc atggtatggt 31320
aattgtaaat gtaattgtaa tgttgtttgt tgtttgttgt tgttggtaat tgttgtaaaa 31380
tttttggtgg tgattggttc tttaaggtgt gagagtgagt tgtgagttgt gtggtgggtt 31440
tggtgagatt ggggatggtg ggtttatata gtggagactg aggaatgggg tcgtgagtgt 31500
taactttgca tgggctacac gtgggttctt ttgggcttac acgtagtatt attcatgcaa 31560
atgcagccaa tacatatacg gtattttaat aatgtgtggg aatacaatat gccgagtatt 31620
ttactaattt tggcaatgac aagtgtacat ttggattatc ttacttggcc tctcttgctt 31680
taatttggat tatttttatt ctcttacctt ggccgttcat attcacatcc ctaaaggcaa 31740
gacagaattg aatggtggcc aaaaattaaa acgatggata tgacctacat agtgtaggat 31800
caattaacgt cgaaggaaaa tactgattct gcccgttcga ctcagatctt ccaaggcctc 31860
gtctccgagt ccgctgcttc tcgccgcgcc gatcacttct ccgccgccaa caaggcttgt 31920
agttaatagg aatcattcag ggattgtgat tccgggcagt agtaattaat aatatagtat 31980
tagtatagat aatatgtttc gtttgggatc tttggaacgt tgctctgttc cttgttgttc 32040
attttaaagc ttttgaggga tagttgcaga actgttcggt gatgcttcat cctctcaaga 32100
actagatttg ggtaaagaaa catccatgca tggatatgga atgttgttct tccgattgga 32160
gattatttta taaaatttaa aattcatgat ttaaaaaaac acataaaaac cacaaaattc 32220
atgatttatt gacaatacga tacaaaatta gcaccaccgg ctactggctc attacacatt 32280
tccccttccc ctcattctca ctttgtggct ttattattat tattattaca tatattttac 32340
cgttattatt tcacgtcaca taagcttgtc attactcagc cttagatcta ggccttcttc 32400
caagagcgta catatgtctg agggtagaag caaggttaga ccagatagta gggtagtgct 32460
tgtactcgat tcctctagcc tcaagctcag ccttaacaag aggagcaagt ctagggtaga 32520
atccatggtg aactctaggg aacaagtgat gctcaatttg gtagttgagt ccaccgttaa 32580
gagtagcaag aagaggtcct ccaacgttag aagaagtctc agcttgtctc ttaaggaagc 32640
tagcacctct agtcatagaa gtgatagatc catcaggtcc aacagaagca acaccctcga 32700
agttgtggga gatgaagaag aagaaagcga ggtagaaaga tccagtcata acagtagcag 32760
cgatacacac agcagtatga acagaaggag caaggtaaag aggcaaagca acgaatctag 32820
cccagaaggt aagcttgaga agcaaagaag gcataaagag gtatccagca agcttagaga 32880
taggctcacc ctcccaacgc cacataacaa gctcagagat gtcgaggaac aaaagcttga 32940
aagcgtacat agtctcacca ggcaaaaggt aaagatgctg aagccaatgc ataggtgacc 33000
aagcatcagt aggcttgagt ctaagagcac cgtgagcctt ttgatcagga tccttatcaa 33060
catcgttagt gtggaggtgg tgcataacaa catgctcttg aagccaaagg atcatagatc 33120
ctccgatcca atcctgacaa agtccaagag caaggttaac agaagcagac ttagacaaag 33180
caccatggtt agcatcatgc tggatgttaa gaccgataag agcgaaaagc catccaagaa 33240
cgatagaagg gagaagtctc tttccagcgt aaagcatgta agcctcaaga gcgatagcag 33300
atccaaggat aagtccagcc ttaacccagt aagaagcagg agcgaatcca gaagaaacag 33360
aaggcaccat cttagcgatc ctagcacaaa gttgaaggta tccctcatca gcagcaacag 33420
gttcctcagt agaagcaaga gatccaacgt ggaatctaga cattctagac ttaggccaag 33480
cccttctatg gtattccatg aaagcctcag tagcatctct tcctccgaac aaagaaacga 33540
aatgagcacc accaggatgc tcagatctga aagccttagc atcgtaaaca gaatctccaa 33600
cgatggtgag atcaggtcta tcagcaacat cctttctggt gaaagcagaa gagtcagtaa 33660
caccagcatg aacaccagta gaagctccca tttgcttagc agcgctaggt ggcatggtat 33720
ggtaattgta aatgtaattg taatgttgtt tgttgtttgt tgttgttggt aattgttgta 33780
aaagtgggta tcttttggat ggataagcaa gtagtgatga tgttctaggt gaagtgatgg 33840
gggtgtttta tagcgggaga tggtgaaatg gatggtcgcc acataagaaa tggaggggaa 33900
gggttcttgc gccattcttc agtttgcatg gatgcatggg tttcattttg taacacgtaa 33960
taaggacaat gaagtgcagg tgtctctcaa gtttcagagg ggatatgtgg acagaagaag 34020
aacggcgatg atattgatgg aaatggccat ctagtgtgaa tctattcggt tgataatact 34080
agtgcatttt ggccgttaat cccttcaatt aactgcacaa acttcagttg agtattgatt 34140
atttgattat aggttctgta aacacaatac caagtttatt tagaggggag acatacaaat 34200
agtttcgata taaataatag agtggttaaa cttagttatt aaaactatat ataaagtcta 34260
aaagttaaat tattttttta attgcaaata tataaagtct aaaggggtta cattatttct 34320
taagagatgt aactctgttg gaatctgact taatccgtct catcactctg gtttccagtt 34380
ctaatctaat gaattgtttt ctgccaaaga atttgaagca agaagtaaat tgatcaatgc 34440
cgtcaaccca caccaaaccg tcaacccact accatcgccg cggagacccc caaactcaac 34500
ctccacccat cggtaagaag cacagggcag cccgcaccac caccaatttg gcgtgcatga 34560
cacctaggga cttggcacgg gaggcggcgc acgtggatgc aaatgacggg atatcagatg 34620
acaggaaacg acgttgagag accatacgat gtagaatatg agctcaccat caacgagaaa 34680
ctaggaaaat cacaaaaaaa acaactctcg taattgtacg agtggcacag atgggtctgc 34740
ctcaacatat ctctaatacg gcgaagcctg cccaacacgt agttgccgga atccggtgtg 34800
gagctcacga ctctgaaaga taggcgcttc ctgtttcgtt tcgctcaccc actggacgtc 34860
cgtcatgtga tggatttcgg tcattggttt gctgacaacc acattctgaa gctccatgag 34920
atgagtcttc acaataggtc ctgctcaata ccgtggagtt atggttgcaa gtccataact 34980
tgccgttcga atattttgcg gagccagtcg gacgggaatt ggcgagctcg gctgacacct 35040
ataaaggcca tgacaagaag aaccaaaagt tcttccctaa tgctttcatg aggcttcggg 35100
tcgttatgga tgtcggaaaa cccctcttga aggaacgaga cgttattatg catgacggta 35160
agactattac ttgtcagtat aagtatgaaa gattacctgt cttctgcttt gtttgtggat 35220
tgattggaca cgttgaaaaa aaatgtgcac ttcgatttca atactcagag atcgacttcc 35280
cttttctcta ggagtattcg atcaaggcat taacatggaa ggaagctcaa gctctaaagg 35340
cttcacaatg gaacctgaaa aatttcaaca agcctaaact gaaatcgaag tcaaatcacc 35400
caaccgggag ctctaaatca gcaaacactc ctcctccaca gtatccaatc atcgtgcacg 35460
atgctccagg tattgcaagc caggtattgc aagctaggag taggatagag accttaaacg 35520
tcgttggtgt gaagagtcat cttcagacct aatggagata gatgtagacg gcggcacgaa 35580
gactctgaaa caccagaaag gctagtccag gataaggatc tgctatccca actgacctct 35640
cgttagtccc aaggcctctc aactagagca ggaggaagga tggtcacaag actaggataa 35700
tgatgtttcc aatatgaacc tgaatgtcca tagctaattt ttttagtctt gcttctgcac 35760
tttttgttta ttatgttctg gtgactatgt tatttaccct tgtccgtatg cttgagagaa 35820
tcagtatttt ccttcgacgt taattgatcc tacactatgt aggtcatatc catcgtttta 35880
atttttggcc accattcaat tctgtcttgc ctttagggat gtgaatatga acggccaagg 35940
taagagaata aaaataatcc aaattaaagc aagagaggcc aagtaagata atccaaatgt 36000
acacttgtca ttgccaaaat tagtaaaata ctcggcatat tgtattccca cacattatta 36060
aaataccgta tatgtattgg ctgcatttgc atgaataata ctacgtgtaa gcccaaaaga 36120
acccacgtgt agcccatgca aagttaacac tcacgacccc attcctcagt ctccactata 36180
taaacccacc atccccaatc tcaccaaacc caccacacaa ctcacaactc actctcacac 36240
cttaaagaac caatcaccac caaaaatttt acaacaatta ccaacaacaa caaacaacaa 36300
acaacattac aattacattt acaattacca taccatgtct aaggttaccg tgtctggatc 36360
tgagatcctt gagggatcta ctaagaccgt taggcgttct ggaaacgttg catctttcaa 36420
gcagcaaaag accgctatcg ataccttcgg aaacgttttc aaggtgccag attacaccat 36480
caaggatatc cttgacgcta tccctaagca ctgttacgag agatctctcg tgaagtctat 36540
gtcttacgtg gtgagagata tcgtggctat ctctgctatc gcttacgttg gacttaccta 36600
catccctctt ctccctaacg aattccttag attcgctgct tggtctgctt acgtgttctc 36660
tatctcttgt ttcggattcg gaatctggat ccttggacat gagtgtggac attctgcttt 36720
ctctaactac ggatgggtta acgataccgt tggatgggtt ctccactctc ttgttatggt 36780
tccttacttc agctggaagt tctctcatgc taagcaccat aaggctactg gacacatgac 36840
cagagatatg gttttcgttc cttacaccgc cgaggaattc aaagagaagc accaagttac 36900
cagccttcac gatatcgctg aggaaactcc tatctactct gttttcgctc tcttgttcca 36960
acagcttgga ggactttctc tttaccttgc tactaacgct actggacaac cttaccctgg 37020
tgtttctaag ttcttcaagt ctcactactg gccttctagc cctgttttcg ataagaagga 37080
ctactggtac atcgttcttt ctgatcttgg aatccttgct accctcactt ctgtttacac 37140
cgcttacaag gttttcggat tctggcctac tttcatcaca tggttctgtc cttggatcct 37200
tgttaaccac tggcttgttt tcgttacctt ccttcagcac accgattctt ctatgcctca 37260
ttacgatgct caagagtgga ctttcgctaa gggtgctgct gctactatcg atagagagtt 37320
cggaatcctc ggaatcatct tccatgacat catcgagact catgtgctcc atcactacgt 37380
ttcaaggatc ccattctacc atgctagaga agctaccgag tgcatcaaga aagttatggg 37440
agagcactac agacacaccg atgagaacat gtgggttagc ctttggaaaa cttggagatc 37500
ttgccagttc gttgagaacc atgatggtgt gtacatgttc cgtaactgca acaacgttgg 37560
agtgaagcct aaggatacct gatgaagggg tgatcgatta tgagatcgta caaagacact 37620
gctaggtgtt aaggatggat aataataata ataatgagat gaatgtgttt taagttagtg 37680
taacagctgt aataaagaga gagagagaga gagagagaga gagagagaga gagagagaga 37740
gagagaggct gatgaaatgt tatgtatgtt tcttggtttt taaaataaat gaaagcacat 37800
gctcgtgtgg ttctatcgaa ttattcggcg gttcctgtgg gaaaaagtcc agaagggcgg 37860
cggcagctac tactacaacc aaggccgtgg aggagggcaa cagagccagc acttcgatag 37920
ctgctgcgat gatcttaagc aattgaggag cgagtgcaca tgcaggggac tggagcgtgc 37980
aatcggccag atgaggcagg acatccagca gcagggacag cagcaggaag ttgagaggtg 38040
gtcccatcaa tctaaacaag tcgctaggga ccttccggga cagtgcggca cccagcctag 38100
ccgatgccag ctccaggggc agcagcagtc tgcatggttt tgaagtggtg atcgatgaga 38160
tcgtataaag acactgctag gtgttaagga tgggataata agatgtgttt taagtcatta 38220
accgtaataa aaagagagag aggctgatgg aatgttatgt atgtatgttt cttggttttt 38280
aaaattaaat ggaaagcaca tgctcgtgtg ggttctatca ctattttcag aagaagttcc 38340
caatagtagt ccaaaatttt tgtaacgaag ggagcataat agttacatgc aaaggaaaac 38400
tgccattctt tagaggggat gcttgtttaa gaacaaaaaa tatatcactt tcttttgttc 38460
caagtcattg cgtatttttt taaaaatatt tgttccttcg tatatttcga gcttcaatca 38520
ctttatggtt ctttgtattc tggctttgct gtaaatcgta gctaaccttc ttcctagcag 38580
aaattattaa tacttgggat atttttttag aatcaagtaa attacatatt accaccacat 38640
cgagctgctt ttaaattcat attacagcca tataggcttg attcattttg caaaatttcc 38700
aggatattga caacgttaac ttaataatat cttgaaatat taaagctatt atgattaggg 38760
gtgcaaatgg accgagttgg ttcggtttat atcaaaatca aaccaaacca actatatcgg 38820
tttggattgg ttcggttttg ccgggttttc agcattttct ggtttttttt ttgttagatg 38880
aatattattt taatcttact ttgtcaaatt tttgataagt aaatatatgt gttagtaaaa 38940
attaattttt tttacaaaca tatgatctat taaaatattc ttataggaga attttcttaa 39000
taacacatga tatttattta ttttagtcgt ttgactaatt tttcgttgat gtacactttc 39060
aaagttaacc aaatttagta attaagtata aaaatcaata tgatacctaa ataatgatat 39120
gttctattta attttaaatt atcgaaattt cacttcaaat tcgaaaaaga tatataagaa 39180
ttttgataga ttttgacata tgaatatgga agaacaaaga gattgacgca ttttagtaac 39240
acttgataag aaagtgatcg tacaaccaat tatttaaagt taataaaaat ggagcacttc 39300
atatttaacg aaatattaca tgccagaaga gtcgcaaata tttctagata ttttttaaag 39360
aaaattctat aaaaagtctt aaaggcatat atataaaaac tatatattta tattttggtt 39420
tggttcgaat ttgttttact caataccaaa ctaaattaga ccaaatataa ttgggatttt 39480
taatcgaccg atctagtaac atagatgaca ccgcgcgcga taatttatcc tagtttgcgc 39540
gctatatttt gttttctatc gcgtattaaa tgtataattg cgggactcta atcataaaaa 39600
cccatctcat aaataacgtc atgcattaca tgttaattat tacgtgctta acgtaattca 39660
acagaaatta tatgataatc atcgcaagac cggcaacagg attcaatctt aagaaacttt 39720
attgccaaat gtttgaacga tctcattact gcattttctt ctcaggagca tgggcaacgt 39780
tatcaaggtt agcgaaagta tcagccatag cctcgaagta tcctctaaca tcgtagtgaa 39840
gtccgtgctt ctcgaaaagc tgcttaactc taggagcgat cttagggtgt ctgaattgag 39900
gcatagaagg gtaaaggtgg tgctcgatct ggtagttaag gtaagacatc caccaatcac 39960
accaccaaga tggagaacag ttagtagtgt ggttagcagc gtactcaacc caagtagcat 40020
gctcgttagg ctcaacaaca gggaggtgag tatgagaaac agcgaagttg cagaagatgt 40080
acatagctcc aagctgaacg taaagaaggt aacaagcgag aacgtatcca gcaccgtagt 40140
tagcagcaag gtatccaaca agtccgtatc tgattccgag catagcaagc tcatcgtagt 40200
gcttagtcct gagcatgtgt ctaggatgaa ggtaaagctg ccatccaaga gcaacaagaa 40260
gagtggtaac aggagcgaaa agcttagctt gcatagaaag ccaagccttc atagcaggag 40320
acttaacctt agcagcgatt ctctcatgga aagcaacgag aggaagggta tcaagatcaa 40380
catcgtgctg aagcttttga ggagtagcat ggtgcttgtt atgctggtta cgccaccaag 40440
caccagacat tccacatcca agtccgtaac aagcaacttg gatagctctg tcgaaagcaa 40500
tgtttccagt gagagagtaa tgtccaccct catgcataag ccatccacat cttccctgaa 40560
caactccaag catagcgatt ccagcgaaag tgtatccatg ccagataaga gcagcaccag 40620
caacatgcat agcgataacc tcagcaagtc tgtaagcaac atgaggaaga gaaggctcga 40680
acattccctc agcctcaagt tgcttggtga actcttggaa atcagcgata agatcagccc 40740
ttcttggaga gtatcccttg tgaacaggac gagaaggaag agacttaagc atcttgtcag 40800
ccttagcaga tctaacatgg aactgcttgt aagcatcggt agcatcagtt ccaacttggt 40860
aagcaatgat ctttccacca gggtgtctct taacgaagtt ggtaacatcg taagccctat 40920
ctccgataac aagctctttc ttgtcgtgct cttgaggagt atcaacttcg tgaagttgag 40980
cagaaggagg agcagcataa gagtaagagt cccttggagg catggtatgg taattgtaaa 41040
tgtaattgta atgttgtttg ttgtttgttg ttgttggtaa ttgttgtaaa agatcctcgt 41100
gtatgttttt aatcttgttt gtatcgatga gttttggttt gagtaaagag tgaagcggat 41160
gagttaattt ataggctata aaggagattt gcatggcgat cacgtgtaat aatgcatgca 41220
cgcatgtgat tgtatgtgtg tgctgtgaga gagaagctct taggtgtttg aagggagtga 41280
caagtggcga agaaaaacaa ttctccgcgg ctgcatgcta tgtgtaacgt gtagctaatg 41340
ttctggcatg gcatcttatg aacgattctt tttaaaaaca aggtaaaaac ttaacttcat 41400
aaaattaaaa aaaaaaacgt ttactaagtt ggtttaaaag gggatgagac tagaatctaa 41460
ttattctatt cagactaaat tagtataagt atttttttaa tcaataaata ataattaata 41520
atttattagt aggagtgatt gaatttataa tatatttttt ttaatcattt aaagaatctt 41580
atatctttaa attgacaaga gttttaaatg gggagagtgt tatcatatga caagtaggat 41640
taatgtgtta tagtttcaca tgcattacga taagttgtga aagataacat tattatatat 41700
aacaatgaca atcactagcg atcgagtagt gagagtcgtc ttattacact ttcttccttc 41760
gatctgtcac atggcggcgg cccggcgcgc cgcgcgcctt atcactgctt cttagcaccc 41820
ttagacttgt acctcttacg gtagaagttg gcgaagagaa cgaacatgtt caccataacc 41880
cagagttgaa ggtaaggaag ccagaaagcg gtattctgaa cgtaagcggt gtagatagag 41940
tgagaagcac agatacagaa ctgaagcatc tggatctggg tgatgtactt cttccagaaa 42000
cagttaactc caagagcagc aagtccgtag taagagtaca tgatcacgtg cacgaaggtg 42060
ttaacagaag atccgaagta gcaatctcca acaggctcaa gcttcataac aacgaaccat 42120
gaccagatga gaagagtgtg gtggtagatg tgaaggaaag aaagctggtc gaacttcttc 42180
ctcatcacca tgaagaaggt gtcgagaagc tcaacgtact tgttgttgta gtgaagccag 42240
ataacctgag agattcccca agagttagca gtcatatcag ggatgtttcc ccaaacctta 42300
agtccctgag ccctatgaga agtaacgaaa aggtagatgc agtagctgtt gaagaaggtc 42360
tggtagaagt tgtaaacgag catagcgttc ttgagtccga aaggttgaga tctgttctgc 42420
atgatacgct ttccgaagta gatgaagagg aggtatccaa tagttccgat agtaggtccc 42480
cagtactcaa cctgcatgaa gtaagcagga actttctcag aagctgggat atcagggtta 42540
gccacattgt aggtaacgta tccaagagtt ccagcaagag cagcagggat agcgatagag 42600
gccatggtat ggtaattgta aatgtaattg taatgttgtt tgttgtttgt tgttgttggt 42660
aattgttgta aaatgctctg tttgtgtcgg aaaataatgg aggaagctat gagatgtatt 42720
tgtatggatc ctcttttgtg gtccgttacg ttttacaaag catgcattta gacatgtgta 42780
tactcaaact catgcatcca tacacattgt aataaagtag tagtccactg aaagttgcca 42840
aaatagcaaa atagtacatt gcagaaatat atatactaaa ttcatatatt tcgatggaaa 42900
atttcggttt tccacttaaa ataaaatgta cgtataaact tagtcttctt ttaacgccaa 42960
aaaaaagtct acaaatttct gtctttaata ctacattatt tttgaattgt gctaaactat 43020
gattacatgt gcattaaaat ttgagggaat gtgtgttctt agatctgatt ggcataccct 43080
ctgactaatt atgggatcat gagtatttct cgggaatgtg tttattcgca agtctattct 43140
ctaacctcag taaataatga gtggaagttt agttaaggcc aaatagtcta aaatatatta 43200
tttgtagttt tgtacacagc caggattgaa tcttaagaga ctctttaagt ctaaaattac 43260
aatcagatcc tagaccactt tctatttgca tgaacgtaac cggatactga ttttttaaat 43320
gttttctttg gttcaaaatc gccactatct ttgacaaaaa cattctcgaa taggattcaa 43380
acctaagagc ctttcaaatt cgttcttaat tatgtcatca tctttagttc tgctcccatc 43440
tctcatcggt ctcaagaacc actcctagtc atttaagtac tacgttttat acacattaca 43500
tatacataca tttacacaac taggaattga gtagggaaca aagtttcaac tttcaactaa 43560
tagggtaagc cttctggtac atggaaacca accaaccaat ctactagggt accctcaagc 43620
atacggacaa gggtaaataa catagtcacc agaacataat aaacaaaaag tgcagaagca 43680
agactaaaaa aattagctat ggacattcag gttcatattg gaaacatcat tatcctagtc 43740
ttgtgaccat ccttcctcct gctctagttg agaggccttg ggactaacga gaggtcagtt 43800
gggatagcag atccttatcc tggactagcc tttctggtgt ttcagagtct tcgtgccgcc 43860
gtctacatct atctccatta ggtctgaaga tgactcttca caccaacgac gtttaaggtc 43920
tctatcctac tcctagcttg caatacctgg cttgcaatac ctggagcatc gtgcacgatg 43980
attggatact gtggaggagg agtgtttgct gatttagagc tcccggttgg gtgatttgac 44040
ttcgatttca gtttaggctt gttgaaattt ttcaggttcc attgtgaagc ctttagagct 44100
tgagcttcct tccatgttaa tgccttgatc gaatactcct agagaaaagg gaagtcgatc 44160
tctgagtatt gaaatcgaag tgcacatttt ttttcaacgt gtccaatcaa tccacaaaca 44220
aagcagaaga caggtaatct ttcatactta tactgacaag taatagtctt accgtcatgc 44280
ataataacgt ctcgttcctt caagaggggt tttccgacat ccataacgac ccgaagcctc 44340
atgaaagcat tagggaagaa cttttggttc ttcttgtcat ggcctttata ggtgtcagcc 44400
gagctcgcca attcccgtcc gactggctcc gcaaaatatt cgaacggcaa gttatggact 44460
tgcaaccata actccacggt attgagcagg acctattgtg aagactcatc tcatggagct 44520
tcagaatgtg gttgtcagca aaccaatgac cgaaatccat cacatgacgg acgtccagtg 44580
ggtgagcgaa acgaaacagg aagcgcctat ctttcagagt cgtgagctcc acaccggatt 44640
ccggcaacta cgtgttgggc aggcttcgcc gtattagaga tatgttgagg cagacccatc 44700
tgtgccactc gtacaattac gagagttgtt ttttttgtga ttttcctagt ttctcgttga 44760
tggtgagctc atattctaca tcgtatggtc tctcaacgtc gtttcctgtc atctgatatc 44820
ccgtcatttg catccacgtg cgccgcctcc cgtgccaagt ccctaggtgt catgcacgcc 44880
aaattggtgg tggtgcgggc tgccctgtgc ttcttaccga tgggtggagg ttgagtttgg 44940
gggtctccgc ggcgatggta gtgggttgac ggtttggtgt gggttgacgg cattgatcaa 45000
tttacttctt gcttcaaatt ctttggcaga aaacaattca ttagattaga actggaaacc 45060
agagtgatga gacggattaa gtcagattcc aacagagtta catctcttaa gaaataatgt 45120
aaccccttta gactttatat atttgcaatt aaaaaaataa tttaactttt agactttata 45180
tatagtttta ataactaagt ttaaccactc tattatttat atcgaaacta tttgtatgtc 45240
tcccctctaa ataaacttgg tattgtgttt acagaaccta taatcaaata atcaatactc 45300
aactgaagtt tgtgcagtta attgaaggga ttaacggcca aaatgcacta gtattatcaa 45360
ccgaatagat tcacactaga tggccatttc catcaatatc atcgccgttc ttcttctgtc 45420
cacatatccc ctctgaaact tgagagacac ctgcacttca ttgtccttat tacgtgttac 45480
aaaatgaaac ccatgcatcc atgcaaactg aagaatggcg caagaaccct tcccctccat 45540
ttcttatgtg gcgaccatcc atttcaccat ctcccgctat aaaacacccc catcacttca 45600
cctagaacat catcactact tgcttatcca tccaaaagat acccacttaa ttaattttac 45660
aacaattacc aacaacaaca aacaacaaac aacattacaa ttacatttac aattaccata 45720
ccatgtgccc tcctaagact gatggaagat cttctcctag atctccactt accaggtcta 45780
aatcttctgc tgaggctctt gatgctaagg atgcttctac tgctcctgtt gatcttaaga 45840
ctcttgagcc tcatgagctt gctgctactt tcgagactag atgggttaga gttgaggacg 45900
ttgagtacga tgtgactaac ttcaagcacc ctggtggatc tgtgatcttc tacatgcttg 45960
ctaacactgg tgctgatgct actgaggctt tcaaagaatt ccacatgcgt tctctcaagg 46020
cttggaagat gcttagagct ttgccttcta gacctgctga gatcaagaga tctgagtctg 46080
aggatgctcc tatgcttgag gatttcgcta gatggcgtgc tgagcttgag agagatggat 46140
tcttcaagcc ttctatcacc catgtggctt acagacttct cgagcttctt gctacattcg 46200
ctcttggaac tgctcttatg tacgctggat accctatcat tgcttctgtt gtttacggtg 46260
ctttcttcgg agctagatgt ggatgggttc aacatgaggg tggacataac tctcttaccg 46320
gatctgttta cgtggacaag agacttcagg ctatgacttg tggattcgga ctttctactt 46380
ctggtgagat gtggaaccag atgcataaca agcaccatgc tacccctcaa aaggttagac 46440
acgatatgga tcttgatacc actcctgctg tggctttctt caacactgct gttgaggata 46500
acagacctag aggattctct agagcttggg ctagacttca agcttggact ttcgttcctg 46560
ttacctctgg acttcttgtt caagctttct ggatctacgt tctccaccct agacaagttc 46620
tccgtaagaa gaactacgaa gaggcttctt ggatgctcgt ttctcatgtt gttagaaccg 46680
ctgttatcaa gcttgctact ggatactctt ggcctgttgc ttactggtgg ttcactttcg 46740
gaaactggat cgcttacatg taccttttcg ctcacttctc tacttctcat actcacctcc 46800
ctgttgttcc atctgataag cacctttctt gggttaacta cgctgttgat cacaccgttg 46860
atatcgatcc ttctagagga tacgtgaact ggcttatggg ataccttaac tgtcaggtta 46920
tccaccacct cttccctgat atgcctcaat tcagacagcc tgaggttagc agaagattcg 46980
ttcctttcgc taagaagtgg ggactcaact acaaggtgct ctcttactac ggtgcttgga 47040
aggctacttt ctctaacctt gataaggtgg gacagcacta ctacgttaac ggaaaggctg 47100
agaaggctca ctaatgatta attaacaagc ttatgtgacg tgaaataata acggtaaaat 47160
atatgtaata ataataataa taaagccaca aagtgagaat gaggggaagg ggaaatgtgt 47220
aatgagccag tagccggtgg tgctaatttt gtatcgtatt gtcaataaat catgaatttt 47280
gtggttttta tgtgtttttt taaatcatga attttaaatt ttataaaata atctccaatc 47340
ggaagaacaa cattccatat ccatgcatgg atgtttcttt acccaaatct agttcttgag 47400
aggatgaagc atcaccgaac agttctgcaa ctatccctca aaagctttaa aatgaacaac 47460
aaggaacaga gcaacgttcc aaagatccca aacgaaacat attatctata ctaatactat 47520
attattaatt actactgccc ggaatcacaa tccctgaatg attcctatta actacaagcc 47580
ttgttggcgg cggagaagtg atcggcgcgg cgagaagcag cggactcgga gacgaggcct 47640
tggaagatct gagtcgaacg ggcggtaccg cggccgcaag ctttccgcgg ggcgcccgtt 47700
ttacaacgtc gtgactggga gatccactag cagattgtcg tttcccgcct tcagtttaaa 47760
ctatcagtgt ttgaaggaca gacccaccca agaacacacc agtcattcag atgcagccta 47820
tctccgtgcc ggctattcca gctgatgagt tgaaggatat aactgataac tatggttcca 47880
agtccttgat tggtgagggc tcttatggaa gagtgtttta cggtgttctt agaagcggca 47940
aggcagctgc cattaagaag ctggattcta gtaagcagcc tgatcaagag tttctcgcac 48000
aggtacaaat gctacttaag taaatcaaac cgttaaagtt gagttgctgc ttagttactg 48060
atgtaaataa tgttaattag gtatcaatgg tttcgagatt gagacaagac aatgttgttg 48120
cacttctggg atattgcgtt gatggcccac tccgtgttct tgcttatgag tttgctccta 48180
atggatctct tcatgatatt cttcatggta agttattaag tctaaaacat tgattcggta 48240
cgacttgtag atgtgaagct attaactaat gaaatgtggt gagtttgttg ggtgtaggta 48300
ggaaaggagt gaaaggagca cagccaggac ctgttctgtc gtggaaccag agagttaaaa 48360
ttgctgttgg tgcggctagg ggactcgagt acttgcatga gaaggcgaac cctcatgttg 48420
tccaccgaga catcaaatcc agcaatgtgc ttttgtttga cgatgatgtt gccaagattg 48480
ctgacttcga tctgtctaac caagcccctg acatggctgc tcgccttcac tcaactcgtg 48540
tgctgggaac ctttggttat cacgctccag agtaagccct ttacttgttt atttgaattg 48600
tttttgttca gactaatcaa tgtggttaca ttcaacttgt gctcaaagac ttttggttat 48660
tattatctta tgttttgagg cactaagtcc ttccttggaa taatctttga cattattttg 48720
gattgcatct cttctaattg accatactag agtcttaaac acaaacattt ttgttttggt 48780
tctgcatttt caggtatgca atgacaggga cattgagcac aaagagtgat gtctatagtt 48840
ttggagttgt tctgctagag ctcctcacag gtcgtaagcc agttgatcat accttaccac 48900
gaggacagca gagtctcgtt acatgggtaa tgcttagtgc agctctgctt cttttttctg 48960
gtttactcat attgagaaga aaagggaatg tgtctgcaca atcatgttga ttttgtgaga 49020
gattagataa actcattatt aaatgaaaac gcgtttgtgt gtgtgtatca ggcaactcct 49080
aaactgagtg aagacaaggt gaagcaatgc gttgatgcaa gactaaacgg agaatatcct 49140
cccaaagctg ttgccaaggt aaccttttgt catagtgtcg ttgtgtcagt agagaaggtt 49200
taccttagga cacgacttag aaactgcttc tccatcactt ccatcgtttt cggttccttc 49260
ttaatgtatc cctgttgtag gcctagattg aaatacaagt ctcttctaag gacaatagaa 49320
cctaagcatt gatgtatgat ttttttggga gtctgatttt ggttttttct ctcttatatg 49380
actccggtaa tgatcagctg gctgctgtag ctgcgctatg tgtgcaatac gaagcagact 49440
tcaggccaaa catgagcata gtggtgaagg ctcttcagcc tctcctcaat cctcctcgct 49500
ctgctcctca aactcctcac aggaacaatc cttattgatg tcctccaatc tgatgccacg 49560
cttcttcatc atatcactta tttcatttgt ttttgtttga atccaatttg tgtaaattcg 49620
tgaaaatagg ctttttattt ctcacaatag acatgaaagt ctcacttcca aacctgaatg 49680
gtgttgctct atttgtttat gttatttcat gcctgcgatt gtaagtttct actaattata 49740
caatatgcga ggaatggatt attcataata tactcattgt gtttgtgcc 49789
<210> 42
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 转基因的5'末端处的连接
<400> 42
tggaggtgtt caaacact 18
<210> 43
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 在染色体A02上4-转基因-插入片段的5'末端的连接
<400> 43
tggaggtgtt caaacact 18
<210> 44
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 4-转基因-插入片段的3'末端与与染色体A02的连接
<400> 44
atagtattag tatacaga 18
<210> 45
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 16-转基因-插入片段的5'末端在染色体A05中的连接
<400> 45
ggctaaggta acactgat 18
<210> 46
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 16-转基因-插入片段的3'末端与染色体A05的连接
<400> 46
cagtgtttga aggacaga 18
<210> 47
<211> 470
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 转基因插入片段和芸薹属染色体A02的470 bp嵌合的5'连接
<400> 47
cattgagcag tgaacaccaa ggataaatat ttactgatta gtgtgtgatt gaatcaaaga 60
aaggttagaa tctggttttc atttagccat tcaatctcga tgtaaaatcg gttagattct 120
ggttgttgat acttgagaac ttgaaatgtt ttgtaactgt gaattttgtt ttgaaaatag 180
acaagtgaat ctgtttgggg ttgtgtgaaa acgtgtgagc aattgttgga ggtgttcaaa 240
cactgatagt ttaaactgaa ggcgggaaac gacaatctgc tagtggatct cccagtcacg 300
acgttgtaaa acgggcgccc cgcggaaagc ttgcggccgc ggtaccgccc gttcgactca 360
gatcttccaa ggcctcgtct ccgagtccgc tgcttctcgc cgcgccgatc acttctccgc 420
cgccaacaag gcttgtagtt aataggaatc attcagggat tgtgattccg 470
<210> 48
<211> 470
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 转基因插入片段和芸薹属染色体A02的470 bp嵌合的3'连接
<400> 48
ttgaatggtg gccaaaaatt aaaacgatgg atatgaccta catagtgtag gatcaattaa 60
cgtcgaagga aaatactgat tctgcccgtt cgactcagat cttccaaggc ctcgtctccg 120
agtccgctgc ttctcgccgc gccgatcact tctccgccgc caacaaggct tgtagttaat 180
aggaatcatt cagggattgt gattccgggc agtagtaatt aataatatag tattagtata 240
cagaacctct tatttagcta aaagattatg ttcttaatgt tgataagaag tttgagaaac 300
aaatataatt gagcttctga ttagttgatc gtaattggtc attaataatt gtatctaacc 360
agtgcagtat aagagcgtat aagagcatct tcaaaaagac tttattttag agttaatcag 420
tgcagtataa gagcatctct aaaaaaactc taattataga gttttgcaaa 470
<210> 49
<211> 470
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 转基因插入片段和染色体A05的470 bp嵌合的5'连接
<400> 49
cttgttccgc aacaccgtta ctgaactctt cgttcactta aacagtttgt gtgtgtgaga 60
aacagcgtaa tgagctgctt tggttgttgt ggtggtgacg attttcgtcg agttgctgaa 120
actggaccca agccagtgta cggcgcagga ggtactttaa gcttataacc ctttgtctat 180
cctttggcta gcggctaatg ttgatgaact tttttattca accgttggct aaggtaacac 240
tgatagttta aactgaaggc gggaaacgac aatctgctag tggatctccc agtcacgacg 300
ttgtaaaacg ggcgccccgc ggaaagcttg cggccgcggt accgcccgtt cgactcagat 360
cttccaaggc ctcgtctccg agtccgctgc ttctcgccgc gccgatcact tctccgccgc 420
caacaaggct tgtagttaat aggaatcatt cagggattgt gattccgggc 470
<210> 50
<211> 470
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 转基因插入片段和染色体A05的470 bp嵌合的3'连接
<400> 50
ttattaatta ctactgcccg gaatcacaat ccctgaatga ttcctattaa ctacaagcct 60
tgttggcggc ggagaagtga tcggcgcggc gagaagcagc ggactcggag acgaggcctt 120
ggaagatctg agtcgaacgg gcggtaccgc ggccgcaagc tttccgcggg gcgcccgttt 180
tacaacgtcg tgactgggag atccactagc agattgtcgt ttcccgcctt cagttaagga 240
cagacccacc caagaacaca ccagtcattc agatgcagcc tatctccgtg ccggctattc 300
cagctgatga gttgaaggat ataactgata actatggttc caagtccttg attggtgagg 360
gctcttatgg aagagtgttt tacggtgttc ttagaagcgg caaggcagct gccattaaga 420
agctggattc tagtaagcag cctgatcaag agtttctcgc acaggtacaa 470
<210> 51
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于诊断NS-B50027-4的扩增子的正向引物
<400> 51
aattgttgga ggtgttcaaa cact 24
<210> 52
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于诊断NS-B50027-4的扩增子的反向引物
<400> 52
cggaatcaca atccctgaat gatt 24
<210> 53
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ12-去饱和酶的有义引物
<400> 53
tggagctatc cctcatgagt 20
<210> 54
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ12-去饱和酶的反义引物
<400> 54
gatcctagaa cagtagtggt g 21
<210> 55
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ15/ω3-去饱和酶的有义引物
<400> 55
gacgctatcc ctaagcactg t 21
<210> 56
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ15/ω3-去饱和酶的反义引物
<400> 56
gtccactctt gagcatcgta 20
<210> 57
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ6-去饱和酶的有义引物
<400> 57
gagcaccttg tagttgagtc c 21
<210> 58
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ6-去饱和酶的反义引物
<400> 58
agtctgagga tgctcctatg c 21
<210> 59
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ6-延长酶的有义引物
<400> 59
tgttgctatg gctcaagagc 20
<210> 60
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ6-延长酶的反义引物
<400> 60
ctagcgtggt gcttcatgta 20
<210> 61
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ5-去饱和酶的有义引物
<400> 61
gctaccgatg cttacaagca 20
<210> 62
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ5-去饱和酶的反义引物
<400> 62
tagtgaagtc cgtgcttctc 20
<210> 63
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测Δ5-延长酶的有义引物
<400> 63
tgctggaact cttggatacg 20
<210> 64
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ5-延长酶的反义引物
<400> 64
ctgggtgatg tacttcttcc 20
<210> 65
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ4-去饱和酶的有义引物
<400> 65
ggctttcaga tctgagcatc 20
<210> 66
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 用于检测密码子优化的Δ4-去饱和酶的反义引物
<400> 66
ctcagcctta acaagaggag 20

Claims (18)

1.一种检测包含植物DNA的样品中事件NS-B50027-4或其子代的存在的方法,其中所述方法包括
(a)使所述样品与以下接触:
对在A02插入片段和天然芸薹属(Brassica)染色体A02 DNA之间的5'侧翼连接区特异性的至少一种引物,所述5'侧翼连接区的范围为SEQ ID NO:40的从核苷酸2033至2132,或
对在所述A02插入片段和所述天然芸薹属染色体A02 DNA之间的3'侧翼连接区特异性的至少一种引物,所述3'侧翼连接区的范围为SEQ ID NO:40的从核苷酸14156至14255,或
对在A05插入片段和天然芸薹属染色体A05 DNA之间的5'侧翼连接区特异性的至少一种引物,所述5'侧翼连接区的范围为SEQ ID NO:41的从核苷酸1110至1209,或
对在所述A05插入片段和所述天然芸薹属染色体A05 DNA之间的3'侧翼连接区特异性的至少一种引物,所述3'侧翼连接区的范围为SEQ ID NO:41的从核苷酸47724至47823,或
至少10个或15个连续核苷酸或其互补序列;
(b)使所述样品经受聚合酶链式反应;和
(c)测定在所述引物之间生成的扩增子,
其中所述方法任选地是基于竞争性等位基因特异性PCR的基因分型测定;并且
其中所述方法诊断优良种事件NS-B50027-4,其特征性的种子已经以ATCC登录号PTA-123186保藏。
2.根据权利要求1所述的方法,其中SEQ ID NO:40的从核苷酸2033至2132的所述5'连接涵盖包含43bp的所述插入片段和57bp的芸薹属染色体A02 DNA的100bp区域。
3.根据权利要求1所述的方法,其中SEQ ID NO:40的从核苷酸14156至14255的所述3'连接涵盖包含46bp的所述插入片段和54bp的芸薹属染色体A02 DNA的100bp区域。
4.根据权利要求1所述的方法,其中SEQ ID NO:41的从核苷酸1110至1209的所述5'连接涵盖包含50bp的所述插入片段和50bp的芸薹属染色体A05 DNA的100bp区域。
5.根据权利要求1所述的方法,其中SEQ ID NO:41的从核苷酸47724至47823的所述3'连接涵盖包含50bp的所述插入片段和50bp的芸薹属染色体A05 DNA的100bp区域。
6.一种检测包含植物DNA的样品中事件NS-B50027-4或其子代的存在的方法,其中所述方法包括
(a)使所述样品与以下接触:
对在A02插入片段和天然芸薹属染色体A02 DNA之间的5'侧翼连接区特异性的至少一种引物,所述5'侧翼连接区的范围为SEQ ID NO:40的从核苷酸2040至2139,或
对在所述A02插入片段和所述天然芸薹属染色体A02 DNA之间的3'侧翼连接区特异性的至少一种引物,所述3'侧翼连接区的范围为SEQ ID NO:40的从核苷酸14152至14251,或
对在A05插入片段和天然芸薹属染色体A05 DNA之间的5'侧翼连接区特异性的至少一种引物,所述5'侧翼连接区的范围为SEQ ID NO:41的从核苷酸1110至1209,或
对在所述A05插入片段和所述天然芸薹属染色体A05 DNA之间的3'侧翼连接区特异性的至少一种引物,所述3'侧翼连接区的范围为SEQ ID NO:41的从核苷酸47724至47823,或
至少10个或15个连续核苷酸或其互补序列;
(b)使所述样品经受聚合酶链式反应;和
(c)测定在所述引物之间生成的扩增子,
其中所述方法任选地是基于竞争性等位基因特异性PCR的基因分型测定;并且
其中所述方法诊断优良种事件NS-B50027-4,其特征性的种子已经以ATCC登录号PTA-123186保藏。
7.根据权利要求6所述的方法,其中SEQ ID NO:40的从核苷酸2040至2139的所述5'连接涵盖包含50bp的所述插入片段和50bp的芸薹属染色体A02 DNA的100bp区域。
8.根据权利要求6所述的方法,其中SEQ ID NO:40的从核苷酸14152至14251的所述3'连接涵盖包含50bp的所述插入片段和50bp的芸薹属染色体A02 DNA的100bp区域。
9.根据权利要求6所述的方法,其中SEQ ID NO:41的从核苷酸1110至1209的所述5'连接涵盖包含50bp的所述插入片段和50bp的芸薹属染色体A05 DNA的100bp区域。
10.根据权利要求6所述的方法,其中SEQ ID NO:41的从核苷酸47724至47823的所述3'连接涵盖包含50bp的所述插入片段和50bp的芸薹属染色体A05 DNA的100bp区域。
11.一种试剂盒,所述试剂盒包含当使用时实施权利要求1所述的方法的组分。
12.一种试剂盒,所述试剂盒包含当使用时实施权利要求6所述的方法的组分。
13.一种检测包含植物DNA的样品中至少一个转基因基因座存在的体外方法,其中所述方法包括:
(a)使所述样品与以下接触:
至少一种第一引物,所述至少一种第一引物与所述第一转基因基因座的第一转基因侧翼连接区结合,所述至少一种第一引物选自由SEQ ID NO:17-SEQ ID NO:23组成的引物组,其序列靶向染色体A05转基因基因座的上游连接区;
至少一种第二引物,所述至少一种第二引物与所述第一转基因基因座的第二转基因侧翼连接区结合,所述至少一种第二引物选自由SEQ ID NO:24-SEQ ID NO:27组成的引物组,其序列靶向染色体A05转基因基因座的下游连接区;
至少一种第三引物,所述至少一种第三引物与所述第二转基因基因座的第一转基因侧翼连接区结合,所述至少一种第三引物选自由SEQ ID NO:28-SEQ ID NO:30组成的引物组,其序列靶向染色体A02转基因基因座的上游连接区;
至少一种第四引物,所述至少一种第四引物与所述第二转基因基因座的第二转基因侧翼连接区结合,所述至少一种第四引物选自由SEQ ID NO:31-SEQ ID NO:37组成的引物组,其序列靶向染色体A02转基因基因座的下游连接区;或
至少10个连续的核苷酸或其互补序列;
(b)使所述样品经受聚合酶链式反应;和
(c)测定在所述引物之间生成的扩增子,
其中所述方法任选择地是竞争性等位基因特异性PCR的基因分型测定;并且
其中所述方法诊断优良种事件NS-B50027-4,其特征性的种子已经以ATCC登录号PTA-123186保藏。
14.根据权利要求13所述的方法,在步骤(a)中还包括:使所述样品与至少一种引物接触,所述至少一种引物生成NS-B50027-4的至少一个转基因的特征性的扩增子,其中所述引物选自SEQ ID NO:1-NO:16、这些引物中任何一种的至少十个连续的核苷酸,或其互补序列,其中至少一个转基因选自细小微胞藻(Micromonas pusilla)Δ6-去饱和酶、Pyramimonas cordataΔ5-延长酶、盐生巴夫藻(Pavlova salina)Δ5-去饱和酶、巴斯德毕赤酵母(Pichia pastoris)Δ15/ω3-去饱和酶、盐生巴夫藻Δ4-去饱和酶、LachanceakluyveriΔ12-去饱和酶或P.cordataΔ-6延长酶基因。
15.一种试剂盒,所述试剂盒包含实施权利要求13或权利要求14所述的方法的组分。
16.一种检测包含植物DNA的样品中优良种事件NS-B50027-4的特征性的DNA的存在的体外方法,所述方法包括以下步骤:
(a)使所述样品与第一转基因基因座连接区的引物对和第二转基因基因座连接区的引物对接触,所述引物对在与来自优良种事件NS-B50027-4的基因组DNA一起在核酸扩增反应中使用时产生诊断优良种事件NSB50027-4的第一转基因基因座扩增子和第二转基因基因座扩增子;
(b)进行核酸扩增反应,从而产生所述第一扩增子和所述第二扩增子;和
(c)检测所述扩增子,其中所述第一转基因基因座的扩增子包括:连接区SEQ ID NO:43(染色体A02转基因插入片段的5'侧翼连接序列)和/或SEQ ID NO:44(染色体A02转基因插入片段的3'侧翼连接序列),或其互补序列,并且所述第二转基因基因座的扩增子包括:SEQID NO:45(染色体A05转基因插入片段的5'侧翼连接序列)和/或SEQ ID NO:46(染色体A05转基因插入片段的3'侧翼连接序列),或其互补序列。
17.根据权利要求16所述的方法,其中用于所述第一转基因基因座连接区的所述引物对选自SEQ ID NO:17-NO:23或SEQ ID NO:24-NO:27、这些中的任何一种的至少10个连续核苷酸或其互补序列,SEQ ID NO:17-NO:23的序列靶向染色体A05转基因基因座的上游连接区,SEQ ID NO:24-NO:27的序列靶向染色体A05转基因基因座的下游连接区;并且用于所述第二转基因基因座连接区的所述引物对选自SEQ ID NO:28-NO:30或SEQ ID NO:31-36、这些中的任何一种的至少十个连续的核苷酸或其互补序列,SEQ ID NO:28-NO:30的序列靶向染色体A02转基因基因座的上游连接区,SEQ ID NO:31-36的序列靶向染色体A02转基因基因座的下游连接区。
18.一种试剂盒,所述试剂盒包括实施权利要求16或权利要求17所述的方法的组分。
CN202210541485.XA 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4 Pending CN114836567A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662351246P 2016-06-16 2016-06-16
US62/351,246 2016-06-16
CN201780051945.8A CN109689847B (zh) 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4
PCT/US2017/038047 WO2017219006A1 (en) 2016-06-16 2017-06-16 Elite event canola ns-b50027-4

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780051945.8A Division CN109689847B (zh) 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4

Publications (1)

Publication Number Publication Date
CN114836567A true CN114836567A (zh) 2022-08-02

Family

ID=60663665

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202210541485.XA Pending CN114836567A (zh) 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4
CN201780051945.8A Active CN109689847B (zh) 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4
CN202311319675.8A Pending CN117947200A (zh) 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201780051945.8A Active CN109689847B (zh) 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4
CN202311319675.8A Pending CN117947200A (zh) 2016-06-16 2017-06-16 优良种事件油菜ns-b50027-4

Country Status (16)

Country Link
US (3) US10570405B2 (zh)
EP (3) EP3472281A4 (zh)
JP (2) JP7086329B2 (zh)
KR (2) KR102430202B1 (zh)
CN (3) CN114836567A (zh)
AU (2) AU2017286800B2 (zh)
BR (1) BR112018076314A2 (zh)
CA (1) CA3027743A1 (zh)
CL (1) CL2018003628A1 (zh)
EA (1) EA201892782A1 (zh)
IL (2) IL296501A (zh)
MX (3) MX2018015593A (zh)
NZ (1) NZ749655A (zh)
PH (1) PH12018502665A1 (zh)
SG (1) SG11201811210YA (zh)
WO (1) WO2017219006A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ749656A (en) * 2016-06-16 2022-12-23 Nuseed Nutritional Australia Pty Ltd Inbred transgenic canola line ns-b50027-4 and seeds thereof
NZ749655A (en) 2016-06-16 2023-01-27 Nuseed Nutritional Australia Pty Ltd Elite event canola ns-b50027-4
US11913006B2 (en) 2018-03-16 2024-02-27 Nuseed Global Innovation Ltd. Plants producing modified levels of medium chain fatty acids
EP3560342B1 (en) 2018-04-25 2020-06-03 Nuseed Pty Ltd Dha enriched polyunsaturated fatty acid compositions
EP3784044A1 (en) 2018-04-25 2021-03-03 Nuseed Pty Ltd Dha enriched polyunsaturated fatty acid compositions
EP3586642A1 (en) 2018-06-21 2020-01-01 Nuseed Pty Ltd Ala enriched polyunsaturated fatty acid compositions
EP3586641A1 (en) 2018-06-21 2020-01-01 Nuseed Pty Ltd Dha enriched polyunsaturated fatty acid compositions
CN108728575B (zh) * 2018-06-21 2021-07-02 贵州省油菜研究所 甘蓝型油菜角果长度性状的主效qtl位点、snp分子标记及应用
EP3586643A1 (en) 2018-06-21 2020-01-01 Nuseed Pty Ltd Dha enriched polyunsaturated fatty acid compositions
EP3586640A1 (en) 2018-06-21 2020-01-01 Nuseed Pty Ltd Dha enriched polyunsaturated fatty acid compositions
US20210198757A1 (en) * 2018-09-11 2021-07-01 Nuseed Pty Ltd Methods of identifyinig dha canola ns-b50027-4
WO2020055763A1 (en) * 2018-09-11 2020-03-19 Nuseed Pty Ltd Methods of identifying dha canola ns-b50027-4
CN109880927A (zh) * 2019-03-20 2019-06-14 江苏省农业科学院 检测油菜BnALS1R基因的SNP标记引物及其应用
CN114599224B (zh) * 2019-08-26 2023-12-08 纽希得营养澳大利亚私人有限公司 芥菜品系nubj1207
CA3155544A1 (en) 2019-10-25 2021-04-29 Stuart Littler Enriched polyunsaturated fatty acid compositions
WO2021226242A1 (en) 2020-05-05 2021-11-11 Nuseed Pty Ltd Aquafeed for improved fish health
EP4240144A1 (en) 2020-11-04 2023-09-13 BASF Plant Science Company GmbH Harvest management
EP4029951A1 (en) 2020-12-16 2022-07-20 Nuseed Nutritional Australia Pty Ltd Methods and primers for detecting dha canola ns-b50027-4
WO2022204454A1 (en) 2021-03-25 2022-09-29 Cargill, Incorporated Fertilizer management
WO2022224146A1 (en) * 2021-04-20 2022-10-27 Nuseed Nutritional Australia Pty Ltd. Brassica napus line ome0001
CN114196775B (zh) * 2021-12-09 2023-09-15 中国农业科学院油料作物研究所 提高油菜油酸含量的分子标记引物、引物组及其在育种中的应用

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
EP0242236B2 (en) 1986-03-11 1996-08-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
US4975374A (en) 1986-03-18 1990-12-04 The General Hospital Corporation Expression of wild type and mutant glutamine synthetase in foreign hosts
EP0333033A1 (en) 1988-03-09 1989-09-20 Meiji Seika Kaisha Ltd. Glutamine synthesis gene and glutamine synthetase
US5478369A (en) 1990-06-12 1995-12-26 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating male fertility and method of using same
US5824524A (en) 1990-06-12 1998-10-20 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating fertility and method of using same
US6297426B1 (en) 1990-06-12 2001-10-02 Pioneer Hi-Bred International, Inc. Methods of mediating female fertility in plants
US5266317A (en) 1990-10-04 1993-11-30 University Of Georgia Research Foundation, Inc. Insect-specific paralytic neurotoxin genes for use in biological insect control: methods and compositions
AU1202192A (en) 1991-02-07 1992-09-07 Plant Genetic Systems N.V. Stamen-specific promoters from corn
WO1992013956A1 (en) 1991-02-08 1992-08-20 Plant Genetic Systems, N.V. Stamen-specific promoters from rice
GB9115909D0 (en) 1991-07-23 1991-09-04 Nickerson Int Seed Recombinant dna
US5591616A (en) 1992-07-07 1997-01-07 Japan Tobacco, Inc. Method for transforming monocotyledons
US5607914A (en) 1993-01-13 1997-03-04 Pioneer Hi-Bred International, Inc. Synthetic antimicrobial peptides
US5580852A (en) 1993-12-17 1996-12-03 Pioneer Hi-Bred International, Inc. Derivatives of tachyplesin having inhibitory activity towards plant pathogenic fungi
US5767373A (en) 1994-06-16 1998-06-16 Novartis Finance Corporation Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms
US5659026A (en) 1995-03-24 1997-08-19 Pioneer Hi-Bred International ALS3 promoter
US5969212A (en) 1997-02-05 1999-10-19 Dekalb Genetics Corporation Inbred corn plant 79103A1 and seeds thereof
US5973234A (en) 1998-02-13 1999-10-26 Pioneer Hi-Bred International, Inc. Soybean variety 95B33
US5959185A (en) 1998-02-13 1999-09-28 Pioneer Hi-Bred International, Inc. Soybean variety 95B41
US5977445A (en) 1998-06-30 1999-11-02 Pioneer Hi-Bred International, Inc. Soybean variety 91B64
ATE309362T1 (de) 1998-08-20 2005-11-15 Pioneer Hi Bred Int Samen-bevorzugende promotoren
EP1200611A1 (en) 1999-08-13 2002-05-02 Syngenta Participations AG Herbicide-tolerant protoporphyrinogen oxidase
AU782218B2 (en) 1999-08-27 2005-07-14 Commonwealth Scientific And Industrial Research Organisation Flax seed specific promoters
WO2001016342A1 (en) 1999-08-27 2001-03-08 The Regents Of The University Of California Use of lentiviral vectors for antigen presentation in dendritic cells
US6384304B1 (en) 1999-10-15 2002-05-07 Plant Genetic Systems N.V. Conditional sterility in wheat
EP2272965A3 (en) 2001-07-06 2011-01-19 Monsanto Technology LLC Methods for enhancing segregation of transgenes in plants and compositions thereof
US20030121075A1 (en) 2001-12-26 2003-06-26 Barham Warren S. Method of producing seedless watermelon
US7714185B2 (en) * 2002-12-19 2010-05-11 University Of Bristol Method for the production of polyunsaturated fatty acids
US20060225158A1 (en) * 2005-03-30 2006-10-05 Sw Seed Ltd. Canola variety SW 013062
US8975374B2 (en) 2006-10-20 2015-03-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
CN103756972B (zh) 2008-10-14 2019-05-10 孟山都技术公司 来自半片藻属的脂肪酸脱饱和酶的利用
AU2013204270B8 (en) 2008-11-18 2015-06-04 Commonwealth Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
GB2465749B (en) * 2008-11-25 2013-05-08 Algentech Sas Plant cell transformation method
TW201144442A (en) * 2010-05-17 2011-12-16 Dow Agrosciences Llc Production of DHA and other LC-PUFAs in plants
TW201307553A (zh) * 2011-07-26 2013-02-16 Dow Agrosciences Llc 在植物中生產二十二碳六烯酸(dha)及其他長鏈多元不飽和脂肪酸(lc-pufa)之技術
SG11201408362SA (en) * 2012-06-15 2015-01-29 Commw Scient Ind Res Org Production of long chain polyunsaturated fatty acids in plant cells
NZ721036A (en) 2013-12-18 2023-07-28 Grains Res & Dev Corp Lipid comprising long chain polyunsaturated fatty acids
EP3160482A4 (en) * 2014-06-27 2018-02-14 Commonwealth Scientific and Industrial Research Organisation Lipid comprising docosapentaenoic acid
EP2966157B1 (en) 2014-07-07 2023-11-01 Nuseed Global Innovation Ltd Processes for producing industrial products from plant lipids
US10477788B2 (en) 2014-12-01 2019-11-19 Agrigenetics, Inc. Methods and compositions for identifying Verticillium wilt resistant sunflower plants
NZ749655A (en) 2016-06-16 2023-01-27 Nuseed Nutritional Australia Pty Ltd Elite event canola ns-b50027-4
NZ749656A (en) 2016-06-16 2022-12-23 Nuseed Nutritional Australia Pty Ltd Inbred transgenic canola line ns-b50027-4 and seeds thereof
US10524046B2 (en) 2017-12-06 2019-12-31 Ademco Inc. Systems and methods for automatic speech recognition

Also Published As

Publication number Publication date
JP7086329B2 (ja) 2022-06-20
AU2017286800B2 (en) 2022-07-14
IL263731A (en) 2019-01-31
AU2017286800A1 (en) 2019-01-24
EP4032965A1 (en) 2022-07-27
EP4338586A2 (en) 2024-03-20
EP3472281A1 (en) 2019-04-24
NZ749655A (en) 2023-01-27
WO2017219006A1 (en) 2017-12-21
PH12018502665A1 (en) 2019-09-30
JP2019527069A (ja) 2019-09-26
EP3472281A4 (en) 2020-02-19
CN109689847A (zh) 2019-04-26
KR102430202B1 (ko) 2022-08-09
AU2022204460A1 (en) 2022-07-14
BR112018076314A2 (pt) 2019-03-26
KR20190029593A (ko) 2019-03-20
MX2018015593A (es) 2019-06-06
KR20220082937A (ko) 2022-06-17
CA3027743A1 (en) 2017-12-21
EA201892782A1 (ru) 2019-07-31
CN117947200A (zh) 2024-04-30
JP2022050426A (ja) 2022-03-30
CN109689847B (zh) 2023-08-11
KR102558329B1 (ko) 2023-07-21
MX2023000461A (es) 2023-02-09
IL263731B2 (en) 2023-03-01
IL263731B (en) 2022-11-01
US11396658B2 (en) 2022-07-26
US20220177903A1 (en) 2022-06-09
US10570405B2 (en) 2020-02-25
US20180016591A1 (en) 2018-01-18
CL2018003628A1 (es) 2019-08-16
SG11201811210YA (en) 2019-01-30
IL296501A (en) 2022-11-01
US20200190531A1 (en) 2020-06-18
MX2023000286A (es) 2023-02-09

Similar Documents

Publication Publication Date Title
CN109689847B (zh) 优良种事件油菜ns-b50027-4
CN109661458B (zh) 近交转基因油菜品系ns-b50027-4及其种子
EA042743B1 (ru) Канола с элитным событием ns-b50027-4
NZ788009A (en) Elite event canola ns-b50027-4
EA041446B1 (ru) Имбредная трансгенная линия канолы ns-b50027-4 и ее семена
NZ789396A (en) Inbred transgenic canola line ns-b50027-4 and seeds thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination