CN114824270A - 一种锂金属负极及锂金属电池 - Google Patents

一种锂金属负极及锂金属电池 Download PDF

Info

Publication number
CN114824270A
CN114824270A CN202210386096.4A CN202210386096A CN114824270A CN 114824270 A CN114824270 A CN 114824270A CN 202210386096 A CN202210386096 A CN 202210386096A CN 114824270 A CN114824270 A CN 114824270A
Authority
CN
China
Prior art keywords
lithium
selenium
lithium metal
negative electrode
selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210386096.4A
Other languages
English (en)
Inventor
石鹏程
许二超
孙建华
章涵
李盼盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sungrow Energy Storage Technology Co Ltd
Original Assignee
Sungrow Energy Storage Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sungrow Energy Storage Technology Co Ltd filed Critical Sungrow Energy Storage Technology Co Ltd
Priority to CN202210386096.4A priority Critical patent/CN114824270A/zh
Publication of CN114824270A publication Critical patent/CN114824270A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种锂金属负极及锂金属电池。该锂金属负极包括负极极片和位于负极极片表面的保护层,保护层包括Li2Se;其中,Li2Se占保护层的质量含量为0.05~100%,Li2Se占锂金属负极的质量含量为0.00001~50%。通过在锂金属负极中添加含硒的化合物,可以直接在锂金属负极表面形成均匀稳定的保护层。保护层可以减少循环过程中活性锂的消耗,补偿电池因固体电解质界面层生长引起的初始容量损失,进而提升库伦效率及循环寿命。同时,能够实现锂离子的快速传导和均匀沉积,抑制锂枝晶的生长,提升锂离子沉积/脱出的库伦效率,实现锂金属电池在大电流下的稳定循环,最终得到长寿命、高安全性的锂金属电池。

Description

一种锂金属负极及锂金属电池
技术领域
本发明涉及电池技术领域,具体而言,涉及一种锂金属负极及锂金属电池。
背景技术
随着消费类电子产品和电动汽车市场的迅速增长,人们对高能量密度二次电池的需求日益增加。金属锂负极由于具有超高的理论比容量(3861mAh g-1)和最低的氧化还原电位(相对标准氢电极电势为-3.045V)使锂金属电池引起了广泛的关注。然而,锂金属负极在实际应用过程中面临着非常严峻的挑战,如锂枝晶生长、“死”锂的不断形成、库伦效率低以及巨大的体积膨胀等。
根据研究,锂枝晶的生长主要是由于电极/电解液界面处锂离子浓度梯度和电流密度不均匀导致的锂离子不均匀沉积。锂枝晶的生长可能会刺穿隔膜,导致电池内部短路及安全性问题;部分锂枝晶还可能会折断,从而形成电子绝缘的“死锂”。同时,锂枝晶往往具有较大的表面积,会造成电解液的持续消耗,导致库伦效率降低。此外,锂离子沉积/剥离过程中产生的体积膨胀会破坏固体电解质界面膜(SEI),造成反复破裂和修复,从而加速枝晶的生长、电解液的消耗以及“死”锂的形成。
发明内容
本发明的主要目的在于提供一种锂金属负极及锂金属电池,以解决现有技术中锂金属电池容易产生锂枝晶从而导致电池寿命短、循环性能差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种锂金属负极,该锂金属负极包括负极极片和位于负极极片表面的保护层,该保护层包括Li2Se;其中,Li2Se占保护层的质量含量为0.05~100%,Li2Se占锂金属负极的质量含量为0.00001~50%。
进一步地,负极极片包括负极材料和集流体,负极材料选自金属锂、锂合金、锂碳复合材料、锂硅复合材料中的一种或多种。
进一步地,Li2Se中的Se元素来自硒吩、苯硒酚、苯基氯化硒、苯基溴化硒、苯基碘化硒、硒氰酸苯酯、二苯基二硒、二甲基二硒醚、二甲基硒、四氯化硒、二氯化二硒、四溴化硒、二溴化硒、硒化铟、硒化锡、硒化锌、硒化镁、硒化钠、硒化钾、硒化钴、硒化铜、硒单质中的一种或多种。
进一步地,保护层的厚度为1nm~2000μm,优选为1nm~800nm。
为了实现上述目的,根据本发明的一个方面,提供了一种上述锂金属负极的制备方法,该制备方法包括:将第一含硒元素的化合物与负极极片混合制备锂金属负极;优选第一含硒元素的化合物选自硒吩、苯硒酚、苯基氯化硒、苯基溴化硒、苯基碘化硒、硒氰酸苯酯、二苯基二硒、二甲基二硒醚、二甲基硒、四氯化硒、二氯化二硒、四溴化硒、二溴化硒、硒化铟、硒化锡、硒化锌、硒化镁、硒化钠、硒化钾、硒化钴、硒化铜、硒单质中的一种或多种。
进一步地,含硒元素的化合物与负极极片混合的方法为研磨混合、涂覆、浸泡、喷涂、气相沉积、加热反应中的一种或多种。
根据本发明的另一方面,提供了一种锂金属电池,包括正极、负极和电解液,该负极为上述锂金属负极。
进一步地,上述正极包括正极极片,优选正极极片包括正极材料和集流体;优选正极材料选自锰酸锂正极材料、镍钴锰三元正极材料、LiNi0.8Co0.15Al0.5O2、硫/碳复合正极材料、磷酸铁锂、硫/聚丙烯腈复合材料中的一种或多种。
进一步地,电解液包括锂盐、溶剂、添加剂和第二含硒元素的化合物;优选溶剂为酯类溶剂、醚类溶剂、砜类溶剂中的一种或多种;优选锂盐为六氟磷酸锂、双氟磺酰亚胺锂、双三氟甲基磺酰亚胺锂、高氯酸锂、二氟草酸硼酸锂、双草酸硼酸锂、二氟磷酸锂、二氟二草酸磷酸锂、四氟硼酸锂中的一种或多种。
进一步地,添加剂为氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸乙烯酯、亚硫酸丙烯酯、硝酸锂、1,3-丙烯磺酸内酯、硫酸乙烯酯中的一种或多种。
进一步地,第二含硒元素的化合物选自硒吩、苯硒酚、苯基氯化硒、苯基溴化硒、苯基碘化硒、硒氰酸苯酯、二苯基二硒、二甲基二硒醚、二甲基硒、四氯化硒、二氯化二硒、四溴化硒、二溴化硒中的一种或多种。
进一步地,的酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸乙丙酯、磷酸三甲酯、磷酸三乙酯中的一种或多种;优选醚类溶剂为四乙二醇二甲醚和/或乙二醇二甲醚;优选砜类溶剂为环丁砜和/或二甲基亚砜。
应用本发明的技术方案,通过在锂金属负极中添加含硒的化合物,可以直接在锂金属负极表面形成均匀稳定的保护层。在组装成电池后,保护层可以减少循环过程中活性锂的消耗,补偿电池因固体电解质界面层(SEI)生长引起的初始容量损失,进而提升库伦效率及循环寿命。此外,预先在锂金属负极表面形成的保护层可以提升锂金属在空气中的稳定性,既可以避免负极氧化,还便于加工生产。同时,在锂金属负极形成保护层能够实现锂离子的快速传导和均匀沉积,从而抑制锂枝晶的生长,进而提升锂离子沉积/脱出的库伦效率,实现锂金属电池在大电流下的稳定循环,最终得到长寿命、高安全性的锂金属电池。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1中a示出了本发明对比例1在1C循环200圈后的锂金属负极的SEM图;
图1中b示出了本发明实施例7在1C循环200圈后的锂金属负极的SEM图;
图2中a示出了本发明对比例2在4C循环400圈后的锂金属负极的SEM图;
图2中b示出了本发明实施例8在4C循环400圈后的锂金属负极的SEM图;
图3示出了本发明实施例7、对比例1和对比例2锂金属负极的杨氏模量图;
图4示出了本发明实施例9至实施例10锂金属电池容量与电压的曲线图;
图5示出了本发明对比例3至5锂金属电池容量与电压的曲线图;
图6示出了本发明实施例9至10、对比例3至5循环圈数与电池容量的曲线图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如本申请背景技术所分析的,现有技术中存在锂金属电池容易产生锂枝晶从而导致电池寿命短、循环稳定性差的问题。为了解决这一问题,本申请提供了一种锂金属负极及锂金属电池。
在本申请一种典型的实施方式中,提供了一种锂金属负极,该锂金属负极包括负极极片和位于负极极片表面的保护层,该保护层包括Li2Se;其中,上述Li2Se占保护层的质量含量为0.05~100%,Li2Se占锂金属负极的质量含量为0.00001~50%,优选Li2Se占锂金属负极的质量含量为0.00001~5%,更优选Li2Se占锂金属负极的质量含量为0.0001~5%。
本申请通过在锂金属负极中添加含硒的化合物,可以直接在锂金属负极表面形成均匀稳定的保护层。在组装成电池后,保护层可以减少循环过程中活性锂的消耗,补偿电池因固体电解质界面层(SEI)生长引起的初始容量损失,进而提升库伦效率及循环寿命。此外,预先在锂金属负极表面形成的保护层可以提升锂金属在空气中的稳定性,既可以避免负极氧化,还便于加工生产。同时,在锂金属负极形成保护层能够实现锂离子的快速传导和均匀沉积,从而抑制锂枝晶的生长,进而提升锂离子沉积/脱出的库伦效率,实现锂金属电池在大电流下的稳定循环,最终得到长寿命、高安全性的锂金属电池。
本申请对负极材料没有特别的限制,常用的锂金属负极材料均可以应用于本申请中。在一些实施例中,负极极片包括负极材料和集流体,该负极材料选自金属锂、锂合金、锂碳复合材料、锂硅复合材料中的一种或多种。
为了更好地使硒元素与金属锂形成Li2Se,进一步提高电池的循环稳定性,在一些实施例中,Li2Se中的Se元素硒吩(C4H4Se)、苯硒酚(C5H5SeH)、苯基氯化硒(C6H5ClSe)、苯基溴化硒(C6H5BrSe)、苯基碘化硒(C6H5ISe)、硒氰酸苯酯(C6H5SeCN)、二苯基二硒(C12H10Se2)、二甲基二硒醚(C2H6Se2)、二甲基硒(C2H6Se)、四氯化硒(SeCl4)、二氯化二硒(Se2Cl2)、四溴化硒(SeBr4)、二溴化硒(SeBr2)、硒化铟、硒化锡、硒化锌、硒化镁、硒化钠、硒化钾、硒化钴、硒化铜、硒单质中的一种或多种。
为了进一步提高锂金属负极的稳定性,并尽可能降低保护层对电池电性能的影响,保护层的厚度为1nm~2000μm,优选为1nm~800nm。由于Li2Se占保护层的质量含量为0.05~100%,当第一含硒元素的化合物与锂金属负极反应形成的Li2Se含量较低时,为保证Li2Se占锂金属负极的质量含量为0.00001~50%,相应增加保护层的厚度;而当第一含硒元素的化合物与锂金属负极反应形成的Li2Se含量较高时,相应降低保护层的厚度。
在本申请另一种典型的实施方式中,该制备方法包括:将第一含硒元素的化合物与负极极片混合制备锂金属负极;上述第一含硒元素的化合物选自硒吩(C4H4Se)、苯硒酚(C5H5SeH)、苯基氯化硒(C6H5ClSe)、苯基溴化硒(C6H5BrSe)、苯基碘化硒(C6H5ISe)、硒氰酸苯酯(C6H5SeCN)、二苯基二硒(C12H10Se2)、二甲基二硒醚(C2H6Se2)、二甲基硒(C2H6Se)、四氯化硒(SeCl4)、二氯化二硒(Se2Cl2)、四溴化硒(SeBr4)、二溴化硒(SeBr2)、硒化铟、硒化锡、硒化锌、硒化镁、硒化钠、硒化钾、硒化钴、硒化铜、硒单质中的一种或多种。
本申请直接将第一含硒元素的化合物与负极极片混合会同时在金属锂基体和表面形成Li2Se,本申请的制备方法简单,成本低,第一含硒元素的化合物用量少。本申请在组装电池之前预先在负极极片表面形成保护层,制备得到的保护层均匀稳定,在组装成电池后,减少了充电过程中活性锂的消耗,补偿电池因固体电解质界面层(SEI)生长引起的初始容量损失,进而提升库伦效率及循环寿命。此外,预先在锂金属负极表面形成的保护层可以提升锂金属在空气中的稳定性,既可以避免负极氧化,还便于加工生产。同时,在锂金属负极形成保护层能够实现锂离子的快速传导和均匀沉积,从而抑制锂枝晶的生长,进而提升锂离子沉积/脱出的库伦效率,实现锂金属电池在大电流下的稳定循环,最终得到长寿命、高安全性的锂金属电池。
本申请对第一含硒元素的化合物与负极极片混合的方法没有特别的限制,本领域常用的方法均可以应用于本申请中。在一些实施例中,第一含硒元素的化合物与负极极片混合的方法可以是研磨混合、涂覆、浸泡、喷涂、气相沉积、加热反应中的一种或多种。
在本申请又一种典型的实施方式,提供了一种锂金属电池,包括正极、负极和电解液,该负极为上述锂金属电池负极。具有上述锂金属负极的锂金属电池循环稳定性高,且具有长寿命。
本申请对负极材料没有特别的限制,常用的锂金属负极材料均可以应用于本申请中。在一些实施例中,上述正极包括正极极片,正极极片包括正极材料和集流体;优选正极材料选自锰酸锂正极材料、镍钴锰三元正极材料、LiNi0.8Co0.15Al0.5O2、硫/碳复合正极材料、磷酸铁锂、硫/聚丙烯腈复合材料中的一种或多种。
本申请对电解液没有特别的限制,本领域常用的电解液均可以应用于本申请中。在一些实施例中,为了进一步提高锂金属电池的循环稳定性和电性能,在负极添加硒化合物的基础上,可以同时在电解液中添加含硒的化合物,从而起到协同作用,促进锂离子传导,进而抑制锂枝晶的形成。上述电解液包括锂盐、溶剂、添加剂和第二含硒元素的化合物,优选上述溶剂为酯类溶剂、醚类溶剂、砜类溶剂中的一种或多种,优选锂盐为六氟磷酸锂(LiPF6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲基磺酰亚胺锂(LiTFSI)、高氯酸锂(LiClO4)、二氟草酸硼酸锂(LiODFB)、双草酸硼酸锂(LiBOB)、二氟磷酸锂(LiDFP)、二氟二草酸磷酸锂(LiDFBOP)、四氟硼酸锂(LiBF4)中的一种或多种。添加剂为氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)、亚硫酸乙烯酯(ES)、亚硫酸丙烯酯(PS)、硝酸锂(LiNO3)、1,3-丙烯磺酸内酯(PES)、硫酸乙烯酯(DTD)中的一种或多种。
发明人经过试验发现,在电解液中添加液态第二含硒元素的化合物可以进一步提高锂金属电池的循环稳定性和电性能,优选第二含硒元素的化合物选自硒吩(C4H4Se)、苯硒酚(C5H5SeH)、苯基氯化硒(C6H5ClSe)、苯基溴化硒(C6H5BrSe)、苯基碘化硒(C6H5ISe)、硒氰酸苯酯(C6H5SeCN)、二苯基二硒(C12H10Se2)、二甲基二硒醚(C2H6Se2)、二甲基硒(C2H6Se)、四氯化硒(SeCl4)、二氯化二硒(Se2Cl2)、四溴化硒(SeBr4)、二溴化硒(SeBr2)中的一种或多种。
本申请对电解液的溶剂没有特别的限制,本领域常用的电解液溶剂均可以应用于本申请中。在一些实施例中,上述酯类溶剂选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯(BC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、磷酸三甲酯(TMP)、磷酸三乙酯(TEP)中的一种或多种;优选醚类溶剂为四乙二醇二甲醚(DOL)和/或乙二醇二甲醚(DME);优选砜类溶剂为环丁砜(SL)和/或二甲基亚砜(DMSO)。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
将硒单质与金属锂按照1:20的质量比研磨混合;将上述混合物在手套箱中加热至300℃充分反应1h,得到产物;通过滚压的方式将上述产物制成锂金属电极,保护层的厚度为20μm。
通过X射线光谱仪及X射线衍射仪检测到锂金属电极表面Li2Se占保护层的质量含量为100%,Li2Se占锂金属负极的质量含量约为5%。该负极与磷酸铁锂正极组装成Li||LiFePO4全电池,电解液为1.0mol L-1LiPF6/EC-DEC,电压区间为2.5-3.65V,1C可稳定循环超过10000圈,容量保持率达60%。
实施例2
将纳米化的硒滚压、涂敷至锂金属电极表面,控制涂覆层的厚度为5μm;在100℃的温度下,保温10小时,借助硒单质与金属锂之间自发的电化学反应形成Li2Se保护层。通过X射线光谱仪、X射线衍射仪、透射电镜检测到锂金属电极表面Li2Se占保护层的质量含量为90%,Li2Se占锂金属负极的质量含量为1%。该负极与钴酸锂正极组装成Li||LiCoO2全电池,电解液为5.0mol L-1LiFSI/TMP,电压区间为2.5-4.4V,4C可稳定循环超过2000圈,容量保持率达80%。
本实施例中纳米化的硒具有较小的颗粒、反应活性高。
实施例3
在25℃下,将金属锂电极浸泡在硒吩(C4H4Se)中,反应30分钟形成Li2Se保护层;保护层的厚度为500nm;保护层中Li2Se的质量含量为100%,Li2Se占锂金属负极的质量含量为0.05%。该负极与硫/碳复合正极组装成Li||S@C全电池,电解液为1.0mol L-1LiFSI/DOL-DME,电压区间为1.8-3.0V,0.2C可稳定循环超过4000圈,容量保持率达70%。
实施例4
利用喷涂装置,将四氯化硒(SeCl4)以1mL min-1的速度喷至锂/碳复合负极表面,喷涂时间为10~15分钟;待反应完全后保护层的厚度为800nm,保护层中Li2Se的含量为50%,Li2Se占锂金属负极的质量含量为0.02%。该负极与镍钴锰三元正极组装成Li||LiNi0.5Co0.2Mn0.3O2全电池,电解液为1.0mol L-1LiPF6/EC-DMC,电压区间为2.5-4.3V,0.6C可稳定循环超过6000圈,容量保持率80%;与锰酸锂正极组装成Li||LiMn2O4全电池,电解液为1.0mol L-1LiPF6/EC-DMC,电压区间为2.5-4.2V,0.6C可稳定循环4500圈,容量保持率80%。
实施例5
利用气相沉积的方式,以苯硒酚(C5H5SeH)为硒源,设定溅射参数,反应气体为氩气,沉积时间为5分钟,在锂合金负极表面沉积形成含Li2Se的保护层,保护层的厚度为40nm。保护层中Li2Se的含量为25%,Li2Se占锂金属负极的质量含量为0.001%。该电极与硫/聚丙烯腈Li||SPAN复合材料为正极组装成电池,电解液为1.0mol L-1LiPF6/EC-DMC-EMC,电压区间为1.8-3.0V,3C可稳定循环3000圈以上,容量保持率85%。
实施例6
与实施例1不同之处在于,将硒化铟与金属锂按照1:30的质量比研磨混合,反应温度为450℃。保护层的厚度为30μm。通过X射线光谱仪及X射线衍射仪检测到锂金属电极表面Li2Se占保护层的质量含量为60%,Li2Se占锂金属负极的质量含量为0.0001%。该负极与磷酸铁锂正极组装成Li||LiFePO4全电池,电解液为0.2mol L-1LiDFP-0.3mol L-1LiPF6/EC-DMC-EMC,电压区间为2.5-3.65V,1.5C可稳定循环超过8000圈,容量保持率75%。
实施例7
将质量含量为5%的硒吩(C4H4Se)直接与锂反应,形成保护层,保护层的厚度为25μm;通过X射线光谱仪及X射线衍射仪检测到Li2Se占保护层的质量含量为80%,Li2Se占锂金属负极的质量含量为0.001%。将上述负极组装成Li||LiFePO4电池0.1C循环三圈,电解液为1.0M LiPF6/EC-DEC,电压区间为2.5-3.65V,拆开后分析Li表面杨氏模量,为18Gpa。待Li||LiFePO4电池1C循环200圈后,对锂负极表面形貌进行观察。如图1中b所示,金属锂负极表面保持致密的结构且无枝晶。
实施例8
将质量含量为5%的硒吩(C4H4Se)直接与锂反应,形成保护层,保护层的厚度为25μm;通过X射线光谱仪及X射线衍射仪检测到Li2Se占保护层的质量含量为80%,Li2Se占锂金属负极的质量含量为0.001%。将上述负极组装成Li||LiFePO4电池0.1C循环三圈,电解液为1.0M LiPF6/EC-DEC,电压区间为2.5-3.65V,拆开后分析Li表面杨氏模量,为18Gpa。待Li||LiFePO4电池4C循环400圈后,对锂负极表面形貌进行观察。如图2中b所示,金属锂负极表面保持致密的结构且无枝晶。
实施例9
将LiNi0.8Co0.15Al0.5O2作为正极,组装成Li||LiNi0.8Co0.15Al0.5O2电池,电解液为1.0MLiPF6/EC-DEC,电压区间为3.0-4.4V。所采用的金属锂预先利用气相沉积的方式,以硒酚(C4H4Se)为硒源,反应气体为氩气,沉积时间为5分钟,在锂合金负极表面沉积形成Li2Se的保护层,保护层的厚度为450nm;通过X射线光谱仪及X射线衍射仪检测到Li2Se占保护层的质量含量为85%,Li2Se占锂金属负极的质量含量为0.0002%。如图4所示,电池首次库伦效率为96.8%。如图6所示,所得Li||LiNi0.8Co0.15Al0.5O2电池1C循环800圈容量保持率为86%。
实施例10
将LiNi0.8Co0.15Al0.5O2作为正极,组装成Li||LiNi0.8Co0.15Al0.5O2电池,电解液为2%Se2Cl2+1.0M LiPF6/EC-DEC,电压区间为3.0-4.4V。所采用的金属锂预先利用气相沉积的方式,以苯硒酚(C5H5SeH)为硒源,反应气体为氩气,沉积时间为5分钟,在锂合金负极表面沉积形成Li2Se的保护层,保护层的厚度为450nm;通过X射线光谱仪及X射线衍射仪检测到Li2Se占保护层的质量含量为85%,Li2Se占锂金属负极的质量含量为0.0002%。如图4所示,电池首次库伦效率为97.4%。如图6所示,所得Li||LiNi0.8Co0.15Al0.5O2电池1C循环800圈容量保持率为93%。
实施例11
将硒化铜与金属锂按照1:200的质量比研磨混合;将上述混合物在手套箱中加热至350℃充分反应2h,得到产物;通过滚压的方式将上述产物制成锂金属电极,保护层的厚度为2000μm。
通过X射线光谱仪及X射线衍射仪检测到锂金属电极表面Li2Se占保护层的质量含量为50%,Li2Se占锂金属负极的质量含量约为0.25%。该负极与磷酸铁锂正极组装成Li||LiFePO4全电池,电解液为1.0mol L-1LiPF6/EC-DEC,电压区间为2.5-3.65V,1C可稳定循环超过4000圈,容量保持率达72%。
实施例12
将硒单质与金属锂按照1:1.36的质量比研磨混合;将上述混合物在手套箱中加热至300℃充分反应2h,得到产物;通过滚压的方式将上述产物制成锂金属电极,保护层的厚度为50μm。
通过X射线光谱仪及X射线衍射仪检测到锂金属电极表面Li2Se占保护层的质量含量为100%,Li2Se占锂金属负极的质量含量约为50%。该负极与磷酸铁锂正极组装成Li||LiFePO4全电池,电解液为1.0mol L-1LiPF6/EC-DEC,电压区间为2.5-3.65V,0.8C可稳定循环超过6000圈,容量保持率达75%。
对比例1
将质量含量为5%硒吩(C4H4Se)处理磷酸铁锂正极,组装成Li||LiFePO4电池0.1C循环三圈,电解液为1.0M LiPF6/EC-DEC,电压区间为2.5-3.65V,拆开后分析Li表面杨氏模量,为2.5Gpa。待Li||LiFePO4电池1C循环200圈后,对锂负极表面形貌进行观察。如图中1中a所示,金属锂负极表面出现大量锂枝晶,且表面出现大量裂纹。
对比例2
将质量含量为5%硒吩(C4H4Se)加入电解液,组装成Li||LiFePO4电池0.1C循环三圈,电解液为1.0M LiPF6/EC-DEC+5%硒吩,电压区间为2.5-3.65V,拆开后分析Li表面杨氏模量,为4.0Gpa。待Li||LiFePO4电池4C循环400圈后,对锂负极表面形貌进行观察。如图2中a所示,金属锂负极表面出现大量锂枝晶及裂纹。
对比例3
将质量含量为5%硒吩(C4H4Se)处理LiNi0.8Co0.15Al0.5O2正极,组装成Li||LiNi0.8Co0.15Al0.5O2电池0.1C循环三圈,电解液为1.0M LiPF6/EC-DEC,电压区间为3.0-4.4V。如图5所示,电池首次库伦效率为91.8%。如图6所示,所得Li||LiNi0.8Co0.15Al0.5O2电池1C循环800圈容量保持率为60%。
对比例4
将质量含量5%硒吩(C4H4Se)处理LiNi0.8Co0.15Al0.5O2正极,组装成Li||LiNi0.8Co0.15Al0.5O2电池0.1C循环三圈,电解液为2%Se2Cl2+1.0M LiPF6/EC-DEC,电压区间为3.0-4.4V。如图5所示,电池首次库伦效率为93.8%。如图6所示,所得Li||LiNi0.8Co0.15Al0.5O2电池1C循环800圈容量保持率为73%。
对比例5
将LiNi0.8Co0.15Al0.5O2作为正极,组装成Li||LiNi0.8Co0.15Al0.5O2电池0.1C循环三圈,电解液为2%Se2Cl2+1.0M LiPF6/EC-DEC,电压区间为3.0-4.4V。如图5所示,电池首次库伦效率为92.1%。如图6所示,所得Li||LiNi0.8Co0.15Al0.5O2电池1C循环800圈容量保持率为70%。
表1
首次库伦效率(CE) 1C循环800圈容量保持率(%)
实施例9 184/190=96.8% 86
实施例10 188/193=97.4% 93
对比例3 180/196=91.8% 60
对比例4 182/194=93.8% 73
对比例5 176/191=92.1% 70
实施例7、对比例1和对比例2中锂金属负极的杨氏模量如图3所示。由于杨氏模量越高,强度越高,体积膨胀过程中SEI膜越不容易破裂,稳定性越好。从图中可以看出,在负极中添加硒元素时,金属锂的杨氏模量最高。
实施例9-10、对比例3-5的首次库伦效率如表1所示,可以看出,实施例9-10预先在电池负极添加含硒元素的化合物,在组装成电池后可以有效减少充电过程中活性锂的消耗,补偿电池因SEI生长引起的初始容量损失,因此相比只在正极或电解液添加含硒元素的化合物,在负极添加含硒元素的化合物(实施例9-10)可以提高电池的首次库伦效率和循环保持率。实施例10中同时在电解液和负极中添加含硒元素的化合物,促进锂离子传导,进而抑制锂枝晶的形成,因而实施例10的效果好于实施例9。
对比例3中仅在正极引入含硒元素的化合物无法抑制锂枝晶生长,导致电池的首次库伦效率和循环保持率较低。而对比例5仅在电解液中加入含硒元素的化合物,首次充放电过程中虽然会在负极表面形成保护层,但该过程会消耗电池内部的活性锂离子,造成电池容量下降,且形成的保护层不够致密,机械强度较低、难以抑制大电流下锂枝晶的生长,因此在大电流下的循环性能仍难以保证。对比例4中即使在正极和电解液中同时添加含硒元素的化合物,电池的首次库伦效率和循环性能仍然难以达到理想状态。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:本申请通过在锂金属负极中添加含硒的化合物,可以直接在锂金属负极表面形成均匀稳定的保护层。在组装成电池后,保护层可以减少循环过程中活性锂的消耗,补偿电池因固体电解质界面层(SEI)生长引起的初始容量损失,进而提升库伦效率及循环寿命。此外,预先在锂金属负极表面形成的保护层可以提升锂金属在空气中的稳定性,既可以避免负极氧化,还便于加工生产。同时,在锂金属负极形成保护层能够实现锂离子的快速传导和均匀沉积,从而抑制锂枝晶的生长,进而提升锂离子沉积/脱出的库伦效率,实现锂金属电池在大电流下的稳定循环,最终得到长寿命、高安全性的锂金属电池。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种锂金属负极,其特征在于,所述锂金属负极包括负极极片和位于所述负极极片表面的保护层,所述保护层包括Li2Se;其中,所述Li2Se占所述保护层的质量含量为0.05~100%,所述Li2Se占所述锂金属负极的质量含量为0.00001~50%。
2.根据权利要求1所述的锂金属负极,其特征在于,所述负极极片包括负极材料和集流体,所述负极材料选自金属锂、锂合金、锂碳复合材料、锂硅复合材料中的一种或多种。
3.根据权利要求1所述的锂金属负极,其特征在于,所述Li2Se中的Se元素来自硒吩、苯硒酚、苯基氯化硒、苯基溴化硒、苯基碘化硒、硒氰酸苯酯、二苯基二硒、二甲基二硒醚、二甲基硒、四氯化硒、二氯化二硒、四溴化硒、二溴化硒、硒化铟、硒化锡、硒化锌、硒化镁、硒化钠、硒化钾、硒化钴、硒化铜、硒单质中的一种或多种。
4.根据权利要求1所述的锂金属负极,其特征在于,所述保护层的厚度为1nm~2000μm。
5.一种权利要求1至4任一项所述的锂金属负极的制备方法,其特征在于,所述制备方法包括:
将第一含硒元素的化合物与所述负极极片混合制备所述锂金属负极;
优选所述第一含硒元素的化合物选自硒吩、苯硒酚、苯基氯化硒、苯基溴化硒、苯基碘化硒、硒氰酸苯酯、二苯基二硒、二甲基二硒醚、二甲基硒、四氯化硒、二氯化二硒、四溴化硒、二溴化硒、硒化铟、硒化锡、硒化锌、硒化镁、硒化钠、硒化钾、硒化钴、硒化铜、硒单质中的一种或多种。
6.根据权利要求5所述的制备方法,其特征在于,所述第一含硒元素的化合物与所述负极极片混合的方法为研磨混合、涂覆、浸泡、喷涂、气相沉积、加热反应中的一种或多种。
7.一种锂金属电池,包括正极、负极和电解液,其特征在于,所述负极为权利要求1至4任一项所述的锂金属负极。
8.根据权利要求7所述的锂金属电池,其特征在于,所述正极包括正极极片,优选所述正极极片包括正极材料和集流体;优选所述正极材料选自锰酸锂正极材料、镍钴锰三元正极材料、LiNi0.8Co0.15Al0.5O2、硫/碳复合正极材料、磷酸铁锂、硫/聚丙烯腈复合材料中的一种或多种。
9.根据权利要求8所述的锂金属电池,其特征在于,所述电解液包括锂盐、溶剂、添加剂和第二含硒元素的化合物;
优选所述溶剂为酯类溶剂、醚类溶剂、砜类溶剂中的一种或多种;
优选所述锂盐为六氟磷酸锂、双氟磺酰亚胺锂、双三氟甲基磺酰亚胺锂、高氯酸锂、二氟草酸硼酸锂、双草酸硼酸锂、二氟磷酸锂、二氟二草酸磷酸锂、四氟硼酸锂中的一种或多种;
优选所述添加剂为氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸乙烯酯、亚硫酸丙烯酯、硝酸锂、1,3-丙烯磺酸内酯、硫酸乙烯酯中的一种或多种;
优选所述第二含硒元素的化合物选自硒吩、苯硒酚、苯基氯化硒、苯基溴化硒、苯基碘化硒、硒氰酸苯酯、二苯基二硒、二甲基二硒醚、二甲基硒、四氯化硒、二氯化二硒、四溴化硒、二溴化硒中的一种或多种。
10.根据权利要求9所述的锂金属电池,其特征在于,所述的酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸乙丙酯、磷酸三甲酯、磷酸三乙酯中的一种或多种;
优选所述醚类溶剂为四乙二醇二甲醚和/或乙二醇二甲醚;
优选所述砜类溶剂为环丁砜和/或二甲基亚砜。
CN202210386096.4A 2022-04-13 2022-04-13 一种锂金属负极及锂金属电池 Pending CN114824270A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210386096.4A CN114824270A (zh) 2022-04-13 2022-04-13 一种锂金属负极及锂金属电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210386096.4A CN114824270A (zh) 2022-04-13 2022-04-13 一种锂金属负极及锂金属电池

Publications (1)

Publication Number Publication Date
CN114824270A true CN114824270A (zh) 2022-07-29

Family

ID=82536416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210386096.4A Pending CN114824270A (zh) 2022-04-13 2022-04-13 一种锂金属负极及锂金属电池

Country Status (1)

Country Link
CN (1) CN114824270A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799611A (zh) * 2023-02-07 2023-03-14 湖州超钠新能源科技有限公司 一种钠离子电池电解液及钠离子电池
CN117199506A (zh) * 2023-11-08 2023-12-08 宁德时代新能源科技股份有限公司 电池单体及其制备方法、电池和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785603A (zh) * 2017-09-12 2018-03-09 深圳启辰新能源科技有限公司 锂硫电池电解液及其制备方法以及使用所述电解液的电池
US20200067101A1 (en) * 2018-08-24 2020-02-27 Nanotek Instruments, Inc. Method of producing protected particles of cathode active materials for lithium batteries
CN113903889A (zh) * 2020-07-06 2022-01-07 厦门大学 一种锂金属负极及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785603A (zh) * 2017-09-12 2018-03-09 深圳启辰新能源科技有限公司 锂硫电池电解液及其制备方法以及使用所述电解液的电池
US20200067101A1 (en) * 2018-08-24 2020-02-27 Nanotek Instruments, Inc. Method of producing protected particles of cathode active materials for lithium batteries
CN113903889A (zh) * 2020-07-06 2022-01-07 厦门大学 一种锂金属负极及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONGSOO LEE等: "Stable artificial solid electrolyte interphase with lithium selenide and lithium chloride for dendrite-free lithium metal anodes", 《JOURNAL OF POWER SOURCES》, pages 1 - 10 *
HYUNJUNG PARK等: "Epitaxial Growth of Nanostructured Li2Se on Lithium Metal for All Solid-State Batteries", 《ADVANCED SCIENCE》, vol. 8, no. 11, pages 1 - 7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799611A (zh) * 2023-02-07 2023-03-14 湖州超钠新能源科技有限公司 一种钠离子电池电解液及钠离子电池
CN117199506A (zh) * 2023-11-08 2023-12-08 宁德时代新能源科技股份有限公司 电池单体及其制备方法、电池和用电装置
CN117199506B (zh) * 2023-11-08 2024-05-10 宁德时代新能源科技股份有限公司 电池单体及其制备方法、电池和用电装置

Similar Documents

Publication Publication Date Title
KR101905246B1 (ko) 리튬 이차전지의 제조방법
CN108461715B (zh) 一种固态电池锂负极的制备方法
US20060134527A1 (en) Long life lithium batteries with stabilized electrodes
KR101268501B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차 전지
KR20190001556A (ko) 리튬 이차전지
KR20210023756A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20120004340A (ko) 니켈계 양극 활물질과 그 제조방법 및 이를 이용한 리튬 전지
WO2007010915A1 (ja) 非水電解質二次電池及びその製造方法
CN108258317B (zh) 一种锂硫电池
CN111009650B (zh) 一种金属锂表面保护方法、负极及金属锂二次电池
CN114824270A (zh) 一种锂金属负极及锂金属电池
CN109638255B (zh) 一种碱金属负极表面原位处理方法及其应用
KR20200082557A (ko) 리튬이차전지용 전해액 및 이를 포함한 리튬이차전지
WO2019095717A1 (zh) 一种锂原电池
JP4304570B2 (ja) 非水電解液およびそれを用いた二次電池
US20240170652A1 (en) Positive electrode active material, preparation method thereof, and lithium-ion battery, battery module, battery pack, and electric apparatus containing same
CN107221705A (zh) 一种高电压锂离子电池电解液及高电压锂离子电池
KR20200122636A (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20220009894A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
CN111883834B (zh) 一种非水锂离子电池电解液添加剂、包含其的电解液以及锂离子电池
CN115000489A (zh) 用于预锂化电极的界面调控液、制备方法及应用
WO2023035399A1 (zh) 一种非水电解液以及一种电池
CN112216869B (zh) 高压电解液添加剂、高压电解液及锂离子电池
CN107681191A (zh) 一种高电压锂离子电池
KR20200132774A (ko) 첨가제를 함유하는 전해액 및 이 전해액을 포함하는 리튬 이온 전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination