CN114815004B - 一种红外金属化全通型蓝宝石窗片及其制备方法和应用 - Google Patents

一种红外金属化全通型蓝宝石窗片及其制备方法和应用 Download PDF

Info

Publication number
CN114815004B
CN114815004B CN202210553131.7A CN202210553131A CN114815004B CN 114815004 B CN114815004 B CN 114815004B CN 202210553131 A CN202210553131 A CN 202210553131A CN 114815004 B CN114815004 B CN 114815004B
Authority
CN
China
Prior art keywords
layer
film
infrared
substrate
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210553131.7A
Other languages
English (en)
Other versions
CN114815004A (zh
Inventor
王济洲
陆春
王小军
王云飞
陈学康
许斌
周玲
陈昱翰
马林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Hongrui Aerospace Technology Co ltd
Original Assignee
Wuxi Hongrui Aerospace Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Hongrui Aerospace Technology Co ltd filed Critical Wuxi Hongrui Aerospace Technology Co ltd
Priority to CN202210553131.7A priority Critical patent/CN114815004B/zh
Publication of CN114815004A publication Critical patent/CN114815004A/zh
Application granted granted Critical
Publication of CN114815004B publication Critical patent/CN114815004B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供了一种红外金属化全通型蓝宝石窗片及其制备方法和应用,所述红外金属化全通型蓝宝石窗片包括蓝宝石基底和设置于所述蓝宝石基底表面的金属膜和光学膜,所述金属膜周向设置于所述光学膜外缘,所述光学膜的膜系结构为(0.6h 1.2l 0.6h)^5,本发明采用特制膜系的光学膜,增透效果较好,大幅提升了窗片在近红外谱段的增透谱段与透射率,并在不影响窗片的透过率的情况下,实现窗片边缘金属化,增加了该窗片的焊接可靠性,使其更加灵活地与芯片结合运用于各类探测器等应用场景。

Description

一种红外金属化全通型蓝宝石窗片及其制备方法和应用
技术领域
本发明属于光学薄膜制备技术领域,涉及一种红外金属化全通型蓝宝石窗片及其制备方法和应用。
背景技术
短波红外探测在红外探测中占据着重要位置,短波红外可以提供可见光、微光夜视、中波、长波红外所不能提供的信息。短波红外成像具有高灵敏度、高分辨率、昼夜成像、无需低温制冷等优点,对红外波段全面获取目标的信息具有重要意义,可广泛应用于空间探测、遥感探测、夜视和生物医学等领域。
短波红外成像广泛用于各种不同的应用,包括电子板检查、太阳能电池检测、生产检查、识别与排序、监测、反假冒、过程质量控制等。目前的蓝宝石窗片红外增透谱段普遍较窄,增透水平有待提高,且金属化水平有待进一步改善。
CN109164528A公开了一种五通道多色滤光片的光学膜层制备方法,其先对真空室和基底进行清洗,然后将基地放入真空室内抽真空,待基底加热至200℃后采用离子束轰击清洗基底,再用电子枪蒸发法分别在基底的一侧逐层交替沉积氧化钛膜层和二氧化硅膜层形成膜系1,在另一侧逐层交替沉积氧化钛膜层和二氧化硅膜层形成膜系2、膜系3、膜系4、膜系5和膜系6,待冷却至室温后取出得到所述光学膜层。
CN109143440A公开了一种3.50~3.90μm中波红外微型滤光片及其制备方法。该滤光片包括硅基底和长、短波通膜系;长波通膜系结构为(0.35H0.7L0.35H)^9(0.5HL0.5H)^13,中心波长为2800nm;短波通膜系结构为(0.5LH0.5L)^13,中心波长为4650nm;H和L分别为锗膜层和硫化锌膜层;通过真空中加热硅基底,采用离子束辅助的电子枪蒸发法在基底两侧沉积长、短波通膜系,冷却后制得。
上述方案提供的光学膜片在近红外光谱段的透射率较低,仅为80%左右,大大限制了其应用范围,因此,目前的蓝宝石窗片红外增透谱段普遍较窄,增透水平有待提高,且金属化水平有待进一步改善。
发明内容
本发明的目的在于提供一种红外金属化全通型蓝宝石窗片及其制备方法和应用,本发明采用特制膜系的光学膜,增透效果较好,大幅提升了窗片在近红外谱段的增透谱段与透射率,并在不影响窗片的透过率的情况下,实现窗片边缘金属化,增加了该窗片的焊接可靠性,使其更加灵活地与芯片结合运用于各类探测器等应用场景。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供了一种红外金属化全通型蓝宝石窗片,所述红外金属化全通型蓝宝石窗片包括蓝宝石基底和设置于所述蓝宝石基底表面的金属膜和光学膜,所述金属膜周向设置于所述光学膜外缘,所述光学膜的膜系结构为(0.6h 1.2l 0.6h)^5,其中,l表示低折射率材料层厚度为一个基本厚度,h表示高折射率材料层厚度为一个基本厚度,5为(0.6h 1.2l 0.6h)的周期数。
本发明开发了一种红外金属化全通型蓝宝石窗片,所述红外金属化全通型蓝宝石窗片基于蓝宝石基底,适用于近红外波段的增透膜系,采用双面镀制增透膜系,大幅提升了窗片在近红外谱段的增透谱段与透射率,在900-2000nm谱段的平均透过率可达到98%。大幅增加了窗片在近红外谱段的透射能力,有利于提升探测器准确率,对窗片的边缘实现金属化操作,使其更加灵活地与芯片结合运用于各类探测器等应用场景。
优选地,所述低折射率材料包括SiO2材料。
优选地,所述高折射率材料包括Ti2O3材料。
优选地,所述光学膜的膜层厚度依次为:SiO2层厚度207~210nm,例如:207nm、207.5nm、208nm、208.9nm、209nm或210nm等,Ti2O3层厚度286~288nm,例如:286nm、286.5nm、287nm、287.5nm或288nm等,SiO2层厚度108~110nm,例如:108nm、108.5nm、109nm、109.5nm或110nm等,Ti2O3层厚度24~26nm,例如:24nm、24.5nm、25nm、25.5nm或26nm等,SiO2层厚度273~275nm,例如:273nm、273.5nm、274nm、274.5nm或275nm等,Ti2O3层厚度30~32nm,例如:30nm、30.5nm、31nm、31.5nm或32nm等,SiO2层厚度40~42nm,例如:40nm、40.5nm、41nm、41.5nm或42nm等,Ti2O3层厚度14~16nm,例如:14nm、14.5nm、15nm、15.5nm或16nm等,SiO2层厚度83~85nm,例如:83nm、83.5nm、84nm、84.5nm或85nm等,Ti2O3层厚度68~70nm,例如:68nm、68.5nm、69nm、69.5nm或70nm等,SiO2层厚度86~88nm,例如:86nm、86.5nm、87nm、87.5nm或88nm等,Ti2O3层厚度32~34nm,例如:32nm、32.5nm、33nm、33.5nm或34nm等。
优选地,所述金属膜包括自基底向上依次层叠设置的铬层、镍层和金层。
优选地,所述蓝宝石基底的规格为27.00×10.00×1.80(mm)。
第二方面,本发明提供了一种如第一方面所述红外金属化全通型蓝宝石窗片的制备方法,所述制备方法包括以下步骤:
(1)以蓝宝石为基底,通过PVD蒸镀的方法在基底的两侧逐层交替蒸镀SiO2膜层和Ti2O3膜层形成光学膜,所述光学膜外缘设置留白区;
(2)以护膜片遮盖光学膜,采用直流磁控溅射法在留白区进行金属化镀膜,剥离护膜片得到所述红外金属化全通型蓝宝石窗片。
优选地,步骤(1)所述PVD蒸镀前对所述基底进行除杂处理。
优选地,所述除杂处理包括采用吸尘器清除真空室内的杂质,用脱脂纱布蘸无水乙醇擦拭干净真空室的内壁,再先后采用无水丙酮和无水乙醇分别对基底进行微波超声15min,并用脱脂棉将基底擦拭干净。
优选地,步骤(1)所述留白区的宽度为0.1~0.2mm,例如:0.1mm、0.12mm、0.15mm、0.18mm或0.2mm等。
优选地,步骤(1)所述金属化镀膜的方式为自基底向上依次镀制Cr层、Ni层和Au层。
第三方面,本发明提供了一种如第一方面所述红外金属化全通型蓝宝石窗片的应用,所述红外金属化全通型蓝宝石窗片用于探测器。
相对于现有技术,本发明具有以下有益效果:
(1)本发明采用特制膜系的光学膜,增透效果较好,大幅提升了窗片在近红外谱段的增透谱段与透射率,并在不影响窗片的透过率的情况下,实现窗片边缘金属化,增加了该窗片的焊接可靠性,使其更加灵活地与芯片结合运用于各类探测器等应用场景。
(2)本发明所述红外金属化全通型蓝宝石窗片在900-2000nm谱段的平均透过率可达97.1%以上。
附图说明
图1是实施例1所述红外金属化全通型蓝宝石窗片的结构示意图。
图2是实施例1所述光学膜在基底上的结构示意图。
图3是实施例1所述红外金属化全通型蓝宝石窗片的透射率光谱图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供了一种红外金属化全通型蓝宝石窗片,所述红外金属化全通型蓝宝石窗片的制备方法如下:
(1)以蓝宝石为基底,采用吸尘器清除真空室内的杂质,用脱脂纱布蘸无水乙醇擦拭干净真空室的内壁,再先后采用无水丙酮和无水乙醇分别对基底进行微波超声15min,并用脱脂棉将基底擦拭干净,通过PVD蒸镀的方法在基底的两侧逐层交替蒸镀SiO2膜层和Ti2O3膜层形成光学膜,所述光学膜外缘设置留白区,膜层厚度依次为:
留白区宽度为0.1mm,所述光学膜在基底上的结构示意图如图2所示;
(2)以护膜片遮盖光学膜,采用直流磁控溅射法在留白区进行金属化镀膜,自基底向上依次镀制Cr层、Ni层和Au层,剥离护膜片得到所述红外金属化全通型蓝宝石窗片,所述红外金属化全通型蓝宝石窗片的结构示意图如图1所示,所述红外金属化全通型蓝宝石窗片的透射率光谱图如图3所示。
实施例2
本实施例提供了一种红外金属化全通型蓝宝石窗片,所述红外金属化全通型蓝宝石窗片的制备方法如下:
(1)以蓝宝石为基底,采用吸尘器清除真空室内的杂质,用脱脂纱布蘸无水乙醇擦拭干净真空室的内壁,再先后采用无水丙酮和无水乙醇分别对基底进行微波超声15min,并用脱脂棉将基底擦拭干净,通过PVD蒸镀的方法在基底的两侧逐层交替蒸镀SiO2膜层和Ti2O3膜层形成光学膜,所述光学膜外缘设置留白区,膜层厚度依次为:
留白区宽度为0.15mm;
(2)以护膜片遮盖光学膜,采用直流磁控溅射法在留白区进行金属化镀膜,自基底向上依次镀制Cr层、Ni层和Au层,剥离护膜片得到所述红外金属化全通型蓝宝石窗片。
实施例3
本实施例提供了一种红外金属化全通型蓝宝石窗片,所述红外金属化全通型蓝宝石窗片的制备方法如下:
(1)以蓝宝石为基底,采用吸尘器清除真空室内的杂质,用脱脂纱布蘸无水乙醇擦拭干净真空室的内壁,再先后采用无水丙酮和无水乙醇分别对基底进行微波超声15min,并用脱脂棉将基底擦拭干净,通过PVD蒸镀的方法在基底的两侧逐层交替蒸镀SiO2膜层和Ti2O3膜层形成光学膜,所述光学膜外缘设置留白区,膜层厚度依次为:
层数 膜层材料 膜层厚度/nm
1 SiO2 206
2 Ti2O3 285
3 SiO2 107
4 Ti2O3 23
5 SiO2 272
6 Ti2O3 29
7 SiO2 39
8 Ti2O3 13
9 SiO2 82
10 Ti2O3 67
11 SiO2 85
12 Ti2O3 31
留白区宽度为0.20mm;
(2)以护膜片遮盖光学膜,采用直流磁控溅射法在留白区进行金属化镀膜,自基底向上依次镀制Cr层、Ni层和Au层,剥离护膜片得到所述红外金属化全通型蓝宝石窗片。
实施例4
本实施例提供了一种红外金属化全通型蓝宝石窗片,所述红外金属化全通型蓝宝石窗片的制备方法如下:
(1)以蓝宝石为基底,采用吸尘器清除真空室内的杂质,用脱脂纱布蘸无水乙醇擦拭干净真空室的内壁,再先后采用无水丙酮和无水乙醇分别对基底进行微波超声15min,并用脱脂棉将基底擦拭干净,通过PVD蒸镀的方法在基底的两侧逐层交替蒸镀SiO2膜层和Ti2O3膜层形成光学膜,所述光学膜外缘设置留白区,膜层厚度依次为:
层数 膜层材料 膜层厚度/nm
1 SiO2 211
2 Ti2O3 289
3 SiO2 111
4 Ti2O3 27
5 SiO2 276
6 Ti2O3 33
7 SiO2 43
8 Ti2O3 17
9 SiO2 86
10 Ti2O3 71
11 SiO2 89
12 Ti2O3 35
留白区宽度为0.20mm;
(2)以护膜片遮盖光学膜,采用直流磁控溅射法在留白区进行金属化镀膜,自基底向上依次镀制Cr层、Ni层和Au层,剥离护膜片得到所述红外金属化全通型蓝宝石窗片。
对比例1
本对比例采用的膜系为CN109164527A所述膜系1作为光学膜,其他条件与参数与实施例1完全相同。
对比例2
本对比例与实施例1区别仅在于,不设置金属膜,其他条件与参数与实施例1完全相同。
性能测试:
对产品的光谱测试采用分光光度计,型号PE Lampda900。将待测样品放入测量位置后,进行光谱扫描测量,测量后可对测量数据进行数据处理,获得900-2000nm范围内的平均透过率,测试结果如表1所示:
表1
900-2000nm谱段光的平均透过率/%
实施例1 98%
实施例2 98.2%
实施例3 97.4%
实施例4 97.1%
对比例1 88.1%
对比例2 89.1%
由表1可以看出,由实施例1-4可得,本发明所述红外金属化全通型蓝宝石窗片在900-2000nm谱段的平均透过率可达97.1%以上。
由实施例1和实施例3-4对比可得,本发明所述光学膜的各膜层厚度需控制在SiO2-207~210nm,Ti2O3-286~288nm,SiO2-108~110nm,Ti2O3-24~26nm,SiO2-273~275nm,Ti2O3-30~32nm,SiO2-40~42nm,Ti2O3-14~16nm,SiO2-83~85nm,Ti2O3-68~70nm,SiO2-86~88nm,Ti2O3-32~34nm,若超出此范围,光谱将发生较大变化,整体透过率会降低,超出范围越大,透过率越低。
由实施例1和对比例1对比可得,本发明采用特制膜系的光学膜,增透效果较好,大幅提升了窗片在近红外谱段的增透谱段与透射率。
由实施例1和对比例2对比可得,本发明对窗片进行金属化操作,在不影响窗片的透过率的情况下,实现窗片边缘金属化,增加了该窗片的焊接可靠性,使其更加灵活地与芯片结合运用于各类探测器等应用场景。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (9)

1.一种红外金属化全通型蓝宝石窗片,其特征在于,所述红外金属化全通型蓝宝石窗片包括蓝宝石基底和设置于所述蓝宝石基底表面的金属膜和光学膜,所述金属膜周向设置于所述光学膜外缘;
低折射率材料包括SiO2材料,高折射率材料包括Ti2O3材料;
所述光学膜的膜层厚度依次为:SiO2层厚度207~210nm,Ti2O3层厚度286~288nm,SiO2层厚度108~110nm,Ti2O3层厚度24~26nm,SiO2层厚度273~275nm,Ti2O3层厚度30~32nm,SiO2层厚度40~42nm,Ti2O3层厚度14~16nm,SiO2层厚度83~85nm,Ti2O3层厚度68~70nm,SiO2层厚度86~88nm,Ti2O3层厚度32~34nm;
所述红外金属化全通型蓝宝石窗片在900-2000nm谱段的平均透过率可达97.1%以上。
2.如权利要求1所述的红外金属化全通型蓝宝石窗片,其特征在于,所述金属膜包括自基底向上依次层叠设置的铬层、镍层和金层。
3.如权利要求1所述的红外金属化全通型蓝宝石窗片,其特征在于,所述蓝宝石基底的规格为27.00×10.00×1.80 mm。
4.一种如权利要求1-3任一项所述红外金属化全通型蓝宝石窗片的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)以蓝宝石为基底,通过PVD蒸镀的方法在基底的两侧逐层交替蒸镀SiO2膜层和Ti2O3膜层形成光学膜,所述光学膜外缘设置留白区;
(2)以护膜片遮盖光学膜,采用直流磁控溅射法在留白区进行金属化镀膜,剥离护膜片得到所述红外金属化全通型蓝宝石窗片。
5.如权利要求4所述的制备方法,其特征在于,步骤(1)所述PVD蒸镀前对所述基底进行除杂处理。
6.如权利要求5所述的制备方法,其特征在于,所述除杂处理包括采用吸尘器清除真空室内的杂质,用脱脂纱布蘸无水乙醇擦拭干净真空室的内壁,再先后采用无水丙酮和无水乙醇分别对基底进行微波超声15min,并用脱脂棉将基底擦拭干净。
7.如权利要求4所述的制备方法,其特征在于,步骤(1)所述留白区的宽度为0.1~0.2mm。
8.如权利要求4所述的制备方法,其特征在于,步骤(2)所述金属化镀膜的方式为自基底向上依次镀制Cr层、Ni层和Au层。
9.一种如权利要求1-3任一项所述红外金属化全通型蓝宝石窗片的应用,其特征在于,所述红外金属化全通型蓝宝石窗片用于探测器。
CN202210553131.7A 2022-05-20 2022-05-20 一种红外金属化全通型蓝宝石窗片及其制备方法和应用 Active CN114815004B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210553131.7A CN114815004B (zh) 2022-05-20 2022-05-20 一种红外金属化全通型蓝宝石窗片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210553131.7A CN114815004B (zh) 2022-05-20 2022-05-20 一种红外金属化全通型蓝宝石窗片及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114815004A CN114815004A (zh) 2022-07-29
CN114815004B true CN114815004B (zh) 2024-03-15

Family

ID=82517344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210553131.7A Active CN114815004B (zh) 2022-05-20 2022-05-20 一种红外金属化全通型蓝宝石窗片及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114815004B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595546A (zh) * 2022-10-25 2023-01-13 中物院成都科学技术发展中心(Cn) 一种用于蓝宝石片镀膜的镀膜装置及镀膜方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082982A1 (fr) * 2007-12-27 2009-07-09 Shenzhen Fangda Semiconductor Co., Ltd Procédé pour augmenter l'efficacité lumineuse d'une puce et procédé de fabrication d'un substrat en saphir à motif
CN101859805A (zh) * 2009-04-02 2010-10-13 三星康宁精密琉璃株式会社 用于光伏电池的多层薄膜
CN105758522A (zh) * 2016-04-19 2016-07-13 中国科学院上海技术物理研究所 一种以蓝宝石为基底的亚微米级厚度的光学狭缝
KR20170092220A (ko) * 2016-02-03 2017-08-11 주식회사 일루코 의료용 확대경에 설치되는 다층 코팅 렌즈
CN108459361A (zh) * 2018-04-12 2018-08-28 无锡奥夫特光学技术有限公司 一种红外光学窗口及其制备方法
CN110794490A (zh) * 2019-11-25 2020-02-14 中国科学院上海光学精密机械研究所 一种中波红外增透膜设计及制备方法
CN112501557A (zh) * 2020-11-12 2021-03-16 南京波长光电科技股份有限公司 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
CN113960707A (zh) * 2021-10-13 2022-01-21 苏州众为光电有限公司 一种角度可调谐的消偏振滤光片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082982A1 (fr) * 2007-12-27 2009-07-09 Shenzhen Fangda Semiconductor Co., Ltd Procédé pour augmenter l'efficacité lumineuse d'une puce et procédé de fabrication d'un substrat en saphir à motif
CN101859805A (zh) * 2009-04-02 2010-10-13 三星康宁精密琉璃株式会社 用于光伏电池的多层薄膜
KR20170092220A (ko) * 2016-02-03 2017-08-11 주식회사 일루코 의료용 확대경에 설치되는 다층 코팅 렌즈
CN105758522A (zh) * 2016-04-19 2016-07-13 中国科学院上海技术物理研究所 一种以蓝宝石为基底的亚微米级厚度的光学狭缝
CN108459361A (zh) * 2018-04-12 2018-08-28 无锡奥夫特光学技术有限公司 一种红外光学窗口及其制备方法
CN110794490A (zh) * 2019-11-25 2020-02-14 中国科学院上海光学精密机械研究所 一种中波红外增透膜设计及制备方法
CN112501557A (zh) * 2020-11-12 2021-03-16 南京波长光电科技股份有限公司 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
CN113960707A (zh) * 2021-10-13 2022-01-21 苏州众为光电有限公司 一种角度可调谐的消偏振滤光片

Also Published As

Publication number Publication date
CN114815004A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
AU2022202741B2 (en) Optical filter
CN101893729B (zh) 一种中红外带通滤光片及其制备方法
CN114815004B (zh) 一种红外金属化全通型蓝宝石窗片及其制备方法和应用
CN108627889B (zh) 一种锗基底宽光谱红外增透光学窗口
US20160097885A1 (en) Mirror substrates with highly finishable corrosion-resistant coating
CN109143440B (zh) 3.50~3.90μm中波红外微型滤光片及其制备方法
CN102590917B (zh) 3.65微米至5微米宽带红外滤光片
CN111061001A (zh) 一种480~580nm透过可见光滤光片及制备方法
WO2019232934A1 (zh) 一种光吸收镀膜、其制备方法及应用
CN112030115B (zh) 一种透雷达波柔性基底红外滤光膜及其制备方法
JP6513486B2 (ja) 防曇性反射防止膜、防曇性反射防止膜付きカバー基体及び防曇性反射防止膜の製造方法
US20120148872A1 (en) Aluminum article and method for manufacturing same
Mashaiekhy et al. Effect of substrate temperature and film thickness on the characteristics of silver thin films deposited by DC magnetron sputtering
CN101458354A (zh) 一种光谱范围为9.2μm~9.6μm的宽截止长波红外窄带滤光片
CN110989183B (zh) 一种用于海洋多维成像系统中的分光镜、其制备方法和设计方法
CN115867008A (zh) 具有选择性电磁屏蔽和高透过率的膜层系统及其制备方法
CN114047571A (zh) 一种红外短波截止滤光片
CN114879283A (zh) 一种红外金属化全通型锗窗片及其制备方法
CN216434427U (zh) 一种红外测温长波滤光片
US20230305205A1 (en) Ultra wide band optical absorber based on multilayer transition metal layers
CN216979338U (zh) 一种基于多层过渡金属层的超宽带光学吸收器
CN117031587A (zh) 红外增透膜片、红外金属化增透膜片、其制备方法和应用
CN116752107A (zh) 一种低电阻温度系数刀柄用复合薄膜应变计的制备方法
CN116990894A (zh) 一种中红外波段带通滤光片及其制备、检验方法
CN117995942A (zh) 二类超晶格红外探测芯片增透膜镀膜方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant