CN114823891A - A kind of GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device and preparation method thereof - Google Patents
A kind of GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device and preparation method thereof Download PDFInfo
- Publication number
- CN114823891A CN114823891A CN202210232493.6A CN202210232493A CN114823891A CN 114823891 A CN114823891 A CN 114823891A CN 202210232493 A CN202210232493 A CN 202210232493A CN 114823891 A CN114823891 A CN 114823891A
- Authority
- CN
- China
- Prior art keywords
- layer
- passivation
- gate
- groove
- gan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002161 passivation Methods 0.000 title claims abstract description 126
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 230000004888 barrier function Effects 0.000 claims abstract description 74
- 238000002955 isolation Methods 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000010899 nucleation Methods 0.000 claims abstract description 19
- 230000006911 nucleation Effects 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 10
- 229910002704 AlGaN Inorganic materials 0.000 claims description 8
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 238000001465 metallisation Methods 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 3
- 238000005566 electron beam evaporation Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 238000005036 potential barrier Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 10
- 230000007547 defect Effects 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 231
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3171—Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3192—Multilayer coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体器件技术领域,具体涉及一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件及其制备方法。The invention belongs to the technical field of semiconductor devices, in particular to a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device and a preparation method thereof.
背景技术Background technique
基于AlGaN/GaN的高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)具有耐高温、耐高压的优良特性,其在电力电子、无线通信和射频领域受到广泛应用。随着各个应用领域对器件性能要求不断提高,AlGaN/GaN基HEMT器件仍存在一些栅电极可靠性问题亟待解决。High Electron Mobility Transistor (HEMT) based on AlGaN/GaN has excellent characteristics of high temperature resistance and high voltage resistance, and is widely used in the fields of power electronics, wireless communication and radio frequency. With the continuous improvement of device performance requirements in various application fields, there are still some gate electrode reliability problems in AlGaN/GaN-based HEMT devices that need to be solved urgently.
常规的GaN基肖特基HEMT的栅电极漏电严重,且由于GaN材料自身存在大量的位错和缺陷,导致电荷被表面态复合,从而导致严重的电流崩塌现象。为了解决这一问题,人们提出了使用Al2O3、SiN4和SiO2等介质钝化层作为栅绝缘层的MIS(金属-绝缘体-半导体)-HEMT的方法,虽然在一定程度上抑制了器件的栅电极漏电情况,改善了电流崩塌的问题,但是在栅电极下方的绝缘层介质也使得器件产生了一定的可靠性问题,导致器件的电流截止频率下降,PBTI(positive bias temperature instability,正偏置温度不稳定性)效应增加,因而使得GaN基MIS-HEMT器件的广泛应用受到限制。The gate electrode of the conventional GaN-based Schottky HEMT has serious leakage, and due to the existence of a large number of dislocations and defects in the GaN material, the charges are recombined by the surface states, resulting in a serious current collapse phenomenon. In order to solve this problem, a method of MIS (Metal-Insulator-Semiconductor)-HEMT using dielectric passivation layers such as Al 2 O 3 , SiN 4 and SiO2 as the gate insulating layer has been proposed, although it inhibits the device to a certain extent The leakage of the gate electrode improves the problem of current collapse, but the insulating layer dielectric under the gate electrode also causes certain reliability problems of the device, resulting in a decrease in the current cut-off frequency of the device, PBTI (positive bias temperature instability, positive bias temperature instability, positive bias temperature instability) The effect of temperature instability) increases, thus limiting the wide application of GaN-based MIS-HEMT devices.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a GaN-based double-layer passivation groove gate enhancement type MIS-HEMT device and a preparation method thereof. The technical problem to be solved by the present invention is realized by the following technical solutions:
本发明的一个方面提供了一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件,包括自下而上依次设置的衬底、成核层、缓冲层、沟道层和势垒层,其中,One aspect of the present invention provides a GaN-based double-layer passivation groove gate enhancement type MIS-HEMT device, comprising a substrate, a nucleation layer, a buffer layer, a channel layer and a barrier layer sequentially arranged from bottom to top ,in,
所述势垒层的两侧分别设置有第一隔离区和第二隔离区,所述第一隔离区和所述第二隔离区自所述势垒层的上表面延伸至所述缓冲层的上表面;Two sides of the barrier layer are respectively provided with a first isolation region and a second isolation region, and the first isolation region and the second isolation region extend from the upper surface of the barrier layer to the buffer layer. upper surface;
所述第一隔离区和所述第二隔离区的内侧分别设置有漏电极和源电极,所述漏电极的至少一部分和所述源电极的至少一部分均镶嵌在所述势垒层中,所述漏电极和所述源电极的下表面均与所述沟道层接触且形成欧姆接触;The inner side of the first isolation region and the second isolation region are respectively provided with a drain electrode and a source electrode, and at least a part of the drain electrode and at least a part of the source electrode are embedded in the barrier layer, so lower surfaces of the drain electrode and the source electrode are both in contact with the channel layer and form ohmic contact;
所述漏电极与所述源电极之间的所述势垒层上开设有栅极区凹槽,所述栅极区凹槽的内表面及所述势垒层的上表面涂覆有双层钝化层;位于所述栅极区凹槽内的双层钝化层上设置有栅电极。A gate region groove is opened on the barrier layer between the drain electrode and the source electrode, and the inner surface of the gate region groove and the upper surface of the barrier layer are coated with double layers A passivation layer; a gate electrode is arranged on the double-layer passivation layer located in the groove of the gate region.
在本发明的一个实施例中,所述双层钝化层包括Si钝化层和SiO2钝化层,其中,In one embodiment of the present invention, the double-layer passivation layer includes a Si passivation layer and a SiO 2 passivation layer, wherein,
所述Si钝化层位于所述栅极区凹槽内,且沿所述栅极区凹槽的台面向外生长,以使截面呈U形;The Si passivation layer is located in the gate region groove, and grows outward along the mesa surface of the gate region groove, so that the cross section is U-shaped;
所述SiO2钝化层覆盖在所述Si钝化层上表面以及所述漏电极与所述源电极之间的所述势垒层上表面,且两侧分别与所述源电极和所述漏电极接触。The SiO 2 passivation layer covers the upper surface of the Si passivation layer and the upper surface of the barrier layer between the drain electrode and the source electrode, and two sides are respectively connected to the source electrode and the source electrode. Drain electrode contacts.
在本发明的一个实施例中,所述Si钝化层的厚度为1~5nm,所述SiO2钝化层的厚度为5~100nm。In an embodiment of the present invention, the thickness of the Si passivation layer is 1-5 nm, and the thickness of the
在本发明的一个实施例中,所述栅极区凹槽的下端延伸至所述沟道层的上表面。In one embodiment of the present invention, the lower end of the gate region recess extends to the upper surface of the channel layer.
在本发明的一个实施例中,所述势垒层为厚度10~30nm的AlxGa1-xN势垒层,其中x=0.1~0.5。In an embodiment of the present invention, the barrier layer is an AlxGa1 -xN barrier layer with a thickness of 10-30 nm, wherein x=0.1-0.5.
在本发明的一个实施例中,所述成核层为厚度50~400nm的AlN成核层,所述缓冲层为厚度200~8000nm的AlGaN缓冲层,所述沟道层为厚度50~500nm的GaN沟道层。In an embodiment of the present invention, the nucleation layer is an AlN nucleation layer with a thickness of 50-400 nm, the buffer layer is an AlGaN buffer layer with a thickness of 200-8000 nm, and the channel layer is a thickness of 50-500 nm GaN channel layer.
本发明的另一方面提供了一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的制备方法,包括:Another aspect of the present invention provides a preparation method of a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device, comprising:
S1:选取衬底并在所述衬底上依次生长成核层、缓冲层、沟道层和势垒层;S1: select a substrate and sequentially grow a nucleation layer, a buffer layer, a channel layer and a barrier layer on the substrate;
S2:在所述势垒层的两侧进行离子注入,分别形成延伸至所述缓冲层上表面的第一隔离区和第二隔离区;S2: performing ion implantation on both sides of the barrier layer to respectively form a first isolation region and a second isolation region extending to the upper surface of the buffer layer;
S3:在所述势垒层的上表面中部进行刻蚀,形成延伸至所述沟道层上表面的栅极区凹槽;S3: performing etching in the middle of the upper surface of the barrier layer to form a gate region groove extending to the upper surface of the channel layer;
S4:在所述栅极区凹槽内以及所述势垒层的其余上表面区域生长双层钝化层;S4: growing a double-layer passivation layer in the gate region groove and the remaining upper surface region of the barrier layer;
S5:在所述栅极区凹槽上方的所述双层钝化层上进行栅电极金属沉积形成栅电极;S5: performing gate electrode metal deposition on the double-layer passivation layer above the gate region groove to form a gate electrode;
S6:在所述栅电极两侧分别形成源电极和漏电极,且所述源电极的下表面和所述漏电极的下表面均与所述沟道层的上表面接触。S6: A source electrode and a drain electrode are respectively formed on both sides of the gate electrode, and both the lower surface of the source electrode and the lower surface of the drain electrode are in contact with the upper surface of the channel layer.
在本发明的一个实施例中,所述S1包括:In an embodiment of the present invention, the S1 includes:
S11:选取Si、SiC或蓝宝石衬底,并对所述衬底表面进行等离子体清洗、表面预处理,保持衬底表面的洁净;S11: Select a Si, SiC or sapphire substrate, and perform plasma cleaning and surface pretreatment on the substrate surface to keep the substrate surface clean;
S12:在所述衬底上依次外延生长厚度为50~500nm的AlN成核层、厚度为200~8000nm的AlGaN缓冲层、厚度为50~500nm的本征GaN沟道层、厚度为10~30nm的AlxGa1-xN势垒层,其中x=0.1~0.5。S12: epitaxially grow an AlN nucleation layer with a thickness of 50-500 nm, an AlGaN buffer layer with a thickness of 200-8000 nm, an intrinsic GaN channel layer with a thickness of 50-500 nm, and a thickness of 10-30 nm on the substrate in sequence The AlxGa1 -xN barrier layer, where x=0.1-0.5.
在本发明的一个实施例中,所述S4包括:In an embodiment of the present invention, the S4 includes:
S41:在所述势垒层的上表面以及所述栅极区凹槽内,利用CVD技术生长1~5nm的Si钝化层;S41: on the upper surface of the barrier layer and in the groove of the gate region, use CVD technology to grow a Si passivation layer of 1-5 nm;
S42:刻蚀掉远离所述栅极区凹槽的势垒层表面的Si钝化层,形成位于所述栅极区凹槽内且截面为U形的Si钝化层;S42: Etching away the Si passivation layer on the surface of the barrier layer far from the gate region groove, forming a Si passivation layer located in the gate region groove and having a U-shaped cross section;
S43:利用PECVD工艺,在所述Si钝化层和所述势垒层上表面沉积一层5~100nm的SiO2,形成SiO2钝化层。S43: Using a PECVD process, deposit a layer of SiO 2 with a thickness of 5-100 nm on the upper surfaces of the Si passivation layer and the barrier layer to form a SiO 2 passivation layer.
在本发明的一个实施例中,所述S6包括:In an embodiment of the present invention, the S6 includes:
S61:利用光刻工艺在所述栅电极两侧分别刻蚀延伸至所述沟道层上表面的源极区凹槽和漏极区凹槽;S61: etching source region grooves and drain region grooves extending to the upper surface of the channel layer on both sides of the gate electrode by using a photolithography process;
S62:利用溅射或电子束蒸发工艺在所述源极区凹槽和所述漏极区凹槽进行金属沉积,随后进行剥离工艺和退火,形成源电极和漏电极。S62: Metal deposition is performed on the source region grooves and the drain region grooves by a sputtering or electron beam evaporation process, followed by a lift-off process and annealing to form source electrodes and drain electrodes.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明提供了一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件包括衬底、成核层、缓冲层、器件隔离区、沟道层、势垒层、双层钝化层、栅电极、源电极和漏电极,所述双层钝化层由Si钝化层和SiO2钝化层组成,在势垒层靠近源电极侧有一栅极区域凹槽,Si钝化层生长于凹槽内,并沿势垒层凹槽台面向外部分生长,截面为U形,SiO2钝化层生长于Si钝化层和势垒层上表面。该结构通过分别形成在势垒层凹槽内、且沿势垒层凹槽台面向外部分生长的Si钝化层,以及势垒层与Si钝化层上表面的SiO2层,形成了双层钝化层结构。该结构通过双层钝化层在垂直沟道方向形成绝缘层,从而阻断了载流子在垂直方向的运输,使得器件具有界面态缺陷密度低,PBTI效应小,阈值电压稳定的显著特性。1. The present invention provides a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device including a substrate, a nucleation layer, a buffer layer, a device isolation region, a channel layer, a barrier layer, and a double-layer passivation layer, gate electrode, source electrode and drain electrode, the double-layer passivation layer is composed of Si passivation layer and SiO2 passivation layer, there is a gate area groove on the side of the barrier layer near the source electrode, and the Si passivation layer grows The SiO 2 passivation layer is grown on the upper surface of the Si passivation layer and the barrier layer. This structure forms a double passivation layer by forming a Si passivation layer in the groove of the barrier layer and growing along the outer part of the mesa of the groove of the barrier layer, and the SiO2 layer on the upper surface of the barrier layer and the Si passivation layer, respectively. Layer passivation layer structure. This structure forms an insulating layer in the vertical channel direction through a double passivation layer, thereby blocking the transport of carriers in the vertical direction, so that the device has the remarkable characteristics of low interface state defect density, small PBTI effect and stable threshold voltage.
2、本发明提出一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的制备方法,使用Si、SiO2为双层钝化层,避免了传统栅电极绝缘层由于一系列界面态问题所产生的表面陷阱浓度高、器件输出电流减小、电流崩塌效应等问题,有效地提高了栅电极耐压和器件的可靠性。2. The present invention proposes a preparation method of a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device, using Si and SiO 2 as the double-layer passivation layer, avoiding the traditional gate electrode insulating layer due to a series of interface states The problems such as high surface trap concentration, reduced device output current, and current collapse effect caused by the problem effectively improve the gate electrode withstand voltage and the reliability of the device.
3、本发明提出一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的制备方法,通过Si钝化层与SiO2钝化层的双层钝化结构,使钝化层表面态下降,比不含钝化层的HEMT结构以及单层钝化层结构有更好的钝化效果。3. The present invention proposes a method for preparing a GaN-based double-layer passivation groove-gate enhanced MIS-HEMT device. Through the double-layer passivation structure of the Si passivation layer and the SiO 2 passivation layer, the surface state of the passivation layer is improved. It has better passivation effect than HEMT structure without passivation layer and single-layer passivation layer structure.
4、本发明工艺过程比较简单,与目前传统的GaN HEMT工艺兼容。4. The process of the present invention is relatively simple, and is compatible with the current traditional GaN HEMT process.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1是本发明实施例提供的一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的结构示意图;1 is a schematic structural diagram of a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device provided by an embodiment of the present invention;
图2是本发明实施例提供的一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的制备方法流程图;2 is a flow chart of a preparation method of a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device provided by an embodiment of the present invention;
图3a至图3h是本发明实施例提供的一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的制备过程示意图。3a to 3h are schematic diagrams of a fabrication process of a GaN-based double-layer passivation groove gate enhancement type MIS-HEMT device according to an embodiment of the present invention.
附图标记说明:Description of reference numbers:
1-衬底;2-成核层;3-缓冲层;4-沟道层;5-第一隔离区;6-势垒层;7-漏电极;8-栅电极;9-源电极;10-双层钝化层;101-Si钝化层;102-SiO2钝化层;11-第二隔离区;12-栅极区凹槽。1-substrate; 2-nucleation layer; 3-buffer layer; 4-channel layer; 5-first isolation region; 6-barrier layer; 7-drain electrode; 8-gate electrode; 9-source electrode; 10-double-layer passivation layer; 101-Si passivation layer; 102-SiO2 passivation layer; 11-second isolation region; 12-gate region groove.
具体实施方式Detailed ways
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件及其制备方法进行详细说明。In order to further illustrate the technical means and effects adopted by the present invention to achieve the predetermined purpose of the invention, the following describes a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device according to the present invention with reference to the accompanying drawings and specific embodiments. and its preparation method are described in detail.
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。The foregoing and other technical contents, features and effects of the present invention can be clearly presented in the following detailed description of the specific implementation with the accompanying drawings. Through the description of the specific embodiments, the technical means and effects adopted by the present invention to achieve the predetermined purpose can be more deeply and specifically understood. However, the attached drawings are only for reference and description, not for the technical means of the present invention. program is restricted.
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。It should be noted that, herein, relational terms such as first and second are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation are intended to encompass a non-exclusive inclusion such that an article or device comprising a list of elements includes not only those elements, but also other elements not expressly listed. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the article or device that includes the element.
实施例一Example 1
请参见图1,图1是本发明实施例提供的一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的结构示意图。该器件包括自下而上依次设置的衬底1、成核层2、缓冲层3、沟道层4和势垒层6,其中,势垒层6的两侧分别设置有第一隔离区5和第二隔离区11,第一隔离区5和第二隔离区11自势垒层6的上表面延伸至缓冲层3的上表面;第一隔离区5和第二隔离区11的内侧分别设置有漏电极7和源电极9,漏电极7的至少一部分和源电极9的至少一部分均镶嵌在势垒层6中,漏电极7和源电极9的下表面均与沟道层4接触且形成欧姆接触;漏电极7与源电极9之间的势垒层6上开设有栅极区凹槽12,栅极区凹槽12的内表面及势垒层6的上表面涂覆有双层钝化层10;位于栅极区凹槽12内的双层钝化层10上设置有栅电极8。Please refer to FIG. 1. FIG. 1 is a schematic structural diagram of a GaN-based double-layer passivation groove gate enhancement type MIS-HEMT device provided by an embodiment of the present invention. The device includes a
在本实施例中,衬底1的材料为n+-GaN、SiC、蓝宝石或Si。进一步地,成核层2为厚度50~400nm的AlN成核层,缓冲层3为厚度200~8000nm的AlGaN缓冲层,沟道层4为厚度50~500nm的GaN沟道层,势垒层5为厚度10~30nm的AlxGa1-xN势垒层,其中,x=0.1~0.5。In this embodiment, the material of the
第一隔离区5和第二隔离区11在势垒层6和沟道层4中进行N离子注入形成的N离子注入区。在第一隔离区5和第二隔离区11进行N离子注入,形成高阻区,以实现器件隔离。The
进一步地,双层钝化层10包括Si钝化层101和SiO2钝化层102,其中,Si钝化层101位于栅极区凹槽12内,且沿栅极区凹槽12的台面向外生长,以使截面呈U形;SiO2钝化层102覆盖在Si钝化层101上表面以及漏电极7与源电极9之间的势垒层6上表面,且两侧分别与源电极9和漏电极7接触。优选地,Si钝化层101的厚度为1~5nm,SiO2钝化层的厚度为5~100nm。Further, the double-
进一步地,栅极区凹槽12的下端延伸至沟道层4的上表面。漏电极7的外侧与第一隔离区5的内表面接触,源电极9的外侧与第二隔离区11的内表面接触。所述漏极7的下表面穿过势垒层6和沟道层4形成欧姆接触,所述源极9的下表面穿过势垒层6和沟道层4形成欧姆接触。Further, the lower end of the
优选地,源电极9、栅电极8和漏电极7材质相同,为含Ti/Al的金属组合。Preferably, the
本发明实施例提供了一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件包括衬底、成核层、缓冲层、器件隔离区、沟道层、势垒层、双层钝化层、栅电极、源电极和漏电极,所述双层钝化层由Si钝化层和SiO2钝化层组成,在势垒层靠近源电极侧有一栅极区域凹槽,Si钝化层生长于凹槽内,并沿势垒层凹槽台面向外部分生长,截面为U形,SiO2钝化层生长于Si钝化层和势垒层上表面。该结构通过分别形成在势垒层凹槽内、且沿势垒层凹槽台面向外部分生长的Si钝化层,以及势垒层与Si钝化层上表面的SiO2层,形成了双层钝化层结构。该结构通过双层钝化层在垂直沟道方向形成绝缘层,从而阻断了载流子在垂直方向的运输,使得器件具有界面态缺陷密度低,PBTI效应小,阈值电压稳定的显著特性。Embodiments of the present invention provide a GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device, comprising a substrate, a nucleation layer, a buffer layer, a device isolation region, a channel layer, a barrier layer, and a double-layer passivation layer, gate electrode, source electrode and drain electrode, the double-layer passivation layer is composed of Si passivation layer and SiO2 passivation layer, there is a gate area groove on the side of the barrier layer near the source electrode, and the Si passivation layer grows The SiO 2 passivation layer is grown on the upper surface of the Si passivation layer and the barrier layer. This structure forms a double passivation layer by forming a Si passivation layer in the groove of the barrier layer and growing along the outer part of the mesa of the groove of the barrier layer, and the SiO2 layer on the upper surface of the barrier layer and the Si passivation layer, respectively. Layer passivation layer structure. This structure forms an insulating layer in the vertical channel direction through a double passivation layer, thereby blocking the transport of carriers in the vertical direction, so that the device has the remarkable characteristics of low interface state defect density, small PBTI effect and stable threshold voltage.
实施例二
在实施例一的基础上,本实施例提供了一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的制备方法,请参见图2、图3a至图3g,所述制备方法包括:On the basis of
S1:选取衬底并在所述衬底上依次生长成核层、缓冲层、沟道层和势垒层。S1: Select a substrate and sequentially grow a nucleation layer, a buffer layer, a channel layer and a barrier layer on the substrate.
选取n+-GaN、Si、SiC或蓝宝石衬底1,并对衬底1表面进行等离子体清洗、表面预处理,保持衬底表面的洁净;随后,在衬底1上依次外延生长厚度为50~500nm的AlN成核层2、厚度为200~8000nm的AlGaN缓冲层3、厚度为50~500nm的本征GaN沟道层4、厚度为10~30nm的AlxGa1-xN势垒层6,其中x=0.1~0.5,如图3a所示。Select an n + -GaN, Si, SiC or
S2:在所述势垒层的两侧进行离子注入,分别形成延伸至所述缓冲层上表面的第一隔离区和第二隔离区。S2: performing ion implantation on both sides of the barrier layer to form a first isolation region and a second isolation region extending to the upper surface of the buffer layer, respectively.
具体地,采用离子注入工艺,在势垒层6上表面的两侧,向势垒层6和本征GaN沟道层4的隔离区注入N离子,N离子注入浓度为1018~1020cm-3,形成高阻区,即第一隔离区5和第二隔离区11,实现器件隔离,如图3b所示。Specifically, using an ion implantation process, on both sides of the upper surface of the
S3:在所述势垒层的上表面中部进行刻蚀,形成延伸至所述沟道层上表面的栅极区凹槽。S3: Etching is performed in the middle of the upper surface of the barrier layer to form a gate region groove extending to the upper surface of the channel layer.
具体地,在势垒层6靠近第二隔离区11的栅极区域采用慢速刻蚀形成栅极区凹槽12,栅极区凹槽12向下穿过势垒层6延伸至GaN沟道层4的上表面,如图3b所示,慢速刻蚀在一定程度上抑制了由于刻蚀带来的界面态现象。Specifically, the
S4:在所述栅极区凹槽内以及所述势垒层的其余上表面区域生长双层钝化层。S4: Growing a double-layer passivation layer in the gate region recess and the remaining upper surface region of the barrier layer.
在本实施例中,步骤S4包括:In this embodiment, step S4 includes:
S41:在势垒层6的上表面以及栅极区凹槽12内,利用CVD(化学气相沉积)技术生长1~5nm的Si钝化层。S41: On the upper surface of the
具体地,利用SF6等离子体清洗步骤S3所得外延片,在CVD反应室内,通入NH3、SiH4和N2反应气体,在所述外延片表面沉积一层1~5nm的致密Si薄膜,作为Si钝化层101,如图3d所示。Specifically, the epitaxial wafer obtained in step S3 is cleaned by SF 6 plasma, and NH 3 , SiH 4 and N 2 reactive gases are introduced into the CVD reaction chamber, and a dense Si thin film of 1-5 nm is deposited on the surface of the epitaxial wafer, As the
S42:慢速刻蚀掉远离所述栅极区凹槽的势垒层表面的Si钝化层,形成位于所述栅极区凹槽内且截面为U形的Si钝化层101,如图3e所示。S42: Slowly etch away the Si passivation layer on the surface of the barrier layer far from the gate region groove, and form the
S43:利用PECVD(等离子增强化学气相淀积)工艺,在所述Si钝化层和所述势垒层上表面沉积一层5~100nm的SiO2,形成SiO2钝化层。S43: Using a PECVD (plasma-enhanced chemical vapor deposition) process, deposit a layer of SiO 2 with a thickness of 5-100 nm on the upper surfaces of the Si passivation layer and the barrier layer to form a SiO 2 passivation layer.
具体地,将完成上述步骤的外延片放入PECVD反应室,以NH3、SiH4、N2为反应气体,在所述外延片表面沉积一层5~100nm的SiO2,作为SiO2钝化层,如图3f所示。Specifically, put the epitaxial wafer after the above steps into a PECVD reaction chamber, and use NH 3 , SiH 4 , and N 2 as reactive gases to deposit a layer of SiO 2 with a thickness of 5-100 nm on the surface of the epitaxial wafer, as SiO 2 passivation layer, as shown in Figure 3f.
S5:在所述栅极区凹槽上方的所述双层钝化层上进行栅电极金属沉积形成栅电极8,进而形成栅极MIS(金属-绝缘体-半导体)结构,如图3g所示。S5: perform gate electrode metal deposition on the double-layer passivation layer above the gate region groove to form a
S6:在所述栅电极9两侧分别形成源电极和漏电极,且所述源电极的下表面和所述漏电极的下表面均与所述沟道层的上表面接触。S6: A source electrode and a drain electrode are respectively formed on both sides of the
具体地,利用光刻工艺在栅电极9两侧分别刻蚀延伸至所述沟道层上表面的源极区凹槽和漏极区凹槽;利用溅射或电子束蒸发工艺在所述源极区凹槽和所述漏极区凹槽进行金属沉积,形成源电极9和漏电极7,随后进行剥离工艺和退火,实现源电极和漏电极的低阻欧姆接触,如图3h所示。优选地,源电极9和漏电极7材质相同,为含Ti/Al的金属组合。Specifically, the source region groove and the drain region groove extending to the upper surface of the channel layer are etched respectively on both sides of the
本实施例提出一种GaN基双层钝化凹槽栅增强型MIS-HEMT器件的制备方法,通过Si钝化层与SiO2钝化层的双层钝化结构,使钝化层表面态下降,比不含钝化层的HEMT结构以及单层钝化层结构有更好的钝化效果。本实施例的方法工艺过程比较简单,与目前传统的GaN HEMT工艺兼容。This embodiment proposes a preparation method of a GaN-based double-layer passivation groove gate enhanced MIS-HEMT device. Through the double-layer passivation structure of the Si passivation layer and the SiO 2 passivation layer, the surface state of the passivation layer is reduced , which has better passivation effect than HEMT structure without passivation layer and single-layer passivation layer structure. The process of the method in this embodiment is relatively simple, and is compatible with the current traditional GaN HEMT process.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210232493.6A CN114823891A (en) | 2022-03-09 | 2022-03-09 | A kind of GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210232493.6A CN114823891A (en) | 2022-03-09 | 2022-03-09 | A kind of GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114823891A true CN114823891A (en) | 2022-07-29 |
Family
ID=82528923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210232493.6A Pending CN114823891A (en) | 2022-03-09 | 2022-03-09 | A kind of GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114823891A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115274413A (en) * | 2022-08-02 | 2022-11-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaN-based semiconductor device and preparation method thereof |
-
2022
- 2022-03-09 CN CN202210232493.6A patent/CN114823891A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115274413A (en) * | 2022-08-02 | 2022-11-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaN-based semiconductor device and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107946358B (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and a manufacturing method thereof | |
CN102386223B (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
JP2021510461A (en) | Group III nitride enhancement type HEMT based on the composite barrier layer structure and its manufacturing method | |
JP6194516B2 (en) | MIS type semiconductor device | |
CN110648914B (en) | Method for improving breakdown voltage of gallium nitride transistor | |
CN114899227A (en) | Enhanced gallium nitride-based transistor and preparation method thereof | |
CN108258035B (en) | GaN-based enhanced field effect device and manufacturing method thereof | |
CN113972263B (en) | An enhanced AlGaN/GaN HEMT device and its preparation method | |
CN110660643A (en) | Method for optimizing passivation of gallium nitride high electron mobility transistor | |
CN112635545B (en) | Enhanced GaN-based MIS-HEMT with asymmetric gate dielectric layer and preparation method thereof | |
CN116169169A (en) | Enhanced GaN HEMTs with low gate leakage current and its preparation method | |
CN114784103A (en) | P-GaN gate enhanced MIS-HEMT device based on silicon passivation and preparation method thereof | |
CN114823891A (en) | A kind of GaN-based double-layer passivation groove gate enhancement mode MIS-HEMT device and preparation method thereof | |
CN110676172A (en) | Method for realizing low-on-resistance enhanced gallium nitride transistor | |
CN111682064B (en) | High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof | |
CN108538908A (en) | A kind of enhanced GaN HEMT devices and preparation method thereof | |
CN109742144B (en) | Groove gate enhanced MISHEMT device and manufacturing method thereof | |
CN114121656B (en) | Preparation method of novel HEMT device based on silicon substrate and device | |
CN114121655B (en) | A self-terminating etching method and device based on an enhanced device | |
CN116885000A (en) | A P-GaN transistor based on P-type nitride isolation and its preparation method | |
CN113410297B (en) | MIS split gate GaN-based high electron mobility transistor and preparation method thereof | |
CN114725214A (en) | A kind of multi-layer passivation groove gate MIS-HEMT device and preparation method thereof | |
CN104701363A (en) | Transistor based on enhanced grid structure and preparation method of transistor | |
CN115692184A (en) | P-AlGaN gate enhancement transistor based on selective wet etching process and preparation method | |
CN114695115A (en) | Semiconductor device with fin structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220914 Address after: 710071 Xi'an Electronic and Science University, 2 Taibai South Road, Shaanxi, Xi'an Applicant after: XIDIAN University Applicant after: Guangzhou Research Institute of Xi'an University of Electronic Science and technology Address before: 510555 building B5, B6, B7, Haisi center, Zhongxin knowledge city, Huangpu District, Guangzhou City, Guangdong Province Applicant before: Guangzhou Research Institute of Xi'an University of Electronic Science and technology |