CN114829676A - 涂覆切削工具 - Google Patents

涂覆切削工具 Download PDF

Info

Publication number
CN114829676A
CN114829676A CN202080086552.2A CN202080086552A CN114829676A CN 114829676 A CN114829676 A CN 114829676A CN 202080086552 A CN202080086552 A CN 202080086552A CN 114829676 A CN114829676 A CN 114829676A
Authority
CN
China
Prior art keywords
layer
cutting tool
coated cutting
ltoreq
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080086552.2A
Other languages
English (en)
Other versions
CN114829676B (zh
Inventor
法伊特·席尔
沃尔夫冈·恩格哈特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walter AG
Original Assignee
Walter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walter AG filed Critical Walter AG
Publication of CN114829676A publication Critical patent/CN114829676A/zh
Application granted granted Critical
Publication of CN114829676B publication Critical patent/CN114829676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种包含具有涂层的基体的涂覆切削工具,所述涂层包含(Ti,Al)N层,所述(Ti,Al)N层的总体组成为(TixAl1‑x)N,0.34≤x≤0.65,所述(Ti,Al)N层含有平均晶粒尺寸为10至100nm的柱状(Ti,Al)N晶粒,所述(Ti,Al)N层包含立方晶体结构的晶格面,所述(Ti,Al)N层在电子衍射分析中显示有图案,其中在平均径向强度分布图谱中存在显示为峰(P)的衍射信号,所述峰(P)的最大值在3.2至4.0nm‑1的散射矢量范围内,所述峰(P)的半高全宽(FWHM)为0.8至2.0nm‑1

Description

涂覆切削工具
本发明涉及具有包含(Ti,Al)N层的涂层的涂覆切削工具。
背景技术
一直希望改进用于金属加工的切削工具,以使其更为持久、经得起更高的切削速度和/或其它要求越来越高的切削操作。
通常,用于金属加工的切削工具包含硬质材料例如硬质合金、立方氮化硼或金属陶瓷的基体,以及沉积在基体表面上的薄耐磨涂层。
涂层的性能取决于不同因素、即涂层本身的物理和机械性质以及金属加工操作类型二者的复杂相互作用。
在沉积耐磨涂层时,使用的一般方法是化学气相沉积(CVD)或物理气相沉积(PVD)。任一方法可以提供的涂层特性都有局限性。即使在用任一方法沉积相同化学组成的涂层时,它们的性质也会在例如内部残余应力、密度和结晶度方面不同。
通过PVD方法沉积的涂层中的金属元素的来源是PVD反应器中的所谓“靶”。现有各种各样的PVD方法,其中主要类别是阴极电弧蒸发和磁控溅射。在通用术语“磁控溅射”内,还存在着彼此有很大差异的不同方法,例如双磁控溅射和高功率脉冲磁控溅射(HIPIMS)。使用不同的方法提供的涂层在各个方面都会不同。而且,在相同类型的PVD方法中使用不同的工序参数组合将导致沉积的涂层之间的差异,例如不同的物理性质、不同的机械性质、不同的晶体结构以及在用于金属切削工序中时的不同行为。
通过物理气相沉积(PVD)沉积的氮化钛铝(Ti,Al)N涂层是公知的。一种类型的(Ti,Al)N涂层是单层,其中在整个层中(Ti,Al)N组成基本相同。在沉积工序中使用的一个或多个靶具有相同的Ti:Al比时,提供单层涂层。另一种类型的(Ti,Al)N涂层是多层,其中在所述层中存在不同组成的多个(Ti,Al)N子层。在沉积工序中使用的靶中的至少两个具有不同的Ti:Al比时,可以提供这样的多层,使得当基体在腔室中旋转时,交替沉积了不同组成的多个子层。一种特殊类型的多层是纳米多层,其中单个层的厚度可低至只有几纳米。
US2018/0223436 A1公开了具有硬质合金基体和(Ti,Al)N涂层的涂覆切削工具。该涂层包含通过HIPIMS工序沉积的单层或多层的例如(Ti,Al)N抗磨保护层。
US 2018/0030590 A1公开了通过HIPIMS制成的具有长使用寿命的Ti0.40Al0.60N层。
发明目的
本发明的目的是提供一种涂覆切削工具,该切削工具在金属切削、尤其是在钢切削中后刀面磨损改善。与现有技术的切削工具相比,减少后刀面磨损导致工具寿命改善。
发明内容
现在提供了一种包含具有涂层的基体的涂覆切削工具,所述涂层包含(Ti,Al)N层,所述(Ti,Al)N层的总体组成为(TixAl1-x)N,0.34≤x≤0.65,所述(Ti,Al)N层含有平均晶粒尺寸为10至100nm的柱状(Ti,Al)N晶粒,所述(Ti,Al)N层在电子衍射分析中显示有图案,其中在平均径向强度分布图谱中存在显示为峰(P)的衍射信号,所述峰(P)的最大值在3.2至4.0nm-1的散射矢量范围内,所述峰(P)的半高全宽(FWHM)为0.8至2.0nm-1
平均径向强度图谱通过在电子衍射图案中提供到所述衍射图案的中心的距离(半径)相同的所有强度的平均值,从而由所述衍射图案获得。然后,将所述平均强度作为所述半径的函数进行绘图。
所述(Ti,Al)N层合适地具有总体组成(TixAl1-x)N,0.35≤x≤0.55,优选0.36≤x≤0.45。
所述(Ti,Al)N层优选含有平均宽度为20至70nm的柱状晶粒。
平均径向强度分布图谱中的峰(P)的最大值合适地在3.4至3.8nm-1的散射矢量范围内。
所述峰(P)的半高全宽(FWHM)合适地为1.0至1.8nm-1,优选1.2至1.6nm-1
在一个实施方式中,所述(Ti,Al)N层是由2至4个、优选2个彼此具有不同Ti:Al比的不同(Ti,Al)N子层构成的(Ti,Al)N纳米多层。当所述子层非常薄时,不同Ti:Al比的两个相邻子层之间可能没有清晰的边界。而是可能Ti:Al比在所述(Ti,Al)N纳米多层的厚度上以周期性的方式逐渐变化。因此,子层的Ti:Al比在本文中被认为是存在于子层中部的Ti:Al比。
Ti:Al比最低的子层的Ti:Al比合适地为0.10:0.90至0.50:0.50,优选0.25:0.75至0.40:0.60。
Ti:Al比最高的子层的Ti:Al比合适地为0.30:0.70至0.70:0.30,优选0.35:0.65至0.50:0.50。
不同类型的(Ti,Al)N子层的平均厚度合适地为1至20nm,优选1.5至10nm,最优选1.5至5nm。
所述(Ti,Al)N层的厚度合适地为0.4至20μm,优选1至10μm,最优选2至6μm。
(Ti,Al)N晶粒的“晶粒尺寸”在本文中是指所述(Ti,Al)N层中柱状(Ti,Al)N晶粒的平均晶粒宽度。所述晶粒宽度在所述层的中部以平行于涂层表面的方向测量。在一个实施方式中,所述(Ti,Al)N晶粒的平均晶粒尺寸为10至80nm,优选30至60nm。
在一个实施方式中,所述(Ti,Al)N层的热导率为2.5至4.0W/mK,优选3.0至3.6W/mK。低热导率有益于将所述工具基体上来自切削工序的热负荷保持得尽可能低。
在一个实施方式中,所述(Ti,Al)N层的维氏硬度(Vickers hardness)为2600至3700HV0.0015。
在一个实施方式中,所述(Ti,Al)N层的折减杨氏模量(reduced Young′smodulus)为350至470GPa。
所述涂层整体上的厚度合适地为1至25μm,优选2至15μm,最优选3至10μm。
电子衍射分析中平均径向强度分布图谱中峰(P)的最大值位置可以认为是由晶相中存在的晶格d间距的衍射信号产生的。因此,所述峰(P)在3.2至4.0nm-1的散射矢量范围内的最大值位置则将与2.5至
Figure BDA0003692830390000041
的d间距相关联。所述峰(P)在3.4至3.8nm-1的散射矢量范围内的最大值位置则将与2.6至
Figure BDA0003692830390000042
的d间距相关联。由于在立方结构中不可能有大于约
Figure BDA0003692830390000043
的d间距,因此,在一个实施方式中,给出峰(P)的衍射信号被认为是由六方晶体结构的晶格面、优选(100)晶格面产生的。
所述峰(P)的宽度意味着晶相畴或微晶的尺寸非常小。
在一个实施方式中,在所述(Ti,Al)N层中的(Ti,Al)N晶粒之间存在晶界相。在TEM分析中,晶界相可以看作是位于单个(Ti,Al)N晶粒之间的非常薄的反差相(contrastingphase)。所述晶界相合适地包含六方晶体结构。所述晶界相合适地具有1至5nm、优选1至3nm的平均厚度。
在一个实施方式中,所述(Ti,Al)N层在电子衍射分析中显示出的图案包含来自立方晶体结构的晶格面的衍射信号。
在一个实施方式中,所述来自立方晶体结构的晶格面的衍射信号的FWHM≤0.5nm-1,合适地为0.10至0.4nm-1,优选0.12至0.30nm-1。给出衍射信号的立方晶体结构的晶格面是(111)、(200)、(220)和(222)中的至少一者,合适地是至少(111)和(200),优选至少(111)、(200)和(220),最优选(111)、(200)、(220)和(222)。
在一个实施方式中,在所述(Ti,Al)N层中存在立方(111)晶格面,所述(111)晶格面具有从垂直于所述涂层表面的方向起40度+/-15度内、优选从垂直于所述涂层表面的方向起40度+/-10度内的优选取向。(hkl)晶格面的“优选取向”在本文中是指在所有(hkl)晶格面之中存在特定(hkl)晶格面倾斜度的最大频率的位置。所述晶格面的优选取向可以通过XRD织构分析来确定,特别是从极图来确定。
所述涂覆切削工具的基体可以是金属加工用切削工具领域中常见的任何种类。所述基体合适地选自硬质合金、金属陶瓷、cBN、陶瓷、PCD和HSS。
在一个优选实施方式中,所述基体是硬质合金。
所述涂覆切削工具可以是涂覆切削刀片,例如用于车削的涂覆切削刀片或用于铣削的涂覆切削刀片、或用于钻削的涂覆切削刀片、或用于螺纹加工的涂覆切削刀片、或用于分断和开槽的涂覆切削刀片。所述涂覆切削工具也可以是涂覆整体工具,例如整体钻头、立铣刀或丝锥(tap)。
所述(Ti,Al)N层优选通过高功率脉冲磁控溅射(HIPIMS)来沉积。
在一个实施方式中,所述涂层包含紧接在所述(Ti,Al)N层下面的金属氮化物层。所述金属氮化物合适地是属于IUPAC元素周期表中第4至6族的一种或多种金属的氮化物,任选地与Al和/或Si一起形成氮化物。这样的金属氮化物的例子是TiN和(Ti,Al)N。所述金属氮化物层的厚度合适地为0.5至5μm,优选1至3μm。该金属氮化物层优选通过HIPIMS沉积。
在一个实施方式中,紧接在所述(Ti,Al)N层下面的金属氮化物层是单层的(TiyAl1-y)N,0.30≤y≤0.90,优选0.33≤y≤0.70。
在一个优选实施方式中,所述涂覆切削工具包含具有涂层的基体,所述涂层包含1至10μm厚的(Ti,Al)N层,所述(Ti,Al)N层的总体组成为(TixAl1-x)N,0.34≤x≤0.65,所述(Ti,Al)N层含有平均晶粒尺寸为10至100nm的柱状(Ti,Al)N晶粒,所述(Ti,Al)N层在电子衍射分析中显示有图案,其中在平均径向强度分布图谱中存在显示为峰(P)的衍射信号,所述峰(P)的最大值在3.2至4.0nm-1的散射矢量范围内,所述峰(P)的半高全宽(FWHM)为0.8至2.0nm-1,所述(Ti,Al)N层是由2至4个彼此具有不同Ti:Al比的不同(Ti,Al)N子层构成的(Ti,Al)N纳米多层,Ti:Al比最低的子层的Ti:Al比为0.25:0.75至0.40:0.60,Ti:Al比最高的子层的Ti:Al比为0.35:0.65至0.50:0.50,不同类型的(Ti,Al)N子层的平均厚度为1.5至5nm。
附图说明
图1显示了作为铣削刀片的切削工具的一个实施方式的示意图。
图2显示了根据本发明的(Ti,Al)N层的电子衍射图像。
图3显示了根据现有技术的(Ti,Al)N层的电子衍射图像。
图4显示了对根据本发明的(Ti,Al)N层的电子衍射图制作的拟合平均径向强度分布曲线。
图5显示了对根据现有技术的(Ti,Al)N层(参比2)的电子衍射图制作的拟合平均径向强度分布曲线。
图6显示了晶粒结构的示意图,其中一些晶界中存在晶界相。
图7显示了根据本发明的(Ti,Al)N层的TEM图像,其中画了一条经过多个晶粒的线。
图8显示了图7中画的线的强度图谱。
图9显示了根据本发明的(Ti,Al)N层的TEM图像,显示了(Ti,Al)N晶粒。
图10显示了图9的放大部分,显示了被以黑色显示的晶界相包围的(Ti,Al)N晶粒。
具体实施方式
本发明的实施方式在附图的图1、图6、图7和图9中进一步描述。图1显示了切削工具(1)的一个实施方式的示意图,所述切削工具具有前刀面(2)、后刀面(3)和切削刃(4)。切削工具(1)在该实施方式中是铣削刀片。图6显示了根据本发明的具有(Ti,Al)N晶粒(5)的(Ti,Al)N层的晶粒结构示意图,其中相邻的(Ti,Al)N晶粒(5)之间的一些晶界中存在晶界相(6)。图7显示了根据本发明的(Ti,Al)N层的TEM图像,其中画了一条经过多个晶粒的线。针对所画的线的强度图谱在图8中显示。所述晶界包含在图像上为暗色的相,因此在这些晶界上强度显著下降。由此能够估算所述晶界相的厚度。图9显示了与图7相同的TEM图像,但增加了对比度,使得更清楚地看到晶界相。该图的一部分在一个(Ti,Al)N晶粒周围进行了标记。图10显示了图9中一个(Ti,Al)N晶粒周围标记部分的放大部分。在该(Ti,Al)N晶粒周围清楚地看到黑色的晶界相。
方法
XRD织构分析(极图)
为了分析晶体织构以确定所述(Ti,Al)N层中晶格面的优选取向,使用了出自Seifert/GE公司的衍射仪(PTS 3003)。采用CuKα-辐射与多毛细管透镜(用于产生平行光束)进行分析(高压40kV,电流40mA)。入射光束通过2mm针孔限定。对于衍射光束路径,使用了能量色散检测器(Meteor 0D)。极图是由通过将α轴以5°的步长从0到80°倾斜并通过将β轴以5°的步长从0到360°倾斜来进行的测量获得的。
TEM分析
透射电子显微镜数据(选区衍射图案和暗场图像)是通过出自JEOL的透射电子显微镜(Jeol ARM)获得的。300kV的高压用于所述分析。
当本文提及电子衍射实验时,这些是用平行照射进行的TEM测量。用选区光阑来选择目标区域。
使用FIB(聚焦离子束)提取(Lift out)进行TEM样品制备。对于最终抛光,将Ga离子束调节为在5kV下电流为200pA。
垂直于所述涂层的表面分析所述涂层的横截面。
衍射图案中小的强度可通过使用强度图谱分析来分辨。从平均径向强度分布图谱进行总体曲线的高斯(Gauss)拟合,以提取各个衍射强度峰。使用的软件是出自MalvernPanalytical公司的HighScore 4.8版。
为了分析整个层的元素分布从而例如获得该层中特定位置处的Ti:Al比,优选使用TEM EDS线扫描,使用STEM模式,300kV。
晶界相的厚度分析通过图像分析通过确定TEM图像沿相交线的亮度变化来进行。由于图像中的晶界相暗,因此能够确定厚度。画出足够长度和/或数量的相交线,以便提供可靠的晶界相厚度平均值。适宜地,至少20个晶界相交并计算平均值。
维氏硬度:
维氏硬度是通过使用在德国辛德芬根的Helmut Fischer公司的PicodentorHM500进行纳米压痕(载荷-深度图)测量的。为了测量和计算,应用了Oliver和Pharr评价算法,其中将根据维氏的金刚石测试体压入层中,并在测量期间记录力-路径曲线。使用的最大载荷为15mN(HV 0.0015),载荷增加和载荷降低的时间段各为20秒,保持时间(蠕变时间)为10秒。从该曲线计算硬度。
折减杨氏模量
折减杨氏模量(折减弹性模量)如确定维氏硬度所述,通过纳米压痕(载荷-深度图)确定。
断裂韧性
使用以下程序。在具有平坦正方形几何形状并且边长为15mm的抛光的硬质合金基体(8重量%Co)上沉积涂层。使用软ops抛光进一步降低表面粗糙度。然后将样品在乙醇中超声清洁并转移至FIB-SEM系统。使用来自FIB的Ga离子和前体气体来沉积保护性platin层。使用FIB去掉一个带孔的圆盘,直到一个位于基体下方。结果是所述基体上的自立的微柱(约5μm)。
然后将所述样品转移到压痕系统中。压头的尖端对齐所述柱的上方。得到载荷-深度曲线,并且看得见开始开裂。使用数学模型计算断裂韧性值。进一步参见M.Sebastiani,“固态和材料科学中的当前观点(Current Opinion in Solid State and MaterialsScience)”,第19卷(2015),第6期,第324-333页。
(Ti,Al)N的晶粒尺寸:
使用的方法是线相交法。使用OPS悬浮液对样品的表面进行抛光,直至提供平坦表面。然后使用中等放大倍数(约10000X)。
取所述图像的至少一个1-2μm长的强度图谱,并将晶界看做强度显著降低。将彼此相邻的两个晶界之间的平均距离,即柱状晶粒的直径,作为平均晶粒尺寸。所述测量在抛光刀片的前刀侧上距切削刃约1mm处、在所述层的厚度中部进行。
热导率:
采用时域热反射(Time-Domain-Thermal Reflectance,TDTR)法,具有以下特点:
1.使用激光脉冲(泵)局部加热所述样品。
2.取决于热导率和热容,热能从样品表面向基体转移。表面温度随时间降低。
3.被反射的激光部分取决于表面温度。第二个激光脉冲(探测脉冲)用于测量表面的温度下降。
4.通过使用数学模型,还可以使用样品的热容值来计算热导率。参考(D.G.Cahill,科学仪器综述(Rev.Sci.Instr.)75,5119(2004))。
厚度:
所述涂层的厚度通过帽罩磨削(calotte grinding)来确定。由此,使用直径为30mm的钢球磨削出圆顶形凹部并进一步测量该环直径,并由此计算层厚度。所述切削工具前刀面(RF)上的层厚度的测量在距转角2000μm的距离处进行,后刀面(FF)上的测量在后刀面的中部进行。
实施例
实例1(本发明):
在6-法兰INGENIA S3p(Oerlikon Balzers公司)设备中,使用HIPIMS模式将Ti40Al60N层沉积在WC-Co基切削刀片基体上。
所述基体的组成为12重量%Co、1.6重量%(Ta,Nb)C和余量的WC,其中WC晶粒尺寸即dWC为约0.8μm。所述切削刀片的几何形状为ADMT160608R-F56。
使用六个直径为160mm的圆形Ti40Al60靶。使用以下沉积参数沉积约2μm厚的HIPIMS Ti40Al60N单层。
Figure BDA0003692830390000111
然后,通过HIPIMS沉积平均组成为Ti36Al64N的约1.8μm耐磨(Ti,Al)N层。使用了6个直径为160mm的圆形靶,三个为Ti33Al67靶,三个为Ti40Al60N靶。使用以下沉积参数:
Figure BDA0003692830390000112
实例2(参比1):
制作根据现有技术的比较样品,“参比1”。在6-法兰INGENIA S3p(OerlikonBalzers公司)设备中,使用HIPIMS模式将Ti40Al60N层沉积在WC-Co基切削刀片基体上。
所述基体的组成为12重量%Co、1.6重量%(Ta,Nb)C和余量的WC,其中WC晶粒尺寸即dWC为约0.8μm。所述切削刀片的几何形状为ADMT160608R-F56。
使用六个直径为160mm的圆形Ti40Al60靶。使用与实例1中下方的Ti40Al60N单层相同的沉积参数沉积约4μm厚的HIPIMS Ti40Al60N单层。
实例3(参比2):
制作根据现有技术的比较样品,“参比2”。在HTC1000 Hauzer设备中,使用HIPIMS模式将包含(Ti,Al)N多层Ti33Al67N/Ti50Al50N的涂层沉积在WC-Co基切削刀片基体上。
所述基体的组成为12重量%Co、1.6重量%(Ta,Nb)C和余量的WC,其中WC晶粒尺寸即dWC为约0.8μm。所述切削刀片的几何形状为ADMT160608R-F56。
所沉积的涂层与US 2018/0223436 A1的实例2中公开的基本相同。所述涂层如下沉积:
首先,通过分两步沉积而形成粘合层。在步骤1中通过电弧蒸发沉积由约50nm厚的Ti50Al50N层组成的粘合层的第一部分。
步骤1:
靶TiAl(50:50),直径63mm,反应器位置2
沉积参数:
Figure BDA0003692830390000131
然后,在步骤2中沉积由交替的Ti33Al67N和Ti50Al50N子层、总共约6个子层的约0.2μm厚(Ti,Al)N多层组成的粘合层的第二部分。
步骤2:
靶1:TiAl(33:67),直径63mm,反应器位置5。
靶2:TiAl(50:50),直径63mm,反应器位置2(相对)。
沉积参数:
Figure BDA0003692830390000132
然后,通过HIPIMS使用以下沉积参数沉积耐磨(Ti,Al)N多层:
靶尺寸Hauzer:矩形17cm×83cm×1cm
Figure BDA0003692830390000133
沉积的耐磨(Ti,Al)N多层的厚度为2.7μm,并由约760个交替的TiAlN单个子层组成。
实例4(分析):
TEM分析与电子衍射分析:
实例1-3的样品的(Ti,Al)N层的图像是在透射电子显微镜(TEM)中制作的。图7和图9分别显示了根据本发明的样品的图像,其中在(Ti,Al)N晶粒周围看到(Ti,Al)N晶粒之间的晶界相。然而,在比较样品“参比1”和“参比2”的图像中没有看到这样的晶界相。根据本发明的样品的TEM图像的图像分析表明晶界相的厚度为约2-3nm。
此外,在TEM中对根据实例1中的程序制备的根据本发明样品和根据实例3中的程序制备的比较样品“参比2”进行电子衍射分析。
图2-3分别显示了所述样品的电子衍射图案。
对于根据本发明的样品,从图2清楚地看出,用肉眼看,对于低于约4.1nm-1的散射矢量,没有非常清晰的衍射斑点或甚至任何可见的环状图案。然而,图4显示了针对根据本发明的样品的电子衍射图做出的平均径向强度分布曲线。该曲线显示存在一个宽峰,看作总强度曲线中明显的肩峰,在进行曲线拟合(高斯拟合,去除噪声)后,所述宽峰的最大值在约3.6nm-1的散射矢量处(对应的d间距为约
Figure BDA0003692830390000141
)。该衍射图案还显露出直至10nm-1散射矢量的六个其它信号。参见表1中所述峰的相应d间距和FWHM值。此外,表中列出了来自标准TiAlN(TiN+AlN固溶体)衍射图案的立方晶体结构和六方晶体结构的任何接近d间距。
表1.
Figure BDA0003692830390000151
所述峰的半高全宽(FWHM)被确定为1.44nm-1,是峰宽的量度。
当针对比较样品“参比2”的电子衍射图制作平均径向强度分布曲线时,不存在如对本发明的样品所见的任何宽峰(见图5)。
不受任何理论的束缚,如上所述,根据本发明的样品中低散射矢量处的宽峰的起源被认为来自具有非常小的结构的相。从TEM图像看出在根据本发明的(Ti,Al)N层中晶界相的迹象,但在参比1和参比2的(Ti,Al)N层中都没有。根据本发明的(Ti,Al)N层中晶界相的厚度估计为约3nm。峰的宽度被认为反映了该晶界相结构的小尺寸。
XRD分析:
对根据本发明的样品和比较样品“参比2”进行(111)晶格面反射的极图的提取。结果显示,对于本发明的样品,(111)晶格面的优选取向与垂直于所述涂层表面的方向成约40度。对于比较样品,(111)晶格面有两个优选取向,一个与垂直于所述涂层表面的方向成约15度,一个与垂直于所述涂层表面的方向成约60度角。
晶粒尺寸:
由扫描电子显微镜(SEM),通过线相交确定根据本发明的样品和参比样品二者的(Ti,Al)N晶粒的晶粒尺寸。表2显示了结果。
表2.
涂层 平均晶粒尺寸(柱状)[nm]
本发明 52
参比2 140
机械性质:
还对所述涂层工具的后刀面进行了硬度测量(载荷15 mN),以确定维氏硬度、折减杨氏模量(EIT)和断裂韧性(KIc)。表3显示了结果。为了表征所述涂层的韧性(杨氏模量),进行了载荷为500mN的维氏压痕并制备了横截面。
表3.
Figure BDA0003692830390000161
热导率:
最后,确定了根据本发明的涂层的热导率。需要比热容值,并且对本发明的涂层使用2.79 J/cm3K的值,对参比1使用2.81 J/cm3K的值。见表4。
表4.
涂层 比热容,Cp[J/cm<sup>3</sup>K] 热导率,λ[W/m*K]
本发明 2.79 3.3
参比1 2.81 4.7
实例4(切削测试):
进行了铣削测试。
Figure BDA0003692830390000171
终止切削试验的标准是所述工具的后刀面磨损大于0.1μm。表5显示了结果。
表5.
Figure BDA0003692830390000172
得出的结论是,根据本发明的包含(Ti,Al)N层的切削工具具有关于后刀面磨损的最佳性能,导致更长的工具寿命。

Claims (18)

1.一种包含具有涂层的基体的涂覆切削工具,所述涂层包含(Ti,Al)N层,所述(Ti,Al)N层的总体组成为(TixAl1-x)N,0.34≤x≤0.65,所述(Ti,Al)N层含有平均晶粒尺寸为10至100nm的柱状(Ti,Al)N晶粒,所述(Ti,Al)N层包含立方晶体结构的晶格面,所述(Ti,Al)N层在电子衍射分析中显示有图案,其中在平均径向强度分布图谱中存在显示为峰(P)的衍射信号,所述峰(P)的最大值在3.2至4.0nm-1的散射矢量范围内,所述峰(P)的半高全宽(FWHM)为0.8至2.0nm-1
2.根据权利要求1所述的涂覆切削工具,其中所述(Ti,Al)N层的总体组成为(TixAl1-x)N,0.35≤x≤0.55,优选0.36≤x≤0.45。
3.根据前述权利要求中任一项所述的涂覆切削工具,其中平均径向强度分布图谱中的所述峰(P)的最大值在3.4至3.8nm-1的散射矢量范围内。
4.根据前述权利要求中任一项所述的涂覆切削工具,其中所述峰(P)的半高全宽(FWHM)为1.0至1.8nm-1,优选1.2至1.6nm-1
5.根据前述权利要求中任一项所述的涂覆切削工具,其中所述(Ti,Al)N层是由2至4个彼此具有不同Ti:Al比的不同(Ti,Al)N子层制成的(Ti,Al)N纳米多层。
6.根据权利要求5所述的涂覆切削工具,其中Ti:Al比最低的子层的Ti:Al比为0.10:0.90至0.50:0.50,并且Ti:Al比最高的子层的Ti:Al比为0.30:0.70至0.70:0.30。
7.根据前述权利要求中任一项所述的涂覆切削工具,其中所述(Ti,Al)N层的厚度为0.4至20μm。
8.根据前述权利要求中任一项所述的涂覆切削工具,其中所述(Ti,Al)N层的热导率为2.5至4.0W/mK。
9.根据前述权利要求中任一项所述的涂覆切削工具,其中所述(Ti,Al)N层的维氏硬度为2600至3700HV0.0015。
10.根据前述权利要求中任一项所述的涂覆切削工具,其中所述(Ti,Al)N的折减杨氏模量为350至470GPa。
11.根据前述权利要求中任一项所述的涂覆切削工具,其中所述涂层整体上的厚度为1至25μm。
12.根据前述权利要求中任一项所述的涂覆切削工具,其中在所述(Ti,Al)N层中的(Ti,Al)N晶粒之间存在晶界相。
13.根据权利要求12所述的涂覆切削工具,其中所述晶界相包含六方晶体结构。
14.根据权利要求12或13中任一项所述的涂覆切削工具,其中所述晶界相的平均厚度为1至5nm,优选1至3nm。
15.根据前述权利要求中任一项所述的涂覆切削工具,其中给出所述峰(P)的衍射信号由六方晶体结构产生。
16.根据权利要求1-15中任一项所述的涂覆切削工具,其中所述(Ti,Al)N层在电子衍射分析中显示的图案包含来自立方晶体结构的晶格面的衍射信号,所述立方晶体结构的晶格面是(111)、(200)、(220)或(222)晶格面中的至少一者。
17.根据权利要求16所述的涂覆切削工具,其中在所述(Ti,Al)N层中存在立方(111)晶格面,所述(111)晶格面具有从垂直于所述涂层表面的方向起40度+/-15度内的优选取向。
18.根据前述权利要求中任一项所述的涂覆切削工具,其中所述基体选自硬质合金、金属陶瓷、cBN、陶瓷、PCD和HSS。
CN202080086552.2A 2019-12-20 2020-12-17 涂覆切削工具 Active CN114829676B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19218808.4 2019-12-20
EP19218808.4A EP3839098A1 (en) 2019-12-20 2019-12-20 A coated cutting tool
PCT/EP2020/086640 WO2021122892A1 (en) 2019-12-20 2020-12-17 A coated cutting tool

Publications (2)

Publication Number Publication Date
CN114829676A true CN114829676A (zh) 2022-07-29
CN114829676B CN114829676B (zh) 2023-11-14

Family

ID=69005303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080086552.2A Active CN114829676B (zh) 2019-12-20 2020-12-17 涂覆切削工具

Country Status (6)

Country Link
US (1) US20230028083A1 (zh)
EP (1) EP3839098A1 (zh)
JP (1) JP2023506295A (zh)
KR (1) KR20220117872A (zh)
CN (1) CN114829676B (zh)
WO (1) WO2021122892A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203147A1 (en) * 2022-04-21 2023-10-26 Walter Ag A coated cutting tool
EP4269655A1 (en) * 2022-04-29 2023-11-01 Walter Ag A coated cutting tool
WO2024115196A1 (en) * 2022-11-28 2024-06-06 Ab Sandvik Coromant A coated cutting tool

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040115484A1 (en) * 2002-09-03 2004-06-17 Seco Tools Ab Composite structured wear resistant coating
US20050019612A1 (en) * 2001-10-30 2005-01-27 Kazunori Sato Surface coated cemeted carbide cutting tool having hard coating layer exhibiting excellent wear resisitance in high speed machining
JP2006281363A (ja) * 2005-03-31 2006-10-19 Kyocera Corp 表面被覆部材および表面被覆切削工具
JP2010142932A (ja) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd 表面被覆切削工具
US20110081539A1 (en) * 2009-10-02 2011-04-07 Kennametal, Inc. Aluminum Titanium Nitride Coating and Method of Making Same
CN103878555A (zh) * 2012-12-20 2014-06-25 三菱综合材料株式会社 立方晶氮化硼基超高压烧结材料制表面包覆切削工具
CN103958738A (zh) * 2011-09-30 2014-07-30 欧瑞康贸易股份公司(特吕巴赫) 用于在加工操作中增强耐磨性的适应形态的铝钛氮化物涂层和其方法
US20140234616A1 (en) * 2011-09-30 2014-08-21 Cemecon Ag Coating of substrates using hipims
US20140272391A1 (en) * 2013-03-15 2014-09-18 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
CN104884199A (zh) * 2012-11-30 2015-09-02 三菱综合材料株式会社 表面包覆切削工具
JP2016026893A (ja) * 2014-06-27 2016-02-18 三菱マテリアル株式会社 耐異常損傷性と耐摩耗性にすぐれた表面被覆切削工具
WO2016084939A1 (ja) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP2016107396A (ja) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
WO2016148056A1 (ja) * 2015-03-13 2016-09-22 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
CN106984838A (zh) * 2015-11-20 2017-07-28 山高刀具公司 涂层切削工具
CN109072406A (zh) * 2016-04-08 2018-12-21 山高刀具公司 涂覆的切削工具
US20190111495A1 (en) * 2016-03-07 2019-04-18 Mitsubishi Materials Corporation Surface-coated cubic boron nitride sintered material tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2201153B1 (en) * 2007-08-24 2014-10-08 Seco Tools AB Insert for milling of cast iron
EP3018233A1 (de) 2014-11-05 2016-05-11 Walter Ag Schneidwerkzeug mit mehrlagiger PVD-Beschichtung
EP3056587B1 (de) 2015-02-13 2020-11-18 Walter AG VHM-Schaftfräser mit TiAlN-ZrN-Beschichtung
US11313028B2 (en) * 2017-08-31 2022-04-26 Walter Ag Wear resistant PVD tool coating containing TiAlN nanolayer films

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050019612A1 (en) * 2001-10-30 2005-01-27 Kazunori Sato Surface coated cemeted carbide cutting tool having hard coating layer exhibiting excellent wear resisitance in high speed machining
US20040115484A1 (en) * 2002-09-03 2004-06-17 Seco Tools Ab Composite structured wear resistant coating
JP2006281363A (ja) * 2005-03-31 2006-10-19 Kyocera Corp 表面被覆部材および表面被覆切削工具
JP2010142932A (ja) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd 表面被覆切削工具
US20110081539A1 (en) * 2009-10-02 2011-04-07 Kennametal, Inc. Aluminum Titanium Nitride Coating and Method of Making Same
CN103958738A (zh) * 2011-09-30 2014-07-30 欧瑞康贸易股份公司(特吕巴赫) 用于在加工操作中增强耐磨性的适应形态的铝钛氮化物涂层和其方法
US20140234616A1 (en) * 2011-09-30 2014-08-21 Cemecon Ag Coating of substrates using hipims
CN104884199A (zh) * 2012-11-30 2015-09-02 三菱综合材料株式会社 表面包覆切削工具
CN103878555A (zh) * 2012-12-20 2014-06-25 三菱综合材料株式会社 立方晶氮化硼基超高压烧结材料制表面包覆切削工具
US20140272391A1 (en) * 2013-03-15 2014-09-18 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
JP2016026893A (ja) * 2014-06-27 2016-02-18 三菱マテリアル株式会社 耐異常損傷性と耐摩耗性にすぐれた表面被覆切削工具
WO2016084939A1 (ja) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP2016107396A (ja) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
WO2016148056A1 (ja) * 2015-03-13 2016-09-22 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
CN106984838A (zh) * 2015-11-20 2017-07-28 山高刀具公司 涂层切削工具
US20190111495A1 (en) * 2016-03-07 2019-04-18 Mitsubishi Materials Corporation Surface-coated cubic boron nitride sintered material tool
CN109072406A (zh) * 2016-04-08 2018-12-21 山高刀具公司 涂覆的切削工具

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLAUDIO BADINI ET AL.: ""Thermal Shock and Oxidation Behavior of HiPIMS TiAlN Coatings Grown on Ti-48Al-2Cr-2Nb Intermetallic Alloy"", 《MATERIALS》, pages 1 - 20 *
M-R. ALHAFIAN ET AL.: ""Comparison on the structural, mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation"", 《SURFACE &COATINGSTECHNOLOGY》, pages 1 - 13 *
梁旺胜;陶冶;刘红亮;: "同步辐射掠入射X射线衍射法研究TiAlN薄膜离子注入层的微观结构", 物理测试, no. 02, pages 5 - 9 *

Also Published As

Publication number Publication date
JP2023506295A (ja) 2023-02-15
EP3839098A1 (en) 2021-06-23
CN114829676B (zh) 2023-11-14
WO2021122892A1 (en) 2021-06-24
US20230028083A1 (en) 2023-01-26
KR20220117872A (ko) 2022-08-24

Similar Documents

Publication Publication Date Title
CN114829676B (zh) 涂覆切削工具
JP7217740B2 (ja) TiAlNナノレイヤー膜を備える耐摩耗性PVD工具コーティング
RU2469128C2 (ru) Деталь с твердым покрытием
KR101563034B1 (ko) 절삭 공구
EP1736565A1 (en) Composite coatings for finishing of hardened steels
JP2013163264A (ja) 被覆切削工具インサート
JP7061213B2 (ja) 表面被覆切削工具
KR20120090843A (ko) 입방정 질화알루미늄티타늄 코팅재 및 그 제조 방법
EP3960341A1 (en) Cutting tool
KR20100126357A (ko) 산화물 코팅된 절삭 인서트
Singh et al. Physical and mechanical characterization of mechanically treated AlTiN coatings deposited using novel arc enhanced HIPIMS technique
CN114026269B (zh) 涂覆的切削工具
US20240207944A1 (en) Coated cutting tool
JP7353591B2 (ja) 被覆切削工具
CN113728125B (zh) 涂覆的切削工具
CN117222775A (zh) 涂覆的切削工具
WO2023203147A1 (en) A coated cutting tool
WO2023117172A1 (en) Coated cutting tool
EP4256108A1 (en) A coated cutting tool with an alternating layer composition
KR20190028486A (ko) 표면 피복 절삭 공구 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant