CN114832850A - 一种层状羟基硝酸氧铋纳米片及制备方法和应用 - Google Patents

一种层状羟基硝酸氧铋纳米片及制备方法和应用 Download PDF

Info

Publication number
CN114832850A
CN114832850A CN202210259898.9A CN202210259898A CN114832850A CN 114832850 A CN114832850 A CN 114832850A CN 202210259898 A CN202210259898 A CN 202210259898A CN 114832850 A CN114832850 A CN 114832850A
Authority
CN
China
Prior art keywords
bismuth
layered
nanosheet
nitrate
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210259898.9A
Other languages
English (en)
Other versions
CN114832850B (zh
Inventor
王易
彭瑞超
张垒
邓佳彦
黄炎俊
宋光森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Polytechnic University
Original Assignee
Wuhan Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polytechnic University filed Critical Wuhan Polytechnic University
Priority to CN202210259898.9A priority Critical patent/CN114832850B/zh
Publication of CN114832850A publication Critical patent/CN114832850A/zh
Application granted granted Critical
Publication of CN114832850B publication Critical patent/CN114832850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于无机纳米材料领域,公开了一种层状羟基硝酸氧铋纳米片及制备方法和应用。该方法包括如下步骤:采用熔点为200~500℃的硝酸盐,将其在高于熔点20~50℃的温度下加热熔融,形成透明液态盐;将铋盐与透明液态盐混合并反应,得到反应产物经降温、清洗和干燥处理,得到层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片。本发明能够在较低的温度和极短的时间内合成具有超薄纳米片形貌的Bi6O6(OH)3(NO3)3·1.5H2O材料。

Description

一种层状羟基硝酸氧铋纳米片及制备方法和应用
技术领域
本发明属于无机纳米材料领域,更具体地,涉及一种层状羟基硝酸氧铋(Bi6O6(OH)3(NO3)3·1.5H2O)纳米片及制备方法和应用。
背景技术
工业废水污染主要有三类,包括重金属阳离子、有害阴离子以及有机污染物。其中,有机污染物又包括酚类、苯类以及高分子聚合物等,这些污染物具有易富集、易致畸致癌等特点,对人体健康和生态平衡造成极大危害。目前对含有机污染物的废水的处理工艺主要有物理法和化学法,其中,光催化技术是典型的化学法,其成本低,能够循环使用,且降解后的产物能够实现零污染,不会对水体造成二次污染等优点,因而被广泛应用于有机污染物的治理。
铋基催化剂由于其独特的电子结构和原子排布,具有较强的光吸收性能,因此对有机物具有很强的降解能力。我国具有丰富的铋资源,储量大,但对铋资源的利用率还不高。大多数铋基催化材料具有层状结构,比如Bi2O3、BiVO4、Bi2WO6等都在光催化中性能优异。而同样具有层状结构的羟基硝酸氧铋(Bi6O6(OH)3(NO3)3·1.5H2O)也具有较好的光催化性能,但目前合成Bi6O6(OH)3(NO3)3·1.5H2O材料主要采用水热法,合成周期长,且产率较低,限制了其实际应用。
因此,目前亟待提出一种新的制备层状羟基硝酸氧铋(Bi6O6(OH)3(NO3)3·1.5H2O)纳米片的方法并将其应用于光催化领域。
发明内容
本发明的目的是针对现有技术的不足,提出一种层状羟基硝酸氧铋(Bi6O6(OH)3(NO3)3·1.5H2O)纳米片及制备方法和应用。本发明能够在较低的温度和极短的时间内合成具有超薄纳米片形貌的羟基硝酸氧铋(Bi6O6(OH)3(NO3)3·1.5H2O)材料。
为了实现上述目的,本发明第一方面提供了一种层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的制备方法,该方法包括如下步骤:
S1:采用熔点为200~500℃的硝酸盐,将其在高于熔点20~50℃的温度下加热熔融,形成透明液态盐;
S2:将铋盐与所述透明液态盐混合并反应,得到反应产物经降温、清洗和干燥处理,得到所述层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片。
根据本发明,优选地,所述硝酸盐和所述铋盐的质量比为(3~5):(0.2~0.6)。
根据本发明,优选地,所述硝酸盐为硝酸锂、硝酸钠和硝酸钾中的至少一种。
根据本发明,优选地,所述铋盐为硝酸铋和/或硫酸铋。
根据本发明,优选地,所述铋盐与所述透明液态盐反应的时间为3~5min。
根据本发明,优选地,所述降温处理为将所述反应产物降至室温。
根据本发明,优选地,所述干燥处理的温度为50~80℃。
根据本发明,优选地,所述步骤S1和步骤S2均在马弗炉中进行。
本发明第二方面提供了所述的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的制备方法制备得到的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片。
根据本发明,优选地,所述层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的厚度为1.3~2.7nm。
本发明第三方面提供了所述的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片在光催化领域中的应用。
本发明的技术方案的有益效果如下:
(1)本发明采用低熔点硝酸盐作为液态反应介质,有利于离子传输,从而能够在极短的时间内实现Bi6O6(OH)3(NO3)3·1.5H2O纳米片的合成,相比于水热法,本发明方法合成时间短。
(2)本发明能够在较低的温度和极短的时间内合成具有超薄纳米片形貌的Bi6O6(OH)3(NO3)3·1.5H2O材料,其厚度在1.3~2.7nm范围内。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。
图1示出了本发明实施例1提供的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的制备方法制备得到的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的扫描电子显微镜图像。
图2示出了本发明实施例1提供的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的制备方法制备得到的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片在原子力显微镜下测试的厚度图像。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
实施例1
本实施例提供一种层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的制备方法,该方法包括如下步骤:
S1:称取5g硝酸钠粉末置于坩埚中并放入马弗炉中,将马弗炉加热至335℃使硝酸钠粉末熔融,形成透明液态盐;
S2:将0.3g硝酸铋加入到上述透明液态盐中,反应3分钟后,得到反应产物并自然降至室温,清洗反应产物以去除其中的硝酸盐和杂质,并在60℃下进行干燥,得到层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片粉末。
将得到的层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片粉末在扫描电子显微镜下测试其表面形貌并在原子力显微镜下测试其厚度,如图1所示,本实施例得到的Bi6O6(OH)3(NO3)3·1.5H2O具有超薄纳米片微观形貌。如图2所示,本实施例得到的纳米片的厚度为1.3nm。
实施例2
本实施例提供一种层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的制备方法,该方法包括如下步骤:
S1:称取4g硝酸钾粉末置于坩埚中并放入马弗炉中,将马弗炉加热至360℃使硝酸钾粉末熔融,形成透明液态盐;
S2:将0.4g硝酸铋加入到上述透明液态盐中,反应4分钟后,得到反应产物并自然降至室温,清洗反应产物以去除其中的硝酸盐和杂质,并在80℃下进行干燥,得到层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片粉末,在原子力显微镜下测试其厚度为2.7nm。
实施例3
本实施例提供一种层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片的制备方法,该方法包括如下步骤:
S1:称取5g硝酸锂粉末置于坩埚中并放入马弗炉中,将马弗炉加热至300℃使硝酸锂粉末熔融,形成透明液态盐;
S2:将0.3g硫酸铋加入到上述透明液态盐中,反应3分钟后,得到反应产物并自然降至室温,清洗反应产物以去除其中的硝酸盐和杂质,并在70℃下进行干燥,得到层状Bi6O6(OH)3(NO3)3·1.5H2O纳米片粉末,在原子力显微镜下测试其厚度为1.5nm。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

1.一种层状羟基硝酸氧铋纳米片的制备方法,其特征在于,该方法包括如下步骤:
S1:采用熔点为200~500℃的硝酸盐,将其在高于熔点20~50℃的温度下加热熔融,形成透明液态盐;
S2:将铋盐与所述透明液态盐混合并反应,得到反应产物经降温、清洗和干燥处理,得到所述层状羟基硝酸氧铋纳米片。
2.根据权利要求1所述的层状羟基硝酸氧铋纳米片的制备方法,其中,所述硝酸盐和所述铋盐的质量比为(3~5):(0.2~0.6)。
3.根据权利要求1所述的层状羟基硝酸氧铋纳米片的制备方法,其中,所述硝酸盐为硝酸锂、硝酸钠和硝酸钾中的至少一种。
4.根据权利要求1所述的层状羟基硝酸氧铋纳米片的制备方法,其中,所述铋盐为硝酸铋和/或硫酸铋。
5.根据权利要求1所述的层状羟基硝酸氧铋纳米片的制备方法,其中,所述铋盐与所述透明液态盐反应的时间为3~5min。
6.根据权利要求1所述的层状羟基硝酸氧铋纳米片的制备方法,其中,
所述降温处理为将所述反应产物降至室温;
所述干燥处理的温度为50~80℃。
7.根据权利要求1所述的层状羟基硝酸氧铋纳米片的制备方法,其中,所述步骤S1和步骤S2均在马弗炉中进行。
8.根据权利要求1-7中任意一项所述的层状羟基硝酸氧铋纳米片的制备方法制备得到的层状羟基硝酸氧铋纳米片。
9.根据权利要求8所述的层状羟基硝酸氧铋纳米片,其中,所述层状羟基硝酸氧铋纳米片的厚度为1.3~2.7nm。
10.根据权利要求8所述的层状羟基硝酸氧铋纳米片在光催化领域中的应用。
CN202210259898.9A 2022-03-16 2022-03-16 一种层状羟基硝酸氧铋纳米片及制备方法和应用 Active CN114832850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210259898.9A CN114832850B (zh) 2022-03-16 2022-03-16 一种层状羟基硝酸氧铋纳米片及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210259898.9A CN114832850B (zh) 2022-03-16 2022-03-16 一种层状羟基硝酸氧铋纳米片及制备方法和应用

Publications (2)

Publication Number Publication Date
CN114832850A true CN114832850A (zh) 2022-08-02
CN114832850B CN114832850B (zh) 2023-12-01

Family

ID=82562002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210259898.9A Active CN114832850B (zh) 2022-03-16 2022-03-16 一种层状羟基硝酸氧铋纳米片及制备方法和应用

Country Status (1)

Country Link
CN (1) CN114832850B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671053A (zh) * 2009-09-18 2010-03-17 淮阴师范学院 高纯羟基硝酸氧铋的快速合成方法
US20110198530A1 (en) * 2010-02-18 2011-08-18 New Mexico Technical Foundation Method of Producing a Bismuth Vanadium Oxide Derivative of Bi4V2O11 Using Molten Salt Synthesis, and Product Produced
CN103157461A (zh) * 2013-04-03 2013-06-19 南京理工大学 一种纳米光催化剂钨酸铋及其制备方法
CN105056986A (zh) * 2015-08-10 2015-11-18 南京信息工程大学 一种制备片状羟基硝酸氧铋光催化剂的方法及催化剂用途
CN106629613A (zh) * 2016-12-20 2017-05-10 华中科技大学 一种离子插层型二维材料的制备方法
CN108328655A (zh) * 2018-04-23 2018-07-27 南京信息工程大学 一种羟基硝酸氧铋及其制备方法和用作光催化剂的用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671053A (zh) * 2009-09-18 2010-03-17 淮阴师范学院 高纯羟基硝酸氧铋的快速合成方法
US20110198530A1 (en) * 2010-02-18 2011-08-18 New Mexico Technical Foundation Method of Producing a Bismuth Vanadium Oxide Derivative of Bi4V2O11 Using Molten Salt Synthesis, and Product Produced
CN103157461A (zh) * 2013-04-03 2013-06-19 南京理工大学 一种纳米光催化剂钨酸铋及其制备方法
CN105056986A (zh) * 2015-08-10 2015-11-18 南京信息工程大学 一种制备片状羟基硝酸氧铋光催化剂的方法及催化剂用途
CN106629613A (zh) * 2016-12-20 2017-05-10 华中科技大学 一种离子插层型二维材料的制备方法
CN108328655A (zh) * 2018-04-23 2018-07-27 南京信息工程大学 一种羟基硝酸氧铋及其制备方法和用作光催化剂的用途

Also Published As

Publication number Publication date
CN114832850B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US10486138B2 (en) Method for hydrothermal synthesis of three dimensional Bi4MoO9/TiO2 nanostructure heterojunction
Dou et al. Removal of aqueous toxic Hg (II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite
Ferreira et al. Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes
Zhang et al. Green recovery of titanium and effective regeneration of TiO2 photocatalysts from spent selective catalytic reduction catalysts
CN108946801B (zh) 一种层状石墨烯/金属氧化物纳米复合材料及其制备方法
Saka Efficient and durable H2 production from NaBH4 methanolysis using N doped hybrid g-C3N4-SiO2 composites with ammonia as a nitrogen source
CN101293674A (zh) 纺锤状α-Fe2O3纳米粉体的制备方法
CN109985655B (zh) 一种赤泥基复合光催化剂的制备方法和应用
CN113479934B (zh) 一种BiOCl纳米片及其制备方法和应用
CN107552034A (zh) 一种简单、快速制备碳掺杂氧化锌纳米片的方法
CN115845870B (zh) 一种三元催化剂及其制备方法和应用
CN101691672A (zh) 表面活性剂调控制备纳米片组装溴化氧铋超结构的方法
CN108525695B (zh) 一种二维层状结构的石墨烯/碳氮烯/溴氧铋复合纳米光催化材料及其制备方法和应用
CN101293675A (zh) 六方圆盘状α-Fe2O3纳米粉体的制备方法
CN111203258A (zh) 一种光催化剂s-c3n4的制备方法及应用
Verma et al. Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications
CN112337491B (zh) 一种双功能光催化应用的磷化镍/氧化铟纳米复合材料制备方法及用途
CN114832850B (zh) 一种层状羟基硝酸氧铋纳米片及制备方法和应用
Yang et al. Efficient visible light photocatalytic water oxidation on Zn3 (OH) 2V2O7· 2H2O nanoplates: Effects of exposed facet and local crystal structure distortion
CN117046502A (zh) 一种介孔石榴状Bi4Ti3O12@MNC铁电材料的制备方法及其应用
Liu et al. Efficient degradation of methylene blue dye by catalytic oxidation using the Na 8 Nb 6 O 19· 13H 2 O/H 2 O 2 system
WO2024000963A1 (zh) 一种与碱性水反应制氢的铝 / 碳复合物及其制备方法与应用
CN110586149A (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
CN115159451A (zh) 一种氢化铝/硼氢化镁@MXene复合储氢材料的制备方法
CN110201674B (zh) 一种镍掺杂四氧化三锡纳米花光催化材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant